Towards Optimal Placement and Scheduling of DNN Operations
with Pesto

Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, Zhenhua Liu
Stony Brook University, Stony Brook, NY, USA
{ubaidullah.hafeez,xiao.sun,anshul.gandhi,zhenhua.liu}@stonybrook.edu

ABSTRACT

The increasing size of Deep Neural Networks (DNNs) has neces-
sitated the use of multiple GPUs to host a single DNN model, a
practice commonly referred to as model parallelism. The key chal-
lenge for model parallelism is to efficiently and effectively partition
the DNN model across GPUs to avoid communication overheads
while maximizing the GPU utilization, with the end-goal of mini-
mizing the training time of DNN models. Existing approaches either
take a long time (hours or even days) to find an effective partition or
settle for sub-optimal partitioning, invariably increasing the end-to-
end training effort. In this paper, we design and implement Pesto, a
fast and near-optimal model placement technique for automatically
partitioning arbitrary DNNs across multiple GPUs. The key idea in
Pesto is to jointly optimize the model placement and scheduling at
the fine-grained operation level to minimize inter-GPU communi-
cation while maximizing the opportunity to parallelize the model
across GPUs. By carefully formulating the problem as an integer
program, Pesto can provide the optimal placement and scheduling.
We implement Pesto in TensorFlow and show that Pesto can re-
duce model training time by up to 31% compared to state-of-the-art
approaches, across several large DNN models.

CCS CONCEPTS

« Theory of computation — Integer programming; Linear
programming; Scheduling algorithms; - Computing method-
ologies — Neural networks.

KEYWORDS

systems for ML, model parallelism, DNN placement, scheduling,
giant DNNs

ACM Reference Format:

Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, Zhenhua Liu. 2021. Towards
Optimal Placement and Scheduling of DNN Operations with Pesto . In
22nd International Middleware Conference (Middleware °21), December 5—
11, 2021, Québec city, QC, Canada. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3464298.3476132

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware "21, December 5-11, 2021, Québec city, QC, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8534-3/21/12...$15.00
https://doi.org/10.1145/3464298.3476132

1 INTRODUCTION

The past few years have seen a significant increase in the adoption of
Deep Neural Networks (DNNs) for a wide range of machine learning
applications, including image classification, language translation
and modeling [19, 26, 36]. The success of DNNs is primarily due to
the large models which have the capacity to learn complex features
from big data. Modern DNN training frameworks, such as Tensor-
Flow [9] and pyTorch [47], model DNNss as directed acyclic graphs
(DAGs) where each node is a compute operation, typically run on a
GPU, TPU, or CPU, and each edge represents data communication
between operations (see Section 2).

Today’s DNNs typically have a large number of layers resulting
in billions of model parameters [29]. This tremendous growth in
size of such “giant” DNN models complicates the already time-
and resource-intensive DNN training process. An unavoidable and
undesirable side-effect of the ever-increasing size of DNN models is
the inability to fit these giant models on a single GPU. For instance,
training Transformer [57] model for language translation with 103
layers requires more than 32 GB of GPU memory [29], suggesting
that this model cannot fit in one (commodity) GPU [1, 3].

The growth in model sizes has necessitated the use of multiple
GPUs to host a single DNN model, also referred to as model paral-
lelism [15, 17, 38]. Under model parallelism, the model (or DNN
graph) is partitioned among multiple GPUs such that each GPU
evaluates only a subset of the model. Model parallelism is also at-
tractive as it has the potential to improve resource (GPU) utilization
and, consequently, reduce total training time [33, 44, 45].

The key challenge with model parallelism is that partitioning a
model among GPUs is not easy as DNNs are not always structured
as easily separable parallel branches. Further, when partitioning
the graph, if two adjacent nodes are placed on different GPUs,
a communication overhead is incurred. Manually finding the best
partition for a given DNN model that minimizes the communication
overhead while efficiently utilizing multiple GPUs is a challenging
task, even for experienced domain experts or machine learning (ML)
practitioners [45]. Typically, domain experts partition models across
GPUs by assigning a subset of layers to each GPU [10, 31, 44, 45, 58],
referred to as Expert strategy. However, because of the sequential
nature of the layers of DNNs [29], such partitioning can result in
under-utilization of compute resources while incurring significant
communication overhead, resulting in large training times.

Prior work on partitioning DNN models has employed learning-
based techniques to determine the placement of DNN operations on
different GPUs [10, 44, 45]. While such learning-based techniques
can outperform (manual) Expert strategies, they require significant
time to find the placement, often on the order of days [45]. A recent
work, Baechi [31], employed an algorithmic approach to signifi-
cantly reduce the placement time of DNNs. However, the resulting

https://doi.org/10.1145/3464298.3476132
https://doi.org/10.1145/3464298.3476132

placements are not optimal, and can lead to training times that are

worse than learning-based and Expert strategies.

This paper presents Pesto, a fast and near-optimal model place-
ment technique for automatically partitioning arbitrary DNNs
across multiple GPUs. In contrast to existing approaches, Pesto
can find better placements in a few minutes. Pesto aims to max-
imize resource utilization by intelligently scheduling operations
across GPUs while respecting their dependencies. Further, Pesto
aims to minimize training time by opportunistically overlapping
compute time with communication time (across GPUs) while taking
memory constraints into account.

The key idea in Pesto is to jointly consider the model placement
and scheduling of operations. Pesto formulates the placement and
scheduling problem as an integer linear program (ILP). To model
the system dynamics, we carefully craft communication congestion
and memory constraints, a significant addition over similar graph
scheduling approaches in the literature. By design, Pesto’s ILP-
generated placement and scheduling is optimal. To reduce the DNN
training effort due to the time required to solve the ILP, we develop
a cycle-free vertex merging technique to efficiently coarsen the
model graph while still obtaining a near-optimal solution.

We implement Pesto in TensorFlow and experimentally evaluate
its performance for eleven different variants across four giant DNN
models. Compared to the Expert placement and Baechi, we find
that Pesto reduces training time across all models by about 15.5%
and 23.4%, respectively, on average. Further, we show that Pesto
can outperform learning-based approaches in terms of the improve-
ment in training time afforded over Expert. Finally, Pesto reduces
the placement time from hours or days under learning-based ap-
proaches to a few minutes. To the best of our knowledge, Pesto
is the first technique to find placements for RNNLM models [60]
that reduce the training time significantly compared to the Expert
strategy (see Section 5 for results).

To summarize, this paper makes the following contributions:

o We present a near-optimal, joint DNN placement and operation
scheduling algorithm for arbitrary DNN models.

e We design an online model parallelism framework, Pesto, which
minimizes model training time on multiple GPUs.

o We implement Pesto on TensorFlow and show that Pesto can
reduce DNN model training time by 15.5% and 23.4%, on average,
compared to the Expert strategy and Baechi.

o Given the increasing popularity of giant models, unlike existing
DNN placement techniques [10, 31, 44, 45], we evaluate Pesto
extensively across multiple giant models, each with different
variants.

2 BACKGROUND

This section provides background on DNN training and why parti-
tioning as well as scheduling of low level operations in DNN model
graphs is important for parallel training.

2.1 Overview of DNN training

Deep Neural Nets (DNNs): DNNs are typically employed in ap-
plications such as image classification or language translation, and
work by learning a relationship between the output variable(s) (such
as detection of objects in the image) and the input features (such as

N x} €D Input Embedding
E-Output Embedding

| @ Feed Forward

EO Linear

| @D Add & Norm

i @ scalar Dot-Product Attentior
1 D Concatenation
E-Softmax

Figure 1: Illustration of the N-layered Transformer [57]
model’s DNN architecture.

pixels of images) [50, 61]. The relationship can be non-linear, and is
parameterized using model weights or parameters, that are learned
by the DNN, based on training over (typically) labeled data sets.

The DNN model consists of sequence of layers of different types,
with each layer consisting of several nodes, corresponding to com-
putational tasks or operations. Figure 1 shows the simplified DAG
of the Transformer model [57]. Here, the edges connecting differ-
ent colored circles denote data flow between them. The colored
circles in the figure represent a functional compute unit (see leg-
end), which under TensorFlow could itself be composed of multiple
smaller compute operations. As a result, the actual DAG is much
more complex. For example, in our experiments, a 6 layered Trans-
former model results in a DAG of more than 19,000 operation nodes.
Note the X multiplier within some of the (dotted boundary) layers;
these indicate that the layer repeats N times in the model. Training
generally consists of multiple iterations of the training data over
the same model.

Model parallelism: Today’s DNN models can be very large, or
“giant” [19, 29, 57], requiring significant amount of GPU memory
to host the model and making it infeasible to host the giant model
on a single GPU [29, 44, 45]. Model parallelism is a technique that
is ideal for emerging and giant DNN models that do not fit on
one GPU [10, 44, 58]. Under model parallelism, the DNN graph is
partitioned into subsets, and each subset is placed on a different
GPU. Note that this is different from data parallelism whereby
the entire model is replicated on each GPU, but each GPU only
processes a subset of the training data. For giant models, since
the model cannot fit in one GPU, data parallelism is infeasible.
Under model parallelism, data flows through the entire graph, across
GPUs, thus incurring communication overhead. There could also
be data flow between operations colocated on the same GPU, but
this communication latency is negligible.

TensorFlow DNN training framework: TensorFlow [9] is a widely
employed software framework for training machine learning mod-
els, such as DNNs. In TensorFlow, the DNN models are stored and
executed as directed acyclic graphs (DAGs), with the graph nodes
representing mathematical operations (e.g., multiplication, gradi-
ent, etc.) and the edges representing data arrays (or tensors) that
flow between operations. Different DNN models can have different
DAGs. In TensorFlow, when adjacent operations are placed on dif-
ferent devices, a pair of send and receive operations is added to the

DAG for data transfer between devices; this data transfer incurs
some overhead.

In terms of scheduling, for each device, TensorFlow randomly
picks an operation from the ready queue (those whose predecessors
have completed execution) for execution. Note that all partitioning
and scheduling decisions in TensorFlow have to be made before
runtime, and can thus not be altered during execution. For the
rest of the paper, we consider TensorFlow as our DNN training
framework.

2.2 Significance of partitioning and scheduling
of DNN operations across GPUs

Depending on the number of model parameters and batch size
employed, a DNN model may require significant memory capacity.
For example, the Transformer model (see Figure 1) with 6 layers
(and hidden size of 512 units, 8192 filters, and 16 attention heads
with a batch size of 32 or higher) typically cannot be hosted on a
single commodity GPU, thus necessitating the partitioning of the
DNN model across GPUs. Given the complexity of the model, as
illustrated in Figure 1, it is not obvious which operations, or even
whole layers, should be placed on a given GPU to maximize GPU
usage. Worse, when neighboring operations (that share an edge) are
placed on different GPUs, a non-trivial communication overhead
is incurred when data is transferred between the operations. For
example, in our experiments, the communication overhead can
account for 20%-50% of the total model training time. Consequently,
the placement of the model across GPUs can significantly impact
model training time [10, 44].

Assuming that a near-perfect partitioning of the model across

GPUs can be obtained, it is still not obvious how the individual
operations should be scheduled on their respective GPUs. Since the
operations and layers in DNNs are closely dependent on each other
(see Figure 1), a sub-optimal scheduling of operations on one GPU
can stall the execution of dependent operations on other GPUs.
This would result in a cascading effect, delaying the entire DNN
training.
Ilustrative example: To illustrate the challenges involved in
DNN execution under frameworks like TensorFlow, consider the
DAG shown in Figure 2(a) for a toy example. Assuming we have two
homogeneous GPUs, Figure 2(b) shows the result of a naive sched-
uling which prioritizes the longest critical path, without knowing
the compute requirements of operations. By ignoring the compute
requirements, the naive scheduling results in a sub-optimal solution.
Note that the operations are aware of all placement decisions, and
can thus transfer data to the successor node GPU immediately after
execution. If we additionally consider a naive placement of opera-
tions, as shown in Figure 2(c), then the communication overheads
can further increase the execution time.

If the compute and communication times can be estimated be-
forehand, then an optimal solution can be obtained for operation
placement and scheduling, as illustrated in Figure 2(d) where the
compute intensive operations F and G are scheduled before the
smaller operations, A-E. The subsequent improvement in execu-
tion time (and resource efficiency) can be significant, to the tune of
22-26% in the above example.

Q MABCDE [T w T1]
 cru 2 JIN N

Time ——88 >
@ $ (b) Naive scheduling (completes in 18s).

) EEmE——< 1 O
Em [|

Time ——8 >
@ (c) Naive placement (completes in 19s).

MI G__[AB[CIDlE] [T 1]

I
@ [(Gpu2 | o |

Time ——88 >
(d) Optimal (completes in 14s).

(a) Example DAG for a DNN model.
Figure 2: Illustration of the placement and scheduling chal-
lenges for DAGs in TensorFlow. In Figure (a), each circle
(node) shows a compute operation. Directed arrows (edges)
represent the direction of flow of data. Number in parenthe-
ses inside each node shows compute time. In Figures (b), (c),
and (d), the orange boxes represent communication events.
The white numbers inside each communication event de-
note the communication overhead.

3 PLACEMENT AND SCHEDULING VIA
PESTO

This section presents our approach, Pesto, to intelligently place
an arbitrary DNN DAG model across devices (GPUs, CPUs, etc.)
with the goal of minimizing model training time without incurring
significant placement determination time. Pesto jointly determines
the placement and scheduling of DAG operations across devices.
Pesto works by first estimating the compute time of operations and
the communication time between adjacent operations in the DAG
(Section 3.1) and then our algorithms (Section 3.2) make placement
and scheduling decisions based on our integer programming for-
mulation. Since integer programming can be time consuming, we
introduce a graph coarsening technique (Section 3.3) that signifi-
cantly speeds up our algorithm, thereby reducing the placement
and scheduling overhead.

The core of Pesto is our DAG partitioning and scheduling. Sched-
uling DAGs with precedence (or dependency) constraints to mini-
mize the makespan (time between the first task arrival and the last
task completion) is an NP-hard problem [56]. As such, our ability
to obtain near-optimal solutions remains limited. Algorithms based
on List Scheduling (LS) are known to provide good approximation
ratios for several DAG scheduling problems if the communication
time between devices is negligible [21]. While the communication
time for real systems is not negligible, LS-based solutions continue
to be popularly employed [31, 51, 55]. For DAG scheduling with gen-
eral communication times, there is no known polynomial-time ap-
proximation algorithm. In fact, even with constant communication
times for all operations, the problem is known to be NP-hard [28].

The DNN DAG scheduling problem in Pesto differs from existing
DAG scheduling literature in two aspects, as shown in Figure 3: com-
munication time and constraints. First, most existing works assume
unlimited bandwidth for data transfer [24, 39]. As a consequence,
even if 100 operations on the same GPU send data to another GPU,
it is assumed that they can proceed simultaneously without any

Congestion

Communication —|

Disparity
Pesto DAN Placement
DAG scheduling
Constraints Memory

Co-location
Figure 3: Algorithm challenges in Pesto scheduling.

queueing delay and without slowing each other. However, this is
not the case in real systems. In our Pesto scheduling, we perform
data transfers sequentially since simultaneous transfers on the same
link can result in additional delay. Further, existing models often
assume that communication time is much faster than computation
time [31], which is not necessarily true for DNN training. In fact,
even when using the fast NVlink for inter-GPU data transfer, we
find that communication time can be several orders of magnitude
higher than the compute time of some operations. For constraints,
our Pesto algorithm design considers several constraints to faith-
fully capture the system dynamics, including device affinity (e.g.,
CPU operation to be placed on CPU, GPU execution operations to be
placed on GPU), GPU memory capacity constraints, and co-location
constraints for specific set of DNN operations. DAG scheduling in
the presence of such constraints has not been considered in prior
work.

3.1 Estimating the compute and
communication time of operations

For determining the placement and scheduling, Pesto requires accu-
rate estimates of compute and communication times of DNN model
operations.

Compute time: For estimating compute times, we use empirical
data obtained by running 100 iterations of the DNN model on our
experimental setup (Section 5). Using the average compute time for
an operation across 100 runs as an estimate works well in practice
because there is very little variability in the compute time of a
given model-specific operation over different iterations, as has also
been observed by prior works [22, 33, 44, 45]. Figure 4(a) shows our
empirical results for the CDF of the normalized standard deviation
(normalized by the mean) of the per-operation compute times for
different DNN models. We see that, for all models, the normalized
standard deviation is relatively small. For ease of illustration, we
ignore very small operations in Figure 4(a) as they do not contribute
significantly to model execution time. However, for our placement
and scheduling algorithm, we do take all operations of the DNN
graph into account.

Our estimation approach of employing a handful of iterations
has very little overhead in practice, and similar approaches have
been used in prior works (e.g., Baechi [31] and FlexFlow [33]). Since
giant DNNs are typically trained for more than 100K training steps
and multiple epochs [11, 18, 57, 61], the overhead of running 100
iterations for profiling translates to a less than 0.1% overhead. Fur-
ther, the process of logging the compute times of a few iterations
of the DNN model (before actually executing for the entire train-
ing data) can be automated and does not require manual effort.
Finally, the profiling does not have to be repeated if some of the

1 7 x10t
08 T, “CPUGGPU
: £° GPU-GPU
=3 4
06 5
w w3
804 —RNNLM-2 9,
© —NMT-2 5
0.2 Transformer-6 £1
o —NASNet-4 £
o o1 o02 03 04 ©O0 1 2 3

Normalized standard deviation Data size (bytes) x 108

(a) CDF of normalized standard deviation (b) Communication time as a function of
of compute times. the data transfer size.

Figure 4: Empirical results for the compute and communica-
tion time of operations for various TensorFlow models.

hyperparameters change, such as the learning rate. However, if the
underlying DNN graph changes, for example, when the batch size
is changed, then the compute times will have to be re-profiled.
Communication time: To estimate communication time between
operations, we first classify communications into different types, i.e.,
between CPU and GPU (in both directions) and between two GPUs.
Figure 4(b) shows our empirical results for the communication
time across operations (of various models) as a function of the
data transfer size (obtained from TensorFlow logs). We see that the
communication time is almost linearly related to the data size. Based
on the above analysis, we model the communication times for each
communication type via a simple linear fit as Toomm = fo+p1Xdata,
where data is the size of the data transfer (in bytes, in our case) and
Po, B1 are constants that we determine via regression. We find that
linear regression provides an accurate data fit with R? values of 0.92—
0.99. Note that the linear communication model is independent of
the DNN, and can thus be easily obtained via offline profiling of the
communication operations of varying data sizes from any model
(not necessarily the target DNN), as is the case for our evaluation
results in Section 5.

3.2 Pesto algorithm design

3.2.1 Problem formulation. We represent the DNN model as a
DAG, G = (V,E), where V is the set of compute operations, and
E C V'xV is the set of precedence constraints among the operations.
Each operation i has an execution time p; (estimated as discussed
in Section 3.1) and a designated device type O; to be placed onto.
Here we consider three types of devices, CPU, GPU, and Kernel,
denoted by Oc¢, Og, and Ok, respectively. Kernel operations are
small pre-processing operations executed on the CPU before a GPU
operation can be executed on the GPU. There is a communication
link between each pair of devices. This could be PCle for CPU-GPU
communication, and PCle or NVlink for GPU-GPU communication.

A constraint edge (i, j) requires that operation j can only start
after operation i is completed and the data transfer process is com-
pleted on their corresponding communication link. The data trans-
fer time between two operations i, j € V with (i, j) € E is estimated
via the communication time model from Section 3.1, if the opera-
tions are placed on different devices; if the operations are placed on
the same device, the transfer time is negligible and is ignored. To
capture the congestion in the communication bus, we model inter-
device communication links as a First-Come-First-Served queue.

For both devices and communication links, we do not allow pre-
emptions, so there is only one operation that can be scheduled on
each device or link at any given time. Our goal is to minimize the
DAG completion time considering both compute time and commu-
nication congestion.

3.2.2 Pesto ILP. We employ an integer linear program (ILP) to find
the DAG placement and scheduling. At a high level, the Pesto ILP
algorithm consists of two steps. First, it augments the original DAG
with additional edges to incorporate communication cost. It then
formulates and solves an efficient 0-1 ILP to obtain the optimal
placement and scheduling of operations across all devices.

Compared to existing DAG scheduling approaches, we explicitly

model communication congestion and device and model constraints.
For ease of presentation, we consider DAG scheduling with 2 iden-
tical GPUs. We discuss the extension to multiple GPUs at the end
of this subsection.
DAG augmentation: In traditional DAGs, vertices represent com-
pute time and edges represent communication time. However, such
models often assume congestion-free communication, e.g., data
transfer on edge 1 will not contend with data transfer on edge 2,
even if the transfers are between the same pair of devices. This is
not the case for DNN training in practice. We augment the DAG
by converting edges into new nodes with specific labels and add
constraints so that nodes with the same label, e.g., CPU-0—GPU-0,
cannot be scheduled at the same time. This augmentation addresses
the limiting assumption of unrestricted data transfer made in most
existing works.

For a directed edge e = (i,j) € E where data is transferred
from operation i to j before executing j, we augment G as fol-
lows. If i and j are both placed on GPUs, we add one vertex, k, and
two edges (i, k), (k, j) for the potential communication overhead
between GPUs. Denote this set of added vertices by Ogg, repre-
senting new GPU-GPU communication vertices. For CPU-GPU (or
GPU-CPU, respectively) precedence constraints, we augment the
DAG in the same way and denote the new set of nodes by Ocg (or
Ogc, respectively). Denote the augmented graph by G = (V, E).
Placement and scheduling: We identify the optimal placement
and scheduling for each operation in the DAG by solving the fol-
lowing ILP, referred to as Pesto ILP.

min Crmax (Pesto ILP)
s.t. Ci<Sj, (i,j)ekE (1)
Si+pi=Ci, Vi€ {V/Ogs} @)
0<Ci <Cmax, VieV (3)
Non-overlapping constraints (4)
zr = x; XOR xj, Yk € Ogg, (i,k), (k, j) € E (5)
Si+zipi =Ci, Vi€ Ogc (6)
Congestion constraints (7)
Memory constraints 8)
x; €{0,1},Vie€ Og, zj €{0,1},Vj€ Ogg 9)

Here, Cmax represents the execution time of the entire DAG,
which is the per-iteration DNN model training time. C;, S;, and
pi are the completion time, starting time, and processing time of
operation i, respectively. Note that p; for i € Ogg U Ocg U Oge

is simply the communication time estimate, obtained as discussed
in Section 3.1. Constraint (1) enforces the precedence constraint
for all operations. Constraints (2) ensures that the finishing time of
any operation equals the sum of its starting time and processing
time.

The key decision variable is x; for the placement of GPU opera-

tion i € Og. x; = 0 (or x; = 1) denotes the placement of i on GPU-0
(or GPU-1, respectively). Colocation constraints can be easily han-
dled in our ILP formulation. To colocate operations {i1, iz, . . ., ir },
we set Xj;, = Xj, = ... = Xj.
Non-overlapping constraints: ensure that operations placed on the
same device do not have overlapping execution periods. For ex-
ample, two operations i and j placed on CPU-0 core must have
non-overlapping execution intervals, [S;, C;) and [Sj,Cj). Thus,
S;i > Cj XOR S; > C;. The conditions, for each CPU core, can be
rewritten using indicator variables (to maintain the 0-1 ILP formu-
lation) as S; > Cj — Mé;j and Sj > C; — M(1 - §;5), where M is a
large number and §;; is a 0-1 indicator variable. To see the equiva-
lence, if §;; = 1, then the first inequality always holds, so we have
Sj 2z Cj. Otherwise 6;; = 0, which means the second inequality
always holds, so S; > Cj. Note that, by Constraints (2), C; > S; and
Cj > Sj,s08; 2 Cj implies C; > S; > Cj > §j, and so S; % Ci,
ensuring the XOR condition. Similarly, S; > C; implies S; # C;.

For GPUs, the non-overlapping condition is more complicated
as non-overlapping constraints are needed when i and j are on the
same GPU. Nevertheless, we can employ 0-1 indicator variables to
express these constraints as:

Si 2 Cj + Msbij — Mj(2 — xi — xj)

Sj = Ci + Ms(1—=6;5) — Mj(2 — xi — xj)
Si = Cj + Msbij — Mj(x; + x;)

Sj>C; + M (1 —5ij) - M (x; +x]~),

(10)

where M; > M; > 0. The placement constraints for kernel

operations are similar to those of GPU operations.
Congestion constraints: handle communication congestion, which
can critically impact DNN training times under model parallelism.
For GPU-GPU communication, the existence of processing time
for the augmented vertex, say k, depends on whether the two com-
municating GPU operations are placed on the same GPU. We thus
add a 0-1 integer z for k € Ogg. Constraint (5) sets z; = 1 if the
two corresponding GPU operations are placed on different GPUs.
The XOR condition in Constraint (5) can be reformulated (since
the logical XOR condition is not supported directly by solvers) by
four linear constraints: zx < x; + xj, 2k = X; — Xj, Z = Xj — Xi,
zi £ 2 — x; — xj. From Equation (6), if z; = 1, then z;pr = pi
amount of communication time is required to process the transfer;
if z; = 0, then S = Cy, meaning negligible transfer.

For two GPU-GPU communication operations i, j € Ogg, as-
sume i connects a,b € Og and j connects ¢,d € Og. For the
GPU-1 — GPU-0 one-way traffic, congestion occurs only when
Xq = 1,xp = 0 and x; = 1, x4 = 0, meaning that both data transfers
exist and are from GPU-1 to GPU-0. Then we have x,+x.—xp—x4 =
2. The non-overlapping constraints can thus be written, similar to

G1-GO| i G1—=Go 1|l
GO—G1 | I GO=GL [[][] |
cpuU| I CcPU| [
GPUL| I GPUL | NN
GPUO| ([[GPUO| |
0 2 4 6 0 1 2

Execution time (ps) x10° Execution time (us) x10°

(a) Congestion-oblivious ILP solution. (b) Congestion-aware ILP solution.

Figure 5: Illustrating the importance of congestion con-
straints in our Pesto ILP for the RNNLM-2-2048 DNN model.

Equation (10), as:

Si 2 Cj — Mdij + Ms(xa +xc — xp —xq — 2)
Sj = Ci = M(1=8;j) + Ms(xq + Xc — Xp — Xg — 2)

where My > M > 0. Similar constraints exist for GPU-0 —
GPU-1 traffic or GPU-CPU congestion.

We emphasize that communication congestion constraints are
crucial to our DNN DAG scheduling. Figure 5 compares the DNN
execution for an RNNLM model (via our simulator, see Section 5.4)
under the Pesto ILP without and with congestion constraints; the
x-axis denotes the execution timeline and the y-axis denotes the
significant execution components. Without congestion constraints,
multiple data transfers proceed in parallel on the GPU-0 — GPU-1
link (Figure 5(a)), causing a significant communication delay. With
the constraints in place, the ILP finds a communication-aware place-
ment that results in fewer and staggered inter-GPU communication
events, resulting in a nearly 3X reduction in execution time (see
x-axis in Figure 5(b)).

Memory constraints: are approximated in our ILP formulation by
ensuring that the cumulative memory footprint of operations on
each GPU is balanced. For each GPU device, we compute the mem-
ory footprint of the resident operations by summing up the input
and output tensor memory sizes; these sizes can be obtained from
TensorFlow via the tf.profiler API.We find, in our experiments
(see Section 5), that this simple memory constraint suffices to avoid
out of memory (OOM) errors. However, we note that the constraint
can be strengthened, if needed, to also account for precise allocation
and deallocation of temporary memory [31].

ILP optimality, extensions, and solution: Any valid placement
and scheduling is a feasible solution to our ILP, and any feasible
solution obtained from the ILP is also a valid placement and sched-
uling, by construction of our ILP. Given the 1-1 correspondence,
the solution found by solving the ILP is the optimal placement and
schedule. This is because the solution to the ILP is by definition,
optimal.

THEOREM 3.1 (OPTIMALITY). For DNN DAG scheduling problem
with 2 GPUs, the solution generated by Pesto ILP formulation is opti-
mal.

Our Pesto ILP can be extended to the case of arbitrary number
of devices. The first step in this extension is to add additional indi-
cator variables for each new device. For example, for 4 GPUs, the
placement of operation i can be indicated by the pair {x;,y;} of

0-1 variables, which together encode all four GPU placement possi-
bilities. The non-overlapping congestion constraints can then be
adapted accordingly. Our ILP framework also supports hierarchical
and heterogeneous communication models, which are useful for
modeling communication between hosts or over different commu-
nication fabrics (e.g., PCle and NVlink).

By solving this 0-1 integer programming using standard opti-
mization software like CPLEX [30], we obtain both the starting
time and the placement for each operation. This scheduling and
placement is then implemented in TensorFlow, see Section 4. How-
ever, solving the 0-1 ILP is a time-consuming step. We next discuss
our approach to substantially speed up (by as much as 10,000%) the
ILP solving time.

3.3 Graph Coarsening

Modern DNNs often consist of tens of thousands of operations,
most of which are very small in terms of compute time, as shown in
Table 1. It is challenging to optimize the DAG scheduling problem
at this large scale, especially since simplified versions of our DAG
scheduling problem have already been shown to be NP-hard [21, 56].
We propose a novel approach for graph coarsening to speed up
Pesto significantly by efficiently shrinking the graph size while
avoiding generating cycles and maintaining the parallelizability.

Execution Time
Model
< 10ps 10-100 s > 100us
Transformer-6 | 14511 4119 763
RNNLM-2 3401 973 240
NASNet-4 14191 1677 1033
NMT-2 21243 8114 703

Table 1: Most DNN compute operations are small.

Cycle prevention: The key challenge when shrinking a graph by
merging vertices is to avoid creating cycles since otherwise the
resulting graph is no longer a DAG (and so no valid schedule can
be found). We start with a theorem stating necessary and sufficient
conditions for merging two adjacent vertices. The theorem can be
easily proved via contradiction, and is omitted due to lack of space.

THEOREM 3.2 (NECESSARY AND SUFFICIENT CONDITIONS FOR MERG-
ING TWO PAIRED OPERATIONS WITHOUT GENERATING A CYCLE). Given
a DAGG = (V,E) withu,v € V and (u,v) € E, the new graph G’
obtained by removing edge (u,v) and merging u, v is acyclic if and
only if (u,v) is the only path fromu tov on G.

COROLLARY 3.3. Given a DAG G = (V,E) withu,v € V and
(u,v) € E. Let prec(v) and succ(v) denote the set of all predecessors
and successors, respectively, of v. If |prec(v)| = 1 or [succ(u)| = 1,
(u,v) is the unique path from u to v.

Note that Theorem 3.2 cannot be used to merge multiple pairs of
vertices simultaneously. Consider the simple example in Figure 6
where both (A, C) and (B, D) satisfy the condition in Theorem 3.2.
However, when merging them simultaneously, a loop is generated
between the two new merged-vertices, as illustrated in Figure 6.
Thus, if merge pairs of vertices sequentially, we need to test the
condition in Theorem 3.2 each time we merge a pair. This would take
at least O(|V'|+|E|) time for each merge, resulting in a prohibitively

KT,

Figure 6: Merging (A, C) and (B, D) simultaneously creates a
cycle, violating the DAG requirement.

high running time given that we have several tens of thousands of
vertices in our giant DNN DAGs.

Batch merging: To process the graph faster, we build on recent
graph partitioning work [25] to merge thousands of vertices in a
single batch. Compared to recent work [25], our batch merging
allows for additional edges to be take into consideration, resulting
in faster coarsening. We now present an efficient technique for
batch merging while avoiding cycles.

Definition 3.4 (Height). The height of a vertex v, H(v), is the
longest distance in terms of number of vertices it takes to go from
a root node to v. The height of root nodes, i.e., the nodes without
any precedence constraints, are defined as 1.

The height of all vertices can be calculated using a modified
version of topological sorting! in O(|V| + |E|). Using the concept
of height, we present a theorem stating the sufficient conditions
for merging pairs of vertices without introducing a cycle. Due to
lack of space, we only provide a proof sketch.

THEOREM 3.5 (SUFFICIENT CONDITIONS FOR MERGING MULTI-
PLE PAIRS IN A BATCH). Given a DAGG = (V,E) withu,o € V
and (u,v) € E. Define set M = {(u1,v1), ..., (u,vr)} where each
(ui,v;) € E fori € [k]. Let d; = H(v;) — H(u;). Then the new graph
G’ obtained by merging every edge in M is acyclic if

(i) There are no repeated vertices in M, i.e., M is a match;
(ii) |succ(u;)| = 1 or |prec(vi)| = 1 or H(v;) = H(u;) + 1 for
alli € [k] or H(w;) > H(u;) +d; for all w; € succ(u;) and
w; # 0;; and
(iii) Vi, j and i # j, h(u;) # h(vj) + d;j or (u;,vj) ¢ E.

Proor SKETCH. The proof is by contradiction. Assume a cycle
is generated after merging set M. We first find a minimal cardi-
nality cycle, thus eliminating conditions such as |succ(u;)| = 1 or
|[prec(vi)| = 1 where a smaller cycle can be found. We can also
eliminate cases where either u; ~» uj+1, v; ™ Uj11 OF V; ™ Vi1,
where ~» represents a directed path. We then consider branches
where u; ~» v;11. For both of the following cases: H(v;) = H(u;)+1
or H(w;) > H(u;) + d; for all w; € succ(u;) and w; # v;, we show
that H(v;) < H(v2) < ... < H(v1), implying the existence of a
cycle in the unmerged graph, creating a contradiction. O

The conditions outlined above can be verified easily within con-
stant time as for each vertex we only need to check or compare its
height, outdegree, and indegree. We can thus efficiently coarsen the
DAG without introducing a cycle. For more complex environments
(e.g., more GPUs or communication links) where the number of
variables and/or constraints is large, the DAG may require much
coarsening to obtain the ILP solution in a reasonable amount of

! At each step, we remove a set of vertices without predecessors instead of removing
just one in Kahn’s topological sorting algorithm [35].

time. Corollary 3.6 below shows that we can always reduce the
graph size as desired via our coarsening algorithm.

COROLLARY 3.6. Given a DAG G = (V,E), for any T > 1, the
acyclic merging in Theorem 3.5 can obtain a coarsened graph G’ =
(V',E’") with |V’| < T in finite steps.

Maintaining parallelizability: In theory, any DAG can be coars-
ened into a single merged-vertex by carefully merging vertices;
however, this would result in the complete loss of parallelizability
of the DAG. To reduce the graph size while facilitating parallelizabil-
ity across GPUs, we must carefully manage the graph coarsening.
There are several parameters to consider for coarsening that can
impact the parallelizability, such as which pairs of vertices should
be merged. In practice, we prioritize the merging of pairs of ver-
tices based on the size of their connecting edge, i.e., the estimated
communication time. Intuitively, if the data transfer between two
operations is large, it may be best to place both operations on the
same GPU to avoid the high communication time.

Our coarsening algorithm: In each iteration, our coarsening al-
gorithm merges all feasible edges (based on the conditions in The-
orem 3.5). Each iteration takes O(|E|log |E|) time. We continue
iterating until the DAG reaches the desirable size or until no feasi-
ble edges can be found. In practice, each iteration removes 30-70%
of the existing edges, depending on the sparsity of the DAG. Thus,
a few iterations are sufficient to adequately reduce the graph size.
For the giant DNN models we consider in Section 5, we find that
coarsening the graph to ~200 vertices for our specific experimental
setup provides a good tradeoff between the time required to solve
the ILP and the reduction in DNN training time. When we coarsen
beyond 200 vertices, we find that the graph is too simplified for the
models we consider, resulting in minimal reduction in training time.
If we do not coarsen till about 200 vertices, the ILP solution time is
substantially high and the resulting placement and scheduling does
not reduce the training time by much; see Section 5.3 for a specific
example.

The coarsened graph is used as the input for our ILP algorithm
in Section 3.2.2. If the ILP suggests placing merged-vertex v on, say,
GPU-0, then all vertices that were merged during coarsening to
form v will be placed on GPU-0. In terms of scheduling, individual
vertices of a merged-vertex are scheduled sequentially on the same
device, following the precedence constraints of the DAG. For some
of the models we evaluate in Section 5, when the DAG is very large,
each vertex in the final coarsened graph may contain hundreds of
operations. In such cases, we lose out on scheduling opportunities
due to coarsening, and thus instead employ the default TensorFlow
scheduling. The Pesto placement of the coarsened DAG operations
still provides substantial benefits, so we employ that placement.

4 IMPLEMENTING PESTO ON TENSORFLOW

We implement Pesto by integrating directly with TensorFlow. The
source code for Pesto is publicly available for reference [5]. There
are three challenges that need to be addressed to realize the im-
plementation of Pesto. For operation placement and scheduling,
Pesto requires the compute time estimates of operations. Further,
for scheduling, Pesto requires the structure of the DAG. Finally, the
placement results from Section 3.3 must be enforced when running
the DAG.

To obtain estimates of compute time, we exploit the observation
(see Figure 4(a)) that there is little variability in the per-operation
compute time of DNN models. As such, compute times can be
estimated using a handful of iterations of the DNN model training
or via offline runs, as discussed in Section 3.1. These estimates are
then used as input for our Pesto ILP to obtain the optimal placement
and scheduling.

The key challenge in implementing Pesto is to enforce the place-
ment and scheduling in TensorFlow. In TensorFlow, a graph API,
tf.Graph, holds information about the structure of the DAG of
the DNN model being trained. A session API, tf.Session, takes
as input this DNN graph and identifies a sub-graph which needs
to be executed next. TensorFlow then executes all the operations
in the sub-graph based on available resources (CPUs, GPUs, etc.)
according to some internal scheduling and placement policies. The
tf.Graph API only allows user-specified placement and scheduling
constraints (typically specified as control-flow-dependencies) at the
time when an operation is being added to the graph [8]. Because of
the static nature of the constraints, the placement and scheduling
suggested by our algorithm cannot be realised without modification
of the user code of the model.

To enable TensorFlow to support placement and control-flow-
dependencies after the graph is created and without requiring the
user to modify their code, we modify the tf.Session API to place

low-level graph operations using the tf.Node.set_assigned_device

function for each operation node in the graph. We also modify
the scheduler in tf.Session to take into account the post-graph-
creation control-dependencies while scheduling graph operations.
Specifically, we modify the TensorFlow runtime to add scheduling
constraints for each node in the graph using the tf.Node.add_
control_dependency function to enforce Pesto-suggested sched-
uling.

5 EVALUATION RESULTS

We now discuss our evaluation results. We first describe our exper-
imental setup and methodology, including the models we experi-
ment with and the baselines we compare against. We then present
our implementation results. Finally, we present a simulator-based
analysis to evaluate Pesto under different GPU and communication
link settings.

5.1 Experimental Setup

We run our experiments on a server with an Intel Xeon Silver 4116
processor and two NVIDIA Tesla V100 SXM2 16GB GPUs. Each
GPU is connected to the CPU with a dedicated PCle [53] connection.
GPUs communicate with each other directly via NVlink [4]. We
use TensorFlow r1.15 as our DNN model training framework.

5.2 Evaluation Methodology

Given the increasing popularity of giant models, unlike prior works,
we evaluate Pesto across multiple giant models.

RNNLM [34, 60]: Recurrent Neural Network Language Model with
multiple LSTM [27] layers is used for language modeling. We fix the
batch size to 128 and experiment with three variants: 2-layered with
2048 hidden units, 4-layered with 2048 hidden units, and 16-layered

with 1024 hidden units. We use the Penn Treebank [43] dataset for
training.

NMT [11, 58]: Neural Machine Translation model with attention is
used for automatic language translation. The high level structure of
NMT is similar to that of RNNLM, but because of the large number
of hidden states and attention mechanism, NMT is far more complex.
We experiment with 2- and 4-layered model variants and fix the
number of hidden units to 1024 for each LSTM layer and use a batch
size of 128 for training. We train NMT on the WMT16 dataset [7].
Transformer [57] model is another sequence-to-sequence model
with multi-head-attention mechanism for language translation. In
contrast to NMT, Transformer employs feed-forward networks
instead of LSTM layers. We consider 3 variants: 10 layers with 8
heads and 1024 hidden units, 12 layers with 8 heads and 1024 hidden
units, and 6 layers with 16 heads and 2048 hidden units. We set the
batch size to 32 sentences and train the model on the WMT14 [12]
dataset.

NASNet [61] is a convolutional neural net (CNN) with multiple
cells. Each cell in NASNet is composed of multiple branches for
convolution, addition, and other compute operations, providing an
opportunity for parallel execution. We train NASNet using Ima-
geNet [18] data with a batch size of 32 under 3 settings: 4 cells with
212 filters each, 6 cells with 148 filters each, and 6 cells with 168
filters each.

Except for RNNLM 2-layered and NMT 2-layered (which we
include for comparison with other approaches), none of the model
variants fit on one GPU in our setup.

Baselines for comparison. To fully evaluate Pesto, we compare
our results with those obtained by manual placement via domain
experts as well as state-of-the-art automated placement approaches
from prior works [10, 31, 44, 45]. We discuss prior approaches in
detail in Section 6.

Expert: The widely used comparison baseline is the manually ob-
tained placement found by domain experts, referred to as “Expert”
strategy. For NMT, Expert places different layers of the sequentially
stacked LSTM layers on multiple GPUs [58]. In addition, attention
and softmax layers are placed on the same GPU as the last LSTM
layer while embedding layer is colocated with the first LSTM layer.
Given the similarity in DNN graph structures, the Expert place-
ment for RNNLM and Transformer is similar to that of NMT. For
NASNet, Expert places parallel branches within each cell across
different GPUs [10]. Each cell in NASNet has multiple convolution
and addition operations which are divided evenly among available
GPUs.

RNN-based: Mirhoseini et al. [45] use a Recurrent Neural Net
(RNN) to optimize device placement. This approach was further
improved by using hierarchical models for better grouping and
placement of compute operations [44].

Placeto [10] is also a learning-based algorithm that uses graph
embeddings and reinforcement learning to iteratively improve the
learned placement policies.

Baechi [31] employs traditional job scheduling algorithms to find
memory-aware feasible placements for DNN model graphs across

[Expert
15 [Baechi

Per-step
training time (ps)
>

0
oINS

2%

©
RS 5 £
% (@ (@ @ @S o At e

®
N K
A

2
IR\,

X

A A A
AOET AT A
& 2 %
W W
W W W
?\V\

A A "
e e &
RSP 5\0‘«\

Figure 7: Experimental per-step model training time under
different strategies. NASNet-6-168 and NASNet-4-212 run
out of memory (OOM) when using Expert strategy.

multiple GPUs. We evaluate Baechi using its open-sourced ver-
sion [2]. While Baechi employs three heuristics, we primarily com-
pare with mSCT, that reportedly outperform the other two heuris-
tics, mETF and mTOPO [31]. mSCT modifies the classical SCT [23]
job scheduling algorithm to take into account large communication
times, finite number of GPUs, as well as limited memory.

5.3 Implementation Results

For all the models and variants discussed in Section 5.2, Figure 7
compares the (per-step or per-iteration) DNN training time using
the placement and scheduling suggested by Pesto with that un-
der the Expert placement strategy and Baechi. When referring to
Baechi in our evaluation, we use results for the best Baechi heuris-
tic; in our experiments, for all models, mSCT always outperforms
mETF and mTOPO under Baechi with respect to DNN training
time. In Figure 7, the numbers above the bars denote the percentage
reduction in training time achieved by Pesto as compared to the
best alternative strategy for each model variant. Across all variants,
Pesto reduces DNN training time by 14%, on average, compared to
the best alternative approach.

Owing to the grid like structure of LSTM cells in NMT and
RNNLM, Pesto finds placements with high GPU utilization, result-
ing in a significant reduction in training time by about 21% and
18%, on average, compared to Expert, and by about 20% and 35%,
compared to Baechi. Importantly, state-of-the-art approaches (listed
in Section 5.2) are unable to find placements for RNNLM that are
superior to Expert.

For the Transformer models, Baechi is unable to find placements
which perform better than the Expert strategy. However, Pesto
achieves moderate but still non-trivial reductions of about 8% (on
average, across all variants) in training time over Expert. While the
8% reduction does not appear significant, it can translate to substan-
tial savings in the training effort. For example, to achieve high ac-
curacy for German-to-English translation on the WMT14 [12] data
set, Google [57] suggests training the giant Transformer models
for 300K training steps. This corresponds to ~93 hours of training
time (for 12-layered Transformer model) when using the Expert
strategy. Savings of 8% afforded by Pesto translates to a reduction
of ~8 hours in total training time, reducing total compute cost of
training by ~16 (8 X 2) GPU-hours.

For NASNet, across 3 different variants, Pesto enables 16% faster
training than Baechi, which is the best among the alternative place-
ment strategies. For two of the configurations (6 cells with 168
filters and 4 cells with 212 filters), the Expert strategy encounters the
out of memory (OOM) error. By contrast, since Pesto aims to balance

Pl - -
Models | Spec. acement time (minutes)
. | RNN-
Baechi Placeto | Pesto
Based
2-layer 1 2859 788 30
NMT
4-layer 3 2714 4120 51
NASNet | 6-cells 3 241 50 24

Table 2: Comparison of placement time across approaches.

the memory footprint across the GPUs, it successfully partitions the
larger variants of NASNet without encountering the OOM error.

Comparison of DNN training time improvement with learning-
based approaches: Open-source implementations of learning-based
approaches (RNN-based [44, 45], Placeto [10]) are not available for
comparison. To conduct a fair comparison (despite the differences
in experimental setup), we compare Pesto’s improvement over Ex-
pert with the reported improvement, from Addanki et al. [10], of
existing learning-based approaches over Expert. This is feasible
as the Expert strategy employed in our work and that employed
by existing approaches is consistent. However, most existing ap-
proaches only consider a subset of the giant models we consider in
our evaluation, so we only report those results.

For the NASNet-6-148 model, Placeto provides no improvement
over Expert, whereas the RNN-based learning approaches [44, 45]
result in ~3.5% higher training times than Expert. By contrast,
Pesto reduces training time for NASNet-6-148 by 21% compared
to the Expert placement. Placeto [10] also evaluates placements
for NMT (but not RNNLM or Transformer); however, in Placeto’s
experimental setup, the Expert strategy throws an OOM error for
NMT so we are unable to compare the relative improvement over
Expert.

Comparison of placement time improvement with existing
approaches: Table 2 shows the average time reported by existing
approaches [10, 44, 45] to find the placement (referred to as place-
ment time) for NMT and NASNet models. For Baechi, we obtain
placement times based on our experiments with the open-source
Baechi implementation using the NMT and NASNet model variants
listed in Section 5.2.

Pesto finds the placement (and schedule) for 4-layered NMT in
about 51 minutes. By contrast, Placeto and RNN-based approaches
take more than 45 hours to find placements, with Placeto requiring
almost 3 days. We see that Baechi is able to find placements quickly
for NMT models. However, as noted above, Baechi results in higher
training times for NMT compared to Expert. Similarly, for NASNet,
Pesto finds the placement with reduced training time in about 24
minutes as compared to learning-based approaches (Placeto and
RNN-based) that require much more time (up to 4 hours) to find
the placement. In contrast to Pesto, Baechi finds placements for
NASNet in about 3 minutes but only achieves 3% improvement in
training time as compared to Expert.

Comparison of total training effort with existing approaches:
In actual deployments, the DNN training effort includes both the
overhead of finding a placement (or placement time) and the actual
training process which is repeated several times until a desired
accuracy is reached. We now compare the total training effort by
leveraging the reported results relative to Expert for learning-based
approaches from Addanki et al. [10]; we assume that the Expert

placement strategy is known a priori and so has zero placement
time. For NMT models, as suggested by prior work [6], we consider
350K training steps. Table 3 shows that the end-to-end training
effort for Baechi is 0.94x and 1.08x that of Expert, respectively, for
the 2-layer and 4-layer NMT models. The corresponding numbers
for Pesto are 0.89% and 0.7x that of Expert, representing a signifi-
cantly reduced effort. For NASNet, prior work [54, 61] reports that
training NASNet on ImageNet data requires 375K training steps
per epoch. The training effort for one epoch of ImageNet data for
NASNet is roughly the same for Expert and Placeto. For RNN-based
and Baechi, the training effort relative to Expert is 1.03X and 0.97X,
respectively. By contrast, Pesto only requires 0.81X times the ef-
fort of Expert. These results show that Pesto significantly (20-30%)
improves the end-to-end training effort compared to Expert and
existing approaches.

The lower training effort under Pesto is partly due to our coars-
ening algorithm from Section 3.3. For example, without coarsening,
the ILP solver that Pesto employs fails to complete even after one
week of runtime on a commodity server for the smallest model
we consider, RNNLM-2-2048. Thus, without coarsening, the place-
ment time can be prohibitively high. With coarsening, we solve
the ILP for all models we consider in less than one hour. For the
RNNLM-2-2048 model, we coarsen the graph to ~200 vertices and
solve the ILP for the coarsened graph in 10 minutes; the resulting
per-step training time under Pesto is 171ms. If we instead consider
a coarser graph with ~240 or ~280 vertices, the ILP solution time
is about 2 hours and 24 hours, respectively, and does not result in
any noticeable decrease in training time.

Analysis of results: The training time results under Pesto can be
analyzed from various perspectives. First, the structure of the DAG
dictates the parallelization opportunity. Consequently, since Trans-
former models have significant communication overheads, they do
not provide much opportunity for parallelization, leading to only
moderate benefits. Second, by carefully staggering the communi-
cation events (via our ILP scheduling and congestion constraints),
Pesto avoids communication overhead and congestion, which are
commonly encountered by alternative approaches for NMT models.
Finally, we find that the alternative approaches perform poorly for
NASNet and RNNLM models because of unbalanced compute load
across GPUs. By contrast, Pesto provides a much more balanced
placement for these models, resulting in significant improvements.

While all approaches employ some form of graph coarsening,
our rigorous coarsening approach (Section 3.3) has greater flexibil-
ity, resulting in a coarsened graph that can be better partitioned
across GPUs. As a specific example, alternative approaches merge
pairs based only on the outdegree information, whereas Pesto also
leverages the indegree and height information (see Theorem 3.5),
providing greater flexibility during coarsening.

Note that Pesto does not alter the compute graph for a given
DNN model. Thus, the achieved model accuracy and convergence
is not affected. For example, the top-5 accuracy for a 10-layered
Transformer model after training for 100K steps on WMT14 [12]
(English - German) dataset is similar (~0.84) for both Expert and
Pesto placement, as expected.

Models | Spec. Training effort, relative to Expert

. | RNN-
Baechi Placeto | Pesto

Based
2-layer | 0.94% - - 0.89%

NMT

4-layer | 1.08% - - 0.7%
NASNet | 6-cells | 0.97x 1.03x | 1.0008x | 0.81x

Table 3: Comparison of training effort of various approaches
with Expert. The indirect comparison with RNN-Based and
Placeto for NMT is omitted because Expert results in OOM
error as reported by Addanki et al. [10].

5.4 Exploratory Results via Simulation

Thus far our Pesto experimental results were obtained via imple-
mentation. To explore the benefits of Pesto under different hardware
settings, we resort to simulation results based on an accurate DNN
training simulator that we developed. Our simulator consists of
three components: (i) it takes the placement and scheduling as input
to our DAG and adds precedence constraints to the existing DAG
to achieve the correct ordering and placement; (ii) it then employs
a communication prediction model (such as the linear model from
Section 3.1) to estimate the communication cost for each data trans-
fer; and (iii) it employs the specified scheduling to place operations
on simulated compute devices and communication links, using em-
pirical estimates (from Section 3.1) as compute times. Our simulator
takes only a few seconds to estimate the training time of a DNN
model for a given placement and scheduling strategy.

We validate our simulator by comparing the simulation-reported
training times with the implementation-reported training times
under Pesto for all DNN models from Section 5.2. The difference in
reported training times ranges from 0.1% to 11.3%, with an average
error of about 5%.

Using our simulator, we consider GPUs and CPUs with different
compute power/speed (as a proxy for how fast the computation
is) and interconnect links with different communication latencies
by scaling our compute and communication time estimates accord-
ingly. We simulate the per-iteration training time under Pesto and
Expert, and report the training time reduction over Expert afforded
by Pesto. Figure 8(a) shows that the improvement afforded by Pesto
scales with the compute speed, suggesting improved benefits for fu-
ture GPU models. As the compute speed increases, communication
becomes a larger bottleneck, and so Pesto adapts by aggressively
placing operations to prevent inter-GPU communication. The com-
pute speed on the x-axis is relative to the GPU (NVIDIA Tesla V100)
and CPU used in our implementation results.

Figure 8(b) compares the training time for Pesto and Expert un-
der different interconnect speeds (for 1x compute speed) for the
NMT-2-1024 model. Note that the 1X communication speed refers to
the NVlink setting used in our implementation-based experiments;
the 0.1x is on the order of PCle [42] We see that Pesto successfully
adapts its placement based on the communication speed, highlight-
ing its robustness to the interconnect; this is because of the conges-
tion constraints we design for our ILP formulation (Section 3.2.2).
By contrast, the Expert strategy is oblivious to the communica-
tion speed, thus negatively impacting its performance for slower
interconnect.

6
40
mNMT-2-1024 x10
30 [=NASNet-6-148 —Pesto
—Expert
20

—
o o

Reduction over Expert(%)

I ST N)

o O = 4

Per-step training time (ys)

0.5x 1x 2X
Computation Speed

0.1x 1x 10x
Communication speed
(a) Reduction in training time afforded by (b) Training time for Pesto and Expert

Pesto over Expert under different compute under different interconnect speeds for the
speeds. NMT-2-1024 model.

Figure 8: Simulation results for various hardware settings.

6 RELATED WORK

Improving training time under model parallelism.

ColocRL [45] employs a Recurrent Neural Network (RNN) based
sequence-to-sequence model to find the optimal partitioning strat-
egy through repeated trials. The authors followed up on this work
and proposed HierarchicalRL [44] to further improve the effective-
ness of the RNN-based learning technique. Placeto [10] is also a
learning-based technique to find the optimal DNN placement but
it strives to make the approach generalizable for a given model.
However, the above learning-based approaches can take a long time
(few hours to a couple of days) to find the DNN model placement,
as shown in Table 2. Further, as discussed in Section 5.3, Pesto can
outperform these techniques.

FlexFlow [33] employs Monte Carlo simulations to find operation
placements for a given DNN model. However, FlexFlow has limited
support for mainstream DNN training frameworks [9, 13, 47]; as
such, using FlexFlow requires rewriting the model code. Further,
FlexFlow ignores memory requirements of different operations and
can result in out of memory (OOM) errors for giant DNNS.

Popular distributed DNN training frameworks provide only lim-
ited support for finding effective placement strategies under model
parallelism. By default, TensorFlow [9] tries to fit the entire DNN
on a single GPU and throws OOM error even for hosts equipped
with multiple GPU devices. As such, users have to manually place
different subsets of the DNN model on different devices (GPU, CPU,
etc.). While frameworks such as DistBelief [16] and STRADS [37]
support model parallelism, they still require the user to provide the
partitioning manually. There are also recent works [38, 40] which
support model parallelism for specific DNNs; however, these cannot
be used for training arbitrary DNNs.

Other giant DNN training frameworks. DeepSpeed [48, 49]
employs optimizations to reduce the memory footprint and mem-
ory redundancy of training giant DNNs. However, the consequent
partitioning of memory (across GPUs or between GPU and host
DRAM) introduces additional communication overheads that can
be as high as 1.5x the overhead of data parallelism [48]. Prior
works have shown that the communication overhead of data paral-
lelism for giant models is already prohibitively high [29, 46]. Mesh-
TensorFlow [52] enables model parallelism by executing each graph
operation partially on a different GPU with the goal of reducing
the GPU memory footprint. However, in contrast to Pesto, em-
ploying Mesh-Tensorflow requires rewriting the DNN model code.

Further, Mesh-Tensorflow requires a domain expert to decide on
the dimensions for splitting the graph operations.

Graph partitioning and scheduling algorithms. With the growth
in the size of DNN models, graph partitioning is a necessary tool
for speeding up DNN DAG scheduling algorithms. Purely graph-
theoretic approaches, such as Scotch [14], exploit the DAG structure
and balance the computational load while reducing the cost of com-
munication. However, such approaches often result in local optimal-
ity, and perform poorly for large DNN models. Domain knowledge
can be used to improve the graph partitioning, for example, by
treating specific layers of the DNN as disjoint subsets [58], but
this approach is not generalizable to arbitrary DNNs. Baechi [32]
leverages label combinations provided by TensorFlow to merge
operations. As discussed in Section 5.3, Baechi can find feasible
placements faster than Pesto. However, the resulting placements
are suboptimal with respect to training time, resulting in higher
total training effort as compared to Pesto, as shown in Table 3.

In the algorithm design community, DAG scheduling problems
are known to be NP-hard. While recent breakthroughs have been
made in several simplified settings of the DAG scheduling prob-
lem [20, 39, 41], the resulting approximation algorithms are ei-
ther too expensive to implement for giant DNNs or make limit-
ing assumptions (such as congestion-free communication, see Sec-
tion 3.2.2) that do not hold in practice. As a consequence, ad-hoc
heuristics, such as dominant sequence clustering [59], Heteroge-
neous Earliest-Finish-Time, and Critical-Path-on-a-Processor [55],
are commonly employed in different systems, including Baechi [31].
While these heuristics can provide efficient solutions, the resulting
performance can be far from optimal as shown in our evaluation
results comparing Baechi with Expert and Pesto.

7 CONCLUSION

This paper highlights the opportunity to improve DNN training
time in frameworks like TensorFlow by employing smarter model
placement and operation scheduling strategies. By leveraging con-
cepts from integer programming and graph theory, we propose an
efficient and optimal algorithm, Pesto, for joint model placement
and operation scheduling. We integrate Pesto with TensorFlow and
demonstrate non-trivial improvements (up to 31%, compared to
Expert) in training time across modern, giant DNN models without
incurring significant placement determination time. We also report
the first placements for the giant Transformer and RNNLM models
that provide significant training time reduction over the Expert
strategy, representing a substantial saving in the training effort
required for these models in practice.

8 ACKNOWLEDGMENT

This work was supported by NSF CNS grants 1750109, 1730128, and
1717588.

REFERENCES

[1] [n.d.]. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-types.
Accessed: 2020-11-28.

[2] [n.d.]. Baechi: Fase Device Placement on Machine Learning Graphs (SoCC 2020).
https://github.com/beomyeol/baechi. Accessed: 2021-03-28.

[3] [n.d.]. NVIDIA V100 TENSOR CORE GPUs. https://www.nvidia.com/en-us/data-
center/v100/. Accessed: 2020-11-28.

https://aws.amazon.com/ec2/instance-types
https://github.com/beomyeol/baechi
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/

[4] [n.d.]. NVLINK FABRIC: A FASTER, MORE SCALABLE INTERCONNECT. https:

[10]

[11]

[12

[13]

[14]

[16

[17

(18

[19

[20

[21

[22

[24

]

]

]

//www.nvidia.com/en-us/data-center/nvlink/.

[n.d.]. Pesto Source-code. https://github.com/PACELab/TF-Pesto. Accessed:
2020-11-28.

[n.d.]. TensorFlow NMT GitHub. https://github.com/tensorflow/nmt. Accessed:
2020-11-28.

[n.d.]. WMT 2016. http://www.statmt.org/wmt16/. Accessed: 2020-11-28.
Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 265-283.
Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi
Mao, and Mohammad Alizadeh. 2019. Placeto: Learning generalizable device
placement algorithms for distributed machine learning. In Proceedings of the 33rd
Conference on Neural Information Processing Systems (NeurIPS). 3983-3993.
Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp
Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Ale§ Tamchyna. 2014. Findings of the
2014 Workshop on Statistical Machine Translation. In Proceedings of the Ninth
Workshop on Statistical Machine Translation. Association for Computational Lin-
guistics, Baltimore, Maryland, USA, 12-58. http://www.aclweb.org/anthology/
W/W14/W14-3302

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

Cédric Chevalier and Frangois Pellegrini. 2008. PT-Scotch: A tool for efficient
parallel graph ordering. Parallel computing 34, 6-8 (2008), 318-331.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project adam: Building an efficient and scalable deep learning training sys-
tem. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). 571-582.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. 2012.
Large scale distributed deep networks. Advances in neural information processing
systems 25 (2012), 1223-1231.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223-1231.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171-4186.

Shashwat Garg, Janardhan Kulkarni, and Shi Li. 2019. Lift and project algorithms
for precedence constrained scheduling to minimize completion time. In Proceed-
ings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
1570-1584.

Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM
Jjournal on Applied Mathematics 17, 2 (1969), 416-429.

Ubaid Ullah Hafeez and Anshul Gandhi. 2020. Empirical Analysis and Modeling
of Compute Times of CNN Operations on AWS Cloud. In 2020 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 181-192.

Claire Hanen and Alix Munier. 1995. An approximation algorithm for scheduling
dependent tasks on m processors with small communication delays. In Proceedings
1995 INRIA/IEEE Symposium on Emerging Technologies and Factory Automation.
ETFA’95, Vol. 1. IEEE, 167-189.

Claire Hanen and Alix Munier. 1998. Performance of Coffman-Graham schedules
in the presence of unit communication delays. Discrete applied mathematics 81,
1-3 (1998), 93-108.

[25]

[26

[34

[35

[36

[37

[40]

[41

[42

[43

[44

[45

[46

[48

Julien Herrmann, Jonathan Kho, Bora Ucar, Kamer Kaya, and Umit V Catalyiirek.
2017. Acyclic partitioning of large directed acyclic graphs. In 2017 17th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGRID). IEEE,
371-380.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kings-
bury, et al. 2012. Deep neural networks for acoustic modeling in speech recogni-
tion. IEEE Signal processing magazine 29 (2012).

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

JA Hoogeveen, Jan Karel Lenstra, and Bart Veltman. 1994. Three, four, five, six,
or the complexity of scheduling with communication delays. Operations Research
Letters 16, 3 (1994), 129-137.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, and Zhifeng Chen. 2018. GPipe: Efficient Training of Giant Neural
Networks using Pipeline Parallelism. arXiv preprint arXiv:1811.06965 (2018).
IBM. [n.d.]. CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer
Beomyeol Jeon, Linda Cai, Pallavi Srivastava, Jintao Jiang, Xiaolan Ke, Yitao
Meng, Cong Xie, and Indranil Gupta. 2020. Baechi: fast device placement of
machine learning graphs. In Proceedings of the 11th ACM Symposium on Cloud
Computing. 416-430.

Beomyeol Jeon, Linda Cai, Pallavi Srivastava, Jintao Jiang, Xiaolan Ke, Yitao
Meng, Cong Xie, and Indranil Gupta. 2020. Baechi: fast device placement of
machine learning graphs. In Proceedings of the 11th ACM Symposium on Cloud
Computing. 416-430.

Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond data and model paral-
lelism for deep neural networks. SysML 2019 (2019).

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
2016. Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410
(2016).

Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM 5,
11 (1962), 558-562.

N Kalchbrenner, E Grefenstette, and Philip Blunsom. 2014. A convolutional neural
network for modelling sentences. In 52nd Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A Gibson,
and Eric P Xing. 2016. STRADS: a distributed framework for scheduled model
parallel machine learning. In Proceedings of the Eleventh European Conference on
Computer Systems. 1-16.

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997 (2014).

Janardhan Kulkarni, Shi Li, Jakub Tarnawski, and Minwei Ye. 2020. Hierarchy-
based algorithms for minimizing makespan under precedence and communica-
tion constraints. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 2770-2789.

Quoc V Le. 2013. Building high-level features using large scale unsupervised
learning. In 2013 IEEE international conference on acoustics, speech and signal
processing. IEEE, 8595-8598.

Elaine Levey and Thomas Rothvoss. 2019. A (1+ epsilon)-approximation for
makespan scheduling with precedence constraints using LP hierarchies. SIAM .
Comput. 0 (2019), STOC16-201.

Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R Tallent,
and Kevin J Barker. 2019. Evaluating modern GPU interconnect: Pcie, nvlink,
nv-sli, nvswitch and gpudirect. IEEE Transactions on Parallel and Distributed
Systems 31, 1 (2019), 94-110.

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The Penn Treebank. (1993).

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and
Jeff Dean. 2018. A Hierarchical Model for Device Placement. In International
Conference on Learning Representations (ICLR).

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. 2017.
Device placement optimization with reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
2430-2439.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1-15.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems. 8026-8037.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1-16.

https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/PACELab/TF-Pesto
https://github.com/tensorflow/nmt
http://www.statmt.org/wmt16/
http://tensorflow.org/
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://www.ibm.com/analytics/cplex-optimizer

[49] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-

speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505-3506.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780-4789.

Yassir Samadi, Mostapha Zbakh, and Claude Tadonki. 2018. E-HEFT: enhance-
ment heterogeneous earliest finish time algorithm for task scheduling based
on load balancing in cloud computing. In 2018 International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 601-609.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-TensorFlow: deep learning for supercomputers. In Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems. 10435-10444.

Kenneth W Stufflebeam Jr. 2006. Configurable PCI express switch which allows
multiple CPUs to be connected to multiple I/O devices. US Patent 7,058,738.
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

2818-2826.

Haluk Topcuoglu, Salim Hariri, and Min-you Wu. 2002. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE transactions
on parallel and distributed systems 13, 3 (2002), 260-274.

J.D. Ullman. 1975. NP-complete scheduling problems. j. Comput. System Sci. 10
(1975), 384-393.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

Tao Yang and Apostolos Gerasoulis. 1994. DSC: Scheduling parallel tasks on an
unbounded number of processors. IEEE Transactions on Parallel and Distributed
Systems 5, 9 (1994), 951-967.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329 (2014).

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697-8710.

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of DNN training
	2.2 Significance of partitioning and scheduling of DNN operations across GPUs

	3 Placement and Scheduling via Pesto
	3.1 Estimating the compute and communication time of operations
	3.2 Pesto algorithm design
	3.3 Graph Coarsening

	4 Implementing Pesto on TensorFlow
	5 Evaluation Results
	5.1 Experimental Setup
	5.2 Evaluation Methodology
	5.3 Implementation Results
	5.4 Exploratory Results via Simulation

	6 Related Work
	7 Conclusion
	8 Acknowledgment
	References

