Constellate: Establishing the opportunity for
Distributed Unit pooling in real-world 5G Radio
Access Networks

Sri Pramodh Rachuri!, Anshul Gandhi!, Gueyoung Jung?*, Shankaranarayanan Puzhavakath Narayanan,

2

Alex Zelezniak**
IStony Brook University, 2AT&T Labs
srachuri @cs.stonybrook.edu, anshul@cs.stonybrook.edu, gueyoung.jung@gmail.com, sn081k@att.com, azelezniak@gmail.com

Abstract—As the adoption of Virtualized Radio Access Net-
works (VRAN) is gaining momentum in 5G networks, Mobility
Network Operators are considering a Centralized RAN (CRAN)
architecture that moves the baseband functions to a far-edge
cloud in order to gain dimensioning flexibility, resiliency and
improved RAN performance. However, there have been limited
studies on the benefits of centralization in improving RAN
compute utilization, especially in the context of pooling the
compute-intensive Distributed Unit (DU) resources. In this paper,
we present the first study on the benefits of pooling in improving
DU server utilization. Using longitudinal traces from a real-world
5G network, we show that significant Capex and Opex gains of
84% and 94 %, respectively, can be obtained through fine-grained
pooling at a granularity of 1 second. We also present an affinity-
based and dynamic pooling algorithm that can reduce the pooling
overheads while still achieving significant pooling gains.

Index Terms—S5G, Virtualized RAN, DU pooling, RAN utiliza-
tion

I. INTRODUCTION

Mobility Network Operators are increasingly deploying
virtualized Radio Access Networks (VRAN) [1]-[4], where
the traditional baseband units (BBUs) are replaced with a
disaggregated and virtualized Distributed Unit (vDU) and
Centralized Unit (vCU). Unlike BBUs, which are designed
as monolithic applications with highly customized software
running on purpose-built hardware to provide high perfor-
mance, the VRAN software is deployed on a containerized
cloud-native platform [5]-[8] hosted on Commercial-Off-The-
Shelf (COTS) servers [9], [10].

The disaggregated vVRAN architecture allows flexible de-
ployment options for the vCU and vDU depending on the
performance and resource constraints. While the vCUs are
typically centralized further into the network at regional cloud
locations, the vDUs can be located at the cell site similar to
the BBUs today in a distributed RAN configuration or can
be located at a far-edge cloud in a Centralized RAN (CRAN)
configuration. Figure 1 shows the schematic of a centralized
VRAN deployment with a Radio Unit (RU) located at the cell
site, a vDU located at a far-edge cloud (like Central Offices

* Authors were employed at AT&T Labs during the duration of this work.

: ' : '
i [ Containerized |1 Midhaul [ Containerized : To Mobility
Cloud Platform | i~ (_Cloud Platform | }
; ' i Core
' ' '
; : ;

® Fronthaul

n |
3 COTS server COTS server
' 86) (x86)
i

(x
\_..bU___ )

Cell-site Far-edge Cloud Regional Cloud

Fig. 1. Architecture of a Centralized VRAN Deployment.

or Mobile Telephone Switching Offices), and a vCU located
in a regional cloud data-center. The location of the vDU and
vCU is primarily determined by the latency requirements on
the fronthaul (= 1254s) and midhaul (= 5ms).

Traditionally, BBUs are designed for a fixed capacity to
serve a pre-defined number of RUs, with traffic from any
given RU being typically served by the same BBU. These fixed
configurations make it challenging to scale BBUs dynamically
according to the variability in workloads, resulting in sub-
optimal utilization of BBU compute resources. In contrast,
vDUs and vCUs are designed to be cloud-native and expected
to scale as the traffic changes. This dimensioning flexibility
can be leveraged to gain statistical multiplexing benefits of
centralization to improve the overall compute utilization by
pooling compute resources (servers) across multiple vDU
instances. While both vCU and vDU compute can be pooled,
in this paper, we focus on pooling the vDU which requires sig-
nificantly higher compute resources. By flexibly (re)mapping
the traffic from RUs to a pool of vDUs, the underlying
compute resources can scale elastically with the variability
in workloads, resulting in improved utilization.

However, the benefits of pooling DU compute resources in
5G networks have not been well studied due to the scarcity
of fine-grained RAN workload data. Typically, RAN data is
collected along two related but independent dimensions: (i)
Cell level aggregates of Key Performance Indicators (KPIs)
are collected periodically over longer time periods (e.g., 15
minutes) to reduce the overhead of data collection and storage,
and (ii) Session level aggregates of the KPIs collected over the
duration of the independent UE (User Equipment) sessions



which can vary from a few seconds to few minutes. In this
paper, we develop a novel methodology to interpolate the
overlapping KPIs obtained from the above two dimensions and
generate more fine-grained estimates of the vDU workloads.

We conduct an extensive study on the benefits of pooling DU
compute using traces from a large commercial 5G network. We
propose three algorithms to improve the pooling efficiency
in terms of Capital Expenditure (Capex) and Operational
Expenditure (Opex) savings, while minimizing the overhead
of reassigning traffic across vDUs. Prior works have explored
the benefits of centralization in 4G networks with traditional
BBUs [11]. More recent works have developed mechanisms
that redirect traffic between vDUs in the context of improving
resiliency [12]. To the best of our knowledge, this is the first
work that performs an extensive study towards understanding
the benefits of pooling in 5G networks.

Our contributions in this paper are as follows: First, we
present an affinity-based pooling algorithm that reduces the
overheads of reassigning traffic across vDUs. Next, we develop
a change-point detection based algorithm to determine when
the pooling reassignments should be triggered to further reduce
overheads. Then, we develop a novel interpolation based
methodology to generate fine-grained estimates of the DU
workload (upto 1 second) from periodic coarse-grained KPIs
(15 min) and session information. Finally, by analyzing large-
scale traces from a real-world network processed through
our interpolation method, we show that pooling DU compute
resources in a fine-grained manner can achieve significantly
higher Capex and Opex savings.

Our evaluation shows that while coarse-grained pooling,
such as at the granularity of 12 hours, provides substantial
savings that capture the diurnal patterns in the workload,
fine-grained pooling is able to provide significantly better
overall utilization. For instance, pooling at 1 sec granularity
has 84%, 94% capex and opex improvements over pooling at
12 hour granularity. Using our Affinity-based and Dynamic
pooling algorithms, we show that it is possible to achieve
40% reduction in pooling overheads, while trading-off 22%
in corresponding opex gains. Since our evaluation is focused
on establishing the pooling efficiency with different pooling
strategies and overheads with remapping traffic within a pool,
the insights and strategies presented in this paper can be used
in different pooling implementations.

II. VIRTUALIZED DU POOLING
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Fig. 2. Architecture of a pooled vDU cluster

Figure 2 shows a high-level architectural depiction of vDU
Pooling. Typical cell-sites consist of multiple RUs with mul-
tiple NR (New Radio) Cells, each with a unique NR Cell
Identifier' [13]. These cells are mapped to a vDU pool located
at a hub location over a fronthaul transport that meets the
latency requirements of ~ 125us. At the hub, an aggregation
switch helps multiplex the fronthaul traffic from the multiple
cells and routing it to the appropriate vDU instances.
Pooling Definition: In this paper, we define Pooling as the
problem of finding an optimal (re)assignment or (re)mapping
of cells to vDU instances in each pooling interval while
minimizing the overheads (or cost) of pooling. The precise
overhead of remapping depends on the specific implementa-
tions including UE context reconfiguration, coordinating state
information across vDUs, and the hardware/software architec-
ture of the vDU pool [14]-[16]. Hence, to keep the metric
relevant and independent of the implementation choices, we
measure the pooling overheads as the number of remappings
(or #remaps) in each pooling interval in our evaluation of the
pooling strategies.

We formulate pooling as a variant of the classical bin-
packing problem (known to be NP-hard) [17] where the
Cells and vDU instances correspond to the items and bins,
respectively. We conduct our study over a wide range of
pooling intervals (or pooling granularity) all the way to a
granularity of 1 second.

Pooling algorithms: We implement three pooling algorithms
to map cells to vDUs.

(1) A Greedy (G ) algorithm, based on “Best Fit Decreasing”
bin packing algorithm [18], that maps cells to vDUs at every
pooling interval based on the current overall utilization of the
vDU pool. G aims to minimize the number of vDUs (and
therefore servers) required to serve the workload by finding the
vDU with tightest fit (smallest remaining capacity) for each
cell. For example, it picks the cell with the highest utilization
(largest first) if sufficient capacity is available in the vDU. If
not, it maps the cell to a new vDU.

Algorithm 1 shows the pseudo-code for G , which takes the
cell utilization U, as input and assigns each cell to a vDU
while minimizing the number of the vDUs. It starts by sorting
the cells by utilization in descending order. For each cell, it
finds the vDU that can accommodate the cell with the least
remaining capacity. If no such vDU is found, it creates a new
vDU and assigns the cell to it. At every pooling interval, it
starts with empty mapping between cells and vDUs and runs
the entire algorithm without considering the previous mapping.

While the G is simple, we show that it incurs higher pooling
overheads as it does not consider prior mapping between the
cells and vDUs, which we address next.

(i) An Affinity-Based (AB ) Algorithm (pseudo-code shown
in Algorithm 2) that reduces the pooling overhead of remap-
ping of cells to vDUs by retaining each cell on the same
vDU unless its utilization exceeds (or falls below) pre-defined
thresholds. During the initial mapping, AB maps cells to vDUs

'RU may have multiple Cells



Algorithm 1 Greedy Pooling Algorithm (G )

Algorithm 2 Affinity-Based Pooling Algorithm (AB )

1: Input: Cell Utilization U,

2: Output: Cell to vDU assignment A._,,pu
3: Initialization: A._,,py = 0

4: Sort cells by utilization at ¢; (decending)
5: for each cell ¢ do

6: Sort vDUs by utilization (decending)

7: best,py = ]

8: for each vDU do

9: if U,puy + U. <1 then

10: L L best,py = vDU

11: break

12: if best,py = (Z) then

13: L Create a new vDU and assign best,py to it
14: | A, = best,py

similar to the G algorithm. However, if a vDU utilization goes
over a high-watermark in a subsequent pooling interval, AB
remaps the busiest cells to other vDUs based on the tightest
fit. And, when a vDU load falls below a low-watermark (25%
in our work), AB moves cells from this vDU to other vDUs
with a tight fit.

(iii) Finally, we also propose Dynamic pooling (D ) algorithm
that tries to minimize the pooling overheads by reducing the
frequency of pooling (or the number of pooling intervals)
based on the workload changes. D detects change points
to identify changes in cell utilization and triggers a cell
remapping only if the utilization changes by more than a
pre-defined threshold (hyper-parameter in our study) in any
given time interval. D has a cooldown period (another hyper-
parameter) to prevent frequent remappings.

Algorithm 3 shows the pseudo-code for the D algorithm. It
takes the cell utilization as a function of time U,(t), Change
Point Threshold, and Cooldown-Period as input. It calculates
the total utilization of all cells at every second and finds the
maximum utilization every minute. If the difference between
the maximum utilization of two consecutive minutes is greater
than the threshold, it checks if the cooldown period has passed
since the last pooling interval. If it has, D adds the timestamp
to the list of pooling timestamps. It then returns the list of
pooling timestamps.

Finally, we note that fine-grained pooling allows a wide
range of implementation options depending on how subsets
of traffic from the RUs are mapped to vDU instances. While
mapping workload per UE session is a feasible design point,
we find that this requires maintaining uplink affinity between
the cells and the vDU instances where uplink control messages
and grants were received. Also, long lasting UE sessions would
require explicit migration across vDU instances using han-
dover mechanisms, which can incur further overheads. There-
fore, we believe that mapping cells to vDUs provides a good
trade-off between the capex/opex gains and the complexity
of maintaining a coherent session-state across multiple vDU
servers. Integrating our algorithms in a vDU implementation
is an ongoing work but out of scope for this paper.

1: Input: Cell Utilization U,

: Output: Cell to vDU assignment A._,,py

: Initialization: A._,,py = Ac—vDU Jast

if Acupu = () then A.opU = Greedy(Uc, OvDU) at

BOWLN

: for each vDU do

5

6: if U,py > 1 then

7: Sort cells assigned to vDU by utilization
8 for each cell ¢ do

9: Sort vDUs by utilization (decending)
10: best,py = 1]

11: for each vDU do

12: if Uypy + U, <1 then

13: L L best,py = vDU

14: break

15: if best,py = 0 then

16: L Create a new vDU and assign best,py to

1t

17: A, = best,py

18: if U,py < 1 then break

19: 1f Uv pu < Low-Watermark then
20: Sort cells assigned to vDU by utilization (decend-

ing)

21: for each cell ¢ do
22: Sort vDUs by utilization (decending)
23: best,py = 0

24: for each vDU do

25: if Uy,py + U, <1 then

26: L L best,py = vDU

27: break

28: if best,py = () then break

2: | | | A.=bestypy

Algorithm 3 Dynamic Pooling Algorithm (D )

1: Input: Cell Utilization as a function of time U, (), Change
Point Threshold, Cooldown-Period

: Output: List of Pooling timestamps P =< pg, p1,... >
: Utotal(t) = Zc UC(t)

Utmin(t) = maxyefr,t460] Urotal (1)

P=0

for each minute ¢ do
L if |U1min(t) — Urmin(t — 60) > Threshold| then
| if t — pase > Cooldown-Period then P = PU't

R i

III. TRACE DATA COLLECTION

We collected two sets of longitudinal traces from a large
commercial 5G network for a period of 7 days. The first set of
traces consists of 15 minute aggregates of Physical Resource
Blocks (PRB) utilization and data volume (bytes) for each
cell mapped to a given gNodeB (e.g., 3GPP TS 28.552 [19]).
The second set of traces consists session start times, durations
and aggregated session-level data volumes (bytes) along with
the cell identifiers associated with each session. All cell



TABLE I
DISTRIBUTION OF CELLS ACROSS CLUSTERS IN OUR DATA

Low Band Mid Band mmWave
Cluster ID 1 2 3 1 2 3 1 213
# Cells 1328 | 158 [ 63 | 1262 | 59 | 3 | 37 | - | -

and session identifiers in both traces were anonymized with
cryptographic hash functions while preserving the associations
needed to correlate the above metrics used in our study.

We collect both traces for a total of 1549 cells of Low
Band, 1324 cells of Mid Band and 37 mmWave cells from a
large geographical region. We clustered these cells into three
pools using K-means with a pooling radius of 10 kilometers
each—which is an approximation of the acceptable fronthaul
latency of 125us. The centers of these clusters are present in
Urban (ID 1), Suburban (ID 2), and Rural areas (ID 3). Table I
shows the distribution of cells in the three clusters. The traces
are obtained from deployments comprising traditional BBUs;
in our study, we extend these traces to VRAN configurations.

PRB utilization as a unit of workload: The precise esti-
mate of vDU compute resources required in any given time
period for processing the workload from the cells mapped to
it depends on many complex factors including the number
of UEs, antennas, location of the UEs, and channel con-
ditions [20]. Further, the amount of compute required also
depends on vendor and operator specific features and carrier
configurations. Hence Operators and RAN vendors estimate
the needed capacity on the servers by aligning to a pre-
established traffic model that captures the key inputs affecting
the compute requirements. In the RAN processing pipeline,
it is well-known that the majority of the processing time is
spent on the L1 (Physical Layer) and L2 (Data Link Layer)
processing, which is largely proportional to the number of
PRBs processed in a given time period [21], [22]. Hence, we
use PRB utilization per unit time as a proxy for the cell’s
workload, and the compute resources required to serve that
cell. Mirroring the real-world deployments, we let each vDU
serve multiple cells but any given cell can be served by only
one vDU at a given time.
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Fig. 3. Generating fine-grained workload data from coarse-grained traces and
session-level information.

Generating fine-grained workload estimates from coarse-
grained data sources: As described in Section I, a key
challenge in evaluating the benefits of pooling is the lack
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Fig. 4. Illustrative examples of pooling 2 cells.

of fine-grained workload data. In this paper, we present an
interpolation-based methodology (illustrated in Figure 3) to
generate fine-grained workload. We estimate fine-grained PRB
utilization by distributing coarse-grained PRB-to-byte ratios
across sessions using their precise timing and data volumes.
First, we obtain the total PRB utilization (PRBs15(t15)) and
the total volume of bytes processed (Bytesis(t15)) for a cell
at a given time 15 with 15 minute granularity from the coarse-
grained PRB utilization traces. Next, we use the session traces
to get the aggregated data volumes (Bytesg) per session along
with the precise (milliseconds) start time (T s¢q,-+ and end time
T, ena) of each session (s). We align all the active sessions
associated with any given cell in each 15 minute window,
and calculate the PRB utilization at fine-grained time intervals
using the formulation below.
The set of sessions that are active at a given time { is:

S(t) = {SlTs,start S t S Ts,end}

Let us say t15 is the last 15-minute interval before ¢. We can
calculate the fine-grained PRB utilization for a given cell s at
time ¢ with 1-second granularity as:

o PRBS(t15)
~ Bytes(tis)

Bytess

PRBoyu:(t) (1)

T - T,
s€S(t) s,end s,start

This interpolation methodology makes a simplifying as-
sumption of uniform distribution of PRB utilization within
each session. While PRB utilization varies over time within
each session, we note that this approximation works well
in practice at scale when aggregating the large number of
sessions associated with each cell. Further, a high percentile
of these sessions are short-lived (in the order of seconds),
which captures the fine-grained workload variability associated
with each cell, and this estimate gets more accurate as the
workload observed at each vDU gets aggregated across all the
cells mapped to the vDU server. Finally, we verified that the
fine-grained PRB utilization obtained using our interpolation-
based methodology matches the 15-minute PRB utilization in
the coarse-grained traces.

Determining required compute capacity: Determining the
required compute capacity of a pooled vDU cluster is an
essential first step in provisioning. In a pooled system, accom-
modating the variability and burstiness in workloads requires



provisioning the compute to handle the sum of peak workload
observed across all the cells in a given pool during each
pooling interval. Figure 4(a) shows the sum of peak utilization
for the 3 hour pooling interval is higher than that of the sum
of peak utilization in each 1 hour interval. In general, fine-
grained pooling results in better overall compute utilization.
However, fine-grained pooling may not always incur higher
pooling overheads than coarse-grained pooling as shown in
Figure 4(b). Here, assuming processing the peak workload at
each cell requires a separate vDU, the num of remappings
(two) is higher at 1 hr granularity compared to 15 min
granularity (zero). This is also observed in our trace-driven
evaluation (§IV-A).

vDU utilization and server configuration: We observe that
vDU processing capacity depends on the server configuration,
including the number of cores and networking. To simplify
our study, we use (anonymized) configurations that match the
BBU dimensioning observed in the network traces: Config 1
representing a low-band only vDU, Config 2 representing a
mid-band only vDU, and Config 3 representing mmwave only
vDU. During our evaluation, we choose the configuration that
matches the cell’s band.

IV. EVALUATION

This section presents our results and key observations from
our trace-driven evaluation of our pooling strategies. Since our
focus is on understanding the opportunities and overheads of
pooling, we do not include implementation specific metrics
like QoS (Quality of Service) or QoE (Quality of Experience)
metrics in our evaluation.

o Capital Expenditure (Capex) is the maximum number
of vDUs required to serve the workload in the network
and depends on the peak PRB utilization. Capex serves
as a proxy for the building cost of the network.

o Operational Expenditure (Opex) is the mean number
of vDUs required to serve the workload in the network
and depends on the average PRB utilization. Opex is a
proxy for the operational cost of the network.

o Number of remaps (#Remaps) is the sum (across time)
of the number of cells that are moved from one vDU to
another between pooling intervals. This is a proxy for the
overhead of re-pooling.

Unless mentioned otherwise, we present values normalized
to the corresponding 24-hour pooling granularity value. We
select different vDU compute capacities for each band based
on the server configurations. Table II lists all the parameters we
use in our evaluation and their values; we use the underlined
values in this table as the default values in our experiments.

A. Pooling Opportunities

We start our evaluation by investigating the fundamental
benefits (Opex, Capex) and overheads (#Remaps) of pooling.
Figure 5 shows our results for cells running different bands in
cluster 1 under Greedy pooling for the full length of traces.
The values for each band are normalized by the corresponding

TABLE II
EXPERIMENT PARAMETERS AND VALUES; DEFAULT VALUES ARE
UNDERLINED.

Values
1 sec, 10 sec, 1 min, 5 min, 30 min,
1 hr, 3 hr, 12hr, 24 hr
Affinity-Based, Greedy
1x, 0.5x, 2x, 4x

Parameter

Pooling Intervals

Pooling Algorithm
Server capacities

Bands Low-band, Mid-band, mmWave
Clusters 1 (Urban), 2 (Suburban), 3 (Rural)

Data Duration 1 Week, 1 Day

24hr pooling result for that band; as such, the depicted values
should not be compared across bands.

Starting with Capex, we see that, as we pool at a finer
granularity (going from right to left, from 24hr to 1s pooling
interval), the Capex decreases. We see a similar general trend
for Opex as well. Interestingly, the Capex and Opex savings
do not plateau out as we go to very fine pooling granularities.
For example, for Low-band, compared to 24hr pooling, we
achieve a 56% reduction in Capex when we pool at 1min
granularity. However, if we could go down to 1s granularity,
we can additionally save more than 29% in Capex. As such,
there are significant cost savings to be achieved if we can
pool at very fine granularities.

Across the bands, we find that the Mid-band exhibits a
higher reduction in Opex, and also (to a lesser extent) Capex,
with the pooling granularity. The Mid-band is comparatively
more erratic than the Low-band due to the higher possible
data rates [23] leading to higher savings when pooling more
frequently. For mmWave, we observe that the Opex savings
do start to converge at very fine granularities, unlike the other
bands. This is due to quantization to the closest number of
vDUs in mmWave.

In terms of #Remaps, which we use as a proxy for pooling
overhead, we see that all bands except mmWave have a steady
decrease in #Remaps with an increase in pooling granularity;
see Figure 5(c). At first glance, this may seem intuitive as the
#Remaps should decrease as we pool less frequently (i.e., with
a coarser pooling granularity). However, this is not always
the case. For mmWave, as we move from left to right, the
#Remaps initially increases as we pool at coarser granularities,
and then decreases. Compared to other bands, we find that
mmWave uses fewer vDUs. As such, at very fine granularities,
the pooling is quite efficient, and so requires only a handful
of vDUs for mmWave, resulting in few remaps. This scenario
is similar to the example we saw in §II and Figure 4(b). As
the pooling granularity increases, the pooling becomes less
efficient, leading to more vDUs and remappings. Beyond a
certain granularity (1min, in this case), the #Remaps decreases
due to a decrease in the number of re-pooling occurrences.
This result shows that #Remaps can exhibit non-monotonic
behavior with pooling granularity. This insight is significant
as a finer pooling granularity may be incorrectly associated
with a high overhead (proportional to #Remaps), which we
find is not always the case.

Impact of specific days: Rather than aggregating the pooling
results across the full 7 days of the trace, we can also
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(a) Capex

evaluate the pooling for specific days. Figure 6 shows the
results of pooling on a weekday, a Sunday, and a national
holiday (anonymized). Interestingly, fine-grained pooling is
more beneficial, with respect to Capex, on Sunday and the
national holiday. This is because the traffic on these days has
more variance, leading to greater benefits with more frequent
pooling. However, this observation does not extend to Opex.
On further inspection, we found that the Capex was high for
coarse-granularity pooling because (under the highly variable
non-weekday traffic) the peak load for different cells occurred
at different times of the day, and so coarse-grained pooling had
to provision enough capacity to handle this “sum of peaks”.
This behavior is similar to the concept we discussed in §II
and Figure 4(b). We observed similar results in traces from a
different week, which are not included in the paper for brevity.

Impact of specific locations: We also study the effects of
geographical location on pooling. Figure 7 shows the results of
pooling cells in different clusters. We see that the Suburban
and Rural clusters benefit more, in terms of Opex savings,
from coarse-grained pooling (up to 1min) than the Urban
cluster. On further inspection, we find that the non-Urban
clusters have more pronounced diurnal patterns in traffic,
leading to more cost savings with even coarse-grained pooling.
At very fine granularities, the Opex savings converge for Rural
due to quantization to the closest number of vDUs, similar
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Fig. 7. Opex and #Remaps for Low-band cells in different clusters with
Greedy pooling. Values are normalized to 24hr pooling for that cluster.

to mmWave in Figure 5(b). We also note the non-monotonic
trend in #Remaps as a function of pooling granularity for the
Rural cluster. This is because the Rural cluster has fewer cells
and less traffic, leading to fewer vDUs and remaps, behaving
similar to mmWave in Figure 5.

Impact of low-load conditions on pooling overheads with
Greedy: In this section, we present our observations on the
pooling overheads with Greedy algorithm during low-load
conditions. Figure 8 shows the normalized number of remaps
in different clusters on different days of week for Urban,
Suburban and Rural locations. From the figure, we see that the
#remaps don’t vary significantly across different days except
in the rural cluster on Sundays. This is due to the low-load
conditions in the rural clusters on Sundays, where the required
number of servers is small enough that the workload variability
causes noticeable churn in the remapping of cells to the servers
with the Greedy algorithm which tries to aggressively remap
even for incremental improvements in OPEX. We note that
the number of remaps reduces by 78% for this scenario with
Affinity-based algorithm, while incurring a moderate trade-off
on the Opex as we show in the next section.

B. Benefits of Affinity-Based Pooling

Thus far, we have employed the Greedy algorithm when
packing cells to a vDU. However, this can result in high over-
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Fig. 9. Opex and #Remaps for Greedy and Affinity-Based pooling for Low-
band cells in cluster 1. Values are normalized to 24hr with Greedy Pooling.

head, represented by the #Remaps. To reduce this overhead,
we consider the Affinity-Based algorithm, presented in §II,
which tries to retain the cell-to-vDU affinity across pooling
intervals to minimize remappings.

Figure 9 shows the normalized results under Affinity-Based
pooling and Greedy pooling for Low-band and cluster 1;
results are qualitatively similar for other settings as well.
We see that Greedy achieves about 4%-22% lower Opex
compared to Affinity-Based pooling. This is due to Greedy’s
more aggressive pooling approach where it does not consider
cells to vDU mappings in prior pooling intervals, leading
to more flexibility in cell mapping to vDUs. However, this
lower cost comes at the expense of a significantly higher
overhead—Greedy has 7x-76x higher #Remaps compared
to Affinity-Based pooling. We see a similar trend for other
clusters as well. In Suburban cluster, Greedy has 5x-31x
higher #Remaps compared to Affinity-Based pooling. In Rural
cluster, Greedy has 2x-31x higher #Remaps compared to
Affinity-Based pooling.

C. Benefits of Dynamic Pooling

We now evaluate the benefits of Dynamic pooling (discussed
in §1II) over the static/periodic pooling that we have considered
thus far. Figure 10 shows the normalized results for fine-
grained Affinity-Based static pooling and Dynamic pooling
under various hyper-parameter configurations for Low-band
and cluster 1; results are qualitatively similar for other settings
as well. We denote the change point size and cooldown period
values for Dynamic pooling policies on the x-axis tick values;
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Fig. 10. Opex and #Remaps for static and dynamic pooling (using Affinity-
Based) for Low-band cells in cluster 1. Normalized relative to lhr pooling.

for example, “20v_5m” refers to a load change threshold
equivalent to the capacity of 20 vDUs and a cooldown period
of 5 minutes. For reference, we show the performance of
specific static pooling policies with horizontal dotted lines.

In general, Dynamic pooling is not always superior to
static pooling. For example, the Dynamic 20v_5m policy has
about 86% higher Opex compared to the static Smin pooling
granularity policy but 74% lower #Remaps. Similarly, the
Dynamic 5v_5m policy has about 22% higher Opex compared
to the static Smin pooling granularity policy but 40% lower
#Remaps. We see similar tradeoffs for other Dynamic policies
as well. In real-world scenarios, an operator can choose
hyperparameters for Dynamic pooling based on their tolerance
for overhead (proportional to #Remaps), which allows them to
balance their cost savings versus overheads.

V. RELATED WORK

Recent works have proposed techniques to improve VRAN
performance and resiliency in shared environments. Concor-
dia [24] develops a userspace deadline scheduling framework
to improve RAN performance by reserving a minimum number
of cores required for vVRAN tasks. Nuberu [25] guarantees
minimum resources for signals that preserve synchronization
between the DU and its users. Agora [20] identifies parallelism
in baseband processing and leverages multiple CPU cores
to eliminate the need for specialized hardware like FPGAs
for massive MIMO processing. Unlike these mechanisms
that improve RAN efficiency within the compute, our work



explores improving overall compute utilization by pooling DU
resources and exploiting the variability in traffic.

Atlas [12] develops a framework to redirect traffic between
vDUs using existing mechanisms like handovers and cell
reselection to improve vDU resiliency. Our work tackles the
orthogonal problem of allocating workload across multiple
vDU instances and can possibly leverage mechanisms pro-
posed in Atlas to remap workload across pooled vDUs.

CloudIQ [26] proposed mechanisms for pooling base sta-
tions for shared processing in 5SMhz LTE networks, while
providing a statistical guarantee for meeting real-time pro-
cessing constraints. CloudIQ uses real-world data from 175
WCDMA cells at a granularity of 15 min to evaluate the
potential savings by processing signals from multiple base
stations. In contrast, our work focuses on DU pooling in a 5G
network. Our study uses real-world data from 2910 cells across
multiple carriers with significantly higher carrier bandwidths
and data volumes. Unlike CloudIQ, we focus on the benefits of
fine-grained pooling (upto 1Is), while considering the tradeoff
with the pooling overheads.

Bin packing algorithms have been widely used for virtual
machine placement in cloud computing [27]. In the context of
cellular networks, bin packing has been previously used for
frequency allocation in cellular networks [28]. Unlike these
works, our work focuses on bin packing cells onto vDUs while
exploiting the temporal variations in the cell traffic to improve
VRAN pooling efficiency.

VI. CONCLUSION

To the best of our knowledge, this is the first paper studying
the gains in compute utilization with DU pooling in 5G
networks. Using traces from a real-world 5G network and
leveraging our interpolation based methodology, we show that
significant Capex and Opex gains (84% and 94%, respectively)
can be achieved through fine-grained pooling. Through our
Affinity-based and Dynamic pooling approaches, we show that
it is possible to achieve a 40% reduction in pooling overheads
while only incurring 22% more the pooling benefits. In this
paper, we focus on establishing the opportunity with DU
pooling, studying the key dimensions that impact the benefits
and overheads. Integrating our pooling approaches with a DU
and addressing the system’s challenges in implementation is
ongoing and future work.
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