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Abstract
BBR is a new congestion control algorithm that has seenwidespread
Internet adoption in recent years with an estimated 40% of Internet
traffic volume as BBR traffic. While many studies examine the
performance and fairness of BBR on desktops and servers, there is
still a question of how BBR would behave on mobile devices. This is
especially important because mobiles represent a large segment of
Internet devices. In this work, we study the potential performance
bottlenecks of BBR if it were to be deployed on Android devices. We
compare the performance of BBR and the default congestion control
algorithm Cubic for different devices and device configurations. We
find that BBR performs poorly compared to Cubic, especially under
low-end device configurations. Further investigation reveals that
this poor performance is because of packet pacing which is enabled
in BBR by default. Pacing increases the computational overhead,
which can affect performance for low-end devices. To address this
problem, we propose a first cut solution that modifies BBR’s pacing
behavior to improve performance while still retaining the benefits
of packet pacing.
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• Networks → Transport protocols; Network performance analy-
sis; Network measurement.
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1 Introduction

BBR [11] is a new congestion control algorithm that has had major
adoption throughout the Internet [26]. In fact, studies showed that
BBR, which stands for Bottleneck Bandwidth and RTT, was used by
40% of Internet traffic volume in 2019 [26]. Most of the research on
BBR performance has focused on specific applications [23], differing
network conditions [16, 21], and performance against other TCP
congestion control algorithms [9, 10, 23, 35]. To the best of our
knowledge, there is no published work that empirically analyzes
BBR’s behavior on mobile devices.

While BBR is not currently deployed on Android, this work
explores the performance bottlenecks if BBR were to be rolled
out to mobile devices. Given the prevalence of mobile devices and
mobile traffic [4] as well as the adoption of BBR throughout the
Internet, it is important to understand how BBR would behave on
mobile devices.

In this paper, we provide an in-depth look at the performance
of mobile devices sending traffic using BBR. We especially focus
on low-end mobile device configurations because low-end mobiles
are susceptible to TCP performance degradation [17], are more
likely to be used in developing regions, and represent usage of
the next billion first-time Internet users [7]. We study BBR, the
newer BBR2 version [12–14], and Cubic (the default congestion
control for Android) under different CPU settings and number of
TCP connections. We specifically examine scenarios where large
amounts of traffic is sent from the mobile via the uplink under a
range of parallel connections. Some of these workloads may not
be common to today’s mobile Internet usage, but we explore them
to capture potential future use-cases and to get ahead of future
problems.

In these scenarios, we find that BBR and BBR2 significantly un-
derperform Cubic when the number of parallel TCP connections
increases and the device configurations move from high CPU fre-
quencies (representing high-end phones) to low CPU frequencies
(representing low-end phones). When the mobile device is run us-
ing the default CPU configuration, BBR underperforms Cubic by
at least 11% in terms of goodput with as little as 1 connection. The
performance difference only increases with more connections and
as the CPU capacity drops. For example, under a low-end device
configuration with 20 parallel connections, BBR’s goodput is 55%
that of Cubic.

The question then is this: what difference between BBR and Cubic
is responsible for BBR’s poor performance on low-end mobiles? While
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there are several differences between BBR and Cubic, BBR’s use of
packet pacing is particularly distinct from Cubic which does not
pace packets by default and instead sends them upon receiving acks.
BBR’s packet pacing helps it maintain lower RTTs and reduced loss
rates since packets are less likely to be sent at a rate that network
routers cannot handle.

By exploring these key differences, we uncover that TCP’s packet
pacingmechanism is the cause of poor BBR performance onmobiles.
TCP’s internal pacing sends one buffer of data at a time and sets
a timer in between data buffer deliveries. However, for low-end
devices, this pacing mechanism imposes substantial overhead on
the TCP stack since every data-send has additional pacing overhead.
In fact, enabling TCP pacing for Cubic similarly decreases Cubic’s
performance, thus confirming our findings.

As a first cut approach, we modify TCP’s packet pacing to reduce
the frequency at which packet pacing happens. As a result, TCP
paces less frequently but sends more data per pacing period. Our
experiments across mobile configurations demonstrate much im-
proved BBR and BBR2 goodput, on par with Cubic’s performance,
while still retaining the benefits of packet pacing. Thus, since BBR
requires packet pacing, modifying how TCP’s pacing works can
make it feasible to deploy BBR on mobile devices, even under low-
end configurations and multiple connections.

2 Background on BBR

This section provides an overview of BBR and BBR2 congestion
control algorithms and how they differ from Cubic.
BBR: TCP congestion control algorithms at the sender determine
the number of packets that can be sent in-flight, to maximize
throughput and minimize latency. Traditional, loss-based conges-
tion controls, such as Cubic, use loss signals to gauge when the
network is congested and back-off sending rates in the presence of
losses. While losses can indicate that there is network congestion,
a loss often occurs when router buffers are already saturated and
TCP is already experiencing high delays due to congestion.

BBR is a newer congestion algorithm developed by Google in
2016 [11] that ignores losses and instead estimates bandwidth and
RTT as its main signals. BBR computes the optimal network capac-
ity [24], the bandwidth-delay project (BDP), by estimating the the
network’s bottleneck bandwidth and propagation delay. Then, BBR
controls sending rates by setting both congestion window (cwnd)
and packet pacing rates proportional to the connection BDP. The
cwnd limits the maximum number of packets in-flight (unacknowl-
edged packets) so that the network is not saturated. Packet pacing
ensures that packets are not sent across the network at a rate higher
than the bottleneck bandwidth to avoid filling the buffer.
BBR2: Although BBR has been largely deployed, recent studies
have highlighted some of the drawbacks of BBR, including unfair-
ness to other TCP variants, BBR’s high retransmissions in shallow
buffers, and BBR’s poor performance when it estimates propaga-
tion delay [10, 22, 23, 33, 35]. As a result, BBR2 was introduced by
Google as an attempt to address these issues [12–14]. BBR2 uses
persistent losses as a signal to cut sending rates to improve fairness.
Though BBR2 is actively being developed, we include BBR2 in our
experiments for the sake of completeness.

Config. Pixel 4 Freq. Pixel 6 Freq. Cores
Low-End 576MHz 300MHz LITTLE
Mid-End 1.2GHz 1.2GHz LITTLE
High-End 2.8GHz 2.8GHz BIG
Default Dynamic Dynamic Dynamic

Table 1: Different Mobile CPU configurations used on the
Pixel phones to measure BBR performance.

3 Experimental Methodology
Our goal is to understand the implications of using the emerging
BBR congestion control on smartphones. Past work [17] has shown
that congestion control can be compute intensive for phones with
low compute capacities, resulting in unexpected performance impli-
cations. To this end, our goal is to study the performance of the new
BBR congestion control vs. the Android default Cubic congestion
control on phones with different compute capacities. We find that
the Cubic congestion control for Android is the same as the Cubic
implementation in the corresponding Linux kernel.

3.1 Device Setup
We perform experiments on two Android phones, the Pixel 4 (2019
release date) and the Pixel 6 (2021 release date). The Pixel 4 and 6
run Android 11 and 12 with Linux kernel versions 4.14 and 5.10,
respectively. We select these two Android phones because Android
is based on Linux and more readily customizable. Additionally,
the Pixel line of devices has open source Android kernels that are
relatively stock, making the process of modifying the Linux kernel
feasible [1].
Enabling BBR and BBR2:

While this paper explores the performance of BBR on Android,
BBR is not actively deployed on Android and does not ship off-the-
shelf with the phones. Since BBR is part of the Linux kernel and
both Pixel devices have sufficiently new Linux kernel versions, we
are able to include BBR in the devices’ kernel configurations. Once
BBR is enabled, we recompile the Android kernels for the mobile
phones that now include BBR and flash the new kernel on the
mobile device. To the best of our knowledge, we are the first work
to present a performance evaluation of BBR on mobile devices.

BBR2 is slightly more challenging to deploy on the Pixel devices
because it is still not part of the mainstream Linux kernel. Since
the latest BBR2 version is based off of Linux kernel 5.13 and the
Pixel 6’s kernel is based off of version 5.10, we choose the Pixel
6 as a good candidate to run BBR2. To this end, we backport all
BBR2 changes to the Pixel 6’s kernel, resolve code mismatches, and
recompile a Pixel 6 kernel with BBR2 enabled. We open source our
port of BBR2 for the Pixel 6 kernel [5].
CPU Configurations: Our goal is to study the performance of
BBR on phones under different compute configurations. To this end,
we experiment with four CPU configurations as shown in Table 1
that we describe below.

We choose lower CPU frequencies on the phone to emulate low-
end phones similar to past work [17]. Lower-end phones that are
popular in developing regions [17] operate at clock frequencies in
the range of 300-1300MHz; CPU frequencies we set for the Low-
End configuration is in the lower end of this range. In addition,
we also experiment with medium- and high-end CPU frequencies.
Default refers to using the dynamic CPU scaling performed by the
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Figure 1: Illustration of our testbed topology.

phone by default. We were unable to run BBR on low-end phones
because many of these lower-end devices have older kernels that
are incompatible with BBR and/or do not have open source kernels
that can be modified.
• Low-End: The userspace governor [2] is set to fix the mobile
frequency at the minimum CPU frequency. We disable all BIG
cores in the BIG.LITTLE CPU architecture.

• Mid-End: The mobile frequency is set at the median CPU fre-
quency for the LITTLE cores. Further, we disable all BIG cores
in the BIG.LITTLE CPU architecture.

• High-End: The mobile frequency is set at the maximum CPU
frequency for the BIG cores in the BIG.LITTLE CPU architecture.
Further, we disable all LITTLE cores in the BIG.LITTLE CPU
architecture.

• Default: The default governor [2] is maintained and CPU fre-
quency targets are not set. All BIG and LITTLE cores are enabled,
and the device is left to scale frequency and decide which cores
to use automatically. This device configuration represents off-
the-shelf behavior that aims to balance CPU compute power and
battery life.

3.2 Experiment Setup
Figure 1 depicts our overall experiment setup. In our setup, the
mobile device (iPerf client) sends data via the OpenWRT router to
the iPerf server.

This uplink traffic pattern (sending bulk amounts of traffic from
a mobile) can be seen in large file uploads (eg. video uploads).
Researchers also suggest that future Augmented Reality and Virtual
Reality applications require increased uplink capacity, especially
since they can be enabled using emerging technologies like 5G [18–
20, 32, 34].

Since the mobile device sends data, we change the congestion
control on the mobile device. Our network setup also allows net-
work conditions to be set on the OpenWRT router using Linux
traffic control (tc) [3]. By default, results are presented without
any network conditions being set by tc, unless otherwise specified.
Every iPerf3 result that we present is averaged over at least 10
experiment runs where iPerf3 sends data for 5 minutes.

For our network topology, we deploy two setups—an Ethernet
LAN and a WiFi LAN. We use a Linksys 1900ACS router and install
OpenWRT 21 on it. Further, we connect a desktop server via Ether-
net to the OpenWRT router. The mobile phone is connected over
Ethernet or WiFi.
Ethernet LAN: Under the Ethernet LAN setup, the mobile phone is
connected to the router via Ethernet cable using a USB-to-Ethernet
adapter. We verify that this setup is able to achieve close to the
1Gbps line rate (see §4). The Ethernet LAN setup represents a

reliable setup where connection medium may not have a major
effect on results.
WiFi LAN: Under the WiFi LAN setup, the OpenWRT router is
configured as an access point. The mobile phone is the only device
connected to the router via WiFi and is ∼1 meter away from the
router. This setup represents a more realistic network medium for
average users. However, results may have increased variability due
to WiFi artifacts such as interference, variable network speeds, etc.

4 Performance of BBR on Mobiles
In this section, we evaluate BBR’s performance on different mobile
device configurations under a range of parallel TCP connections
for Ethernet and WiFi. The goal is to see what BBR’s performance
would look like, especially for future uplink-demanding applica-
tions like AR and VR [19, 20]. The amount of uplink data being sent
is uncommon in today’s mobile Internet use, but our experiments
are designed to capture future use-cases. For instance, 5G mmWave
currently supports up to 200Mbps uplink speeds [28], and we expect
that future applications will use this capacity.

Our main finding is that, under these specific conditions, BBR
and BBR2 performworse compared to Cubic especially under lower-
end mobile configurations. This performance discrepancy exists
across both the Pixel 4 and 6 devices. We also perform experiments
on an LTE network but we do not find discrepancies between BBR
and Cubic performance here. This is because the performance in
LTE networks is not limited by the device configuration (i.e., the
CPU capacity) but by the bandwidth (more details in Appendix A.1).
While LTE networks are bandwidth limited, future 5G networks
with higher bandwidths are likely to see similar BBR performance
as our WiFi and Ethernet experiments.

4.1 Across Device Configurations
We begin by comparing the goodput of BBR and Cubic across differ-
ent device configurations under the Ethernet LAN setup. Figure 2
shows the aggregate goodput results from running BBR and Cubic
across all four configurations on the Pixel 4. We make several key
observations:

• Capable of Ideal Goodput: Both BBR and Cubic under High-
End device configurations (Figure 2d) are able to achieve at least
915Mbps goodput. Since line rate on the OpenWRT is 1Gbps, this
shows that the mobiles are capable of reaching goodput near line-
rate using BBR and Cubic TCP algorithms and that the network
is able to support these high throughputs. However, this near
line-rate throughput is only achieved when the mobiles operate
at maximum frequency with BIG cores.

• BBR Performance Drops with More Connections: Looking
at the Default, Low-End, and Mid-End device configurations in
Figures 2c, 2a, and 2b, we see that BBR performance degrades
significantly with more connections while Cubic goodput de-
grades minimally and only under the Low-End and Mid-End
device configurations. For example, BBR’s goodput under the
Low-End configuration drops 58% from 325Mbps with 1 connec-
tion to 138Mbps under 20 connections. In comparison, Cubic’s
goodput between 1 and 20 connections only decreases by 15%.

• BBR Generally Achieves Lower Goodput than Cubic: Look-
ing at Low-End and Default configurations, BBR achieves lower
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Figure 2: Average BBR and Cubic goodput for Low-End, Mid-End, Default, and High-End CPU configurations. BBR performs
worse than Cubic under Low-End, Mid-End, and Default configurations with increased connections.
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Figure 3: Average BBR and Cubic goodput for the Pixel 6
under the Low-End configuration. BBR’s performance gap in
comparison to Cubic increases as the number of connections
increases.

goodput than Cubic irrespective of the number of connections.
For Low-End mobile configuration, Cubic under 1 and 20 connec-
tion sees a 364Mbps and 310Mbps goodput whereas BBR only
sees 325Mbps (11% decrease) and 138Mbps (55% decrease) for the
same conditions. Similarly, the Default configuration under 1 and
20 connections shows a 14% and 37% drop, respectively, when us-
ing BBR instead of Cubic, and the Mid-End configurations shows
similar drops for 10 and 20 connections.

Figure 3 shows that the BBR goodput on Pixel 6 under Low-End
configuration is similar to that on Pixel 4. While Cubic’s goodput
degrades more than that on Pixel 4 under 20 connections, BBR’s
goodput is comparably 45% less than Cubic.

Main Takeaway: BBR performs worse than Cubic under Low-
End, Mid-End, and Default mobile configurations, and the perfor-
mance degradation is significant when there are larger numbers of
parallel connections.

4.2 BBR2 Performance
Next, we perform BBR2 experiments using the WiFi LAN setup for
the Pixel 6 (see §3.1) with Low-End configuration and 20 connec-
tions. We use the WiFi setup here for BBR2 since when we compile
BBR2 for the Pixel 6, we find that our BBR2 kernel does not support
Ethernet connections. Our BBR2 experiments (not presented here)
show similar results and trends whereby Cubic still performs better
than BBR2 (and BBR). From Cubic to BBR and BBR2, there is a 23%
and 20% drop in goodput, respectively.

5 Dissecting BBR’s Performance Gap
We now investigate why BBR and BBR2’s performance is inferior
compared to Cubic, especially when the number of connections
increases. Both BBR versions differs from Cubic in three key aspects:
(1) Congestion Model: BBR recomputes a large part of its model

(estimated BW and RTT) on every acknowledged packet.

(2) Cwnd: BBR and BBR2 set cwnd proportional to the BDP.
(3) Packet Pacing: BBR and BBR2 enable TCP packet pacing and

set the pacing rate proportional to the bottleneck bandwidth.
Cubic, on the other hand, uses a simple AIMD logic upon every
ACK’ed/lost packet and does not use packet pacing by default.

In order to facilitate our investigation, we create a master BBR
kernel module that allows us to control each of these three aspects.
Our module lets us disable computation performed by the BBR
model, set a custom cwnd value, enable/disable packet pacing, and
set specific packet pacing rates. We perform the below experiments
under Low-End configuration since the performance gap is most
pronounced in this setting.

5.1 Effect of BBR’s Cwnd and Pacing Rates
We start by fixing cwnd and pacing rates in our module in order to
check if BBR itself is artificially limiting goodput by setting small
cwnd and pacing rates. We fix a cwnd value of 70 packets, similar to
Cubic’s average cwnd for similar iPerf experiments, and experiment
with fixing pacing rates of each connection and disabling BBR’s
Congestion model.

5.1.1 Disabling BBR’s Congestion Model: One concern is that the
BBR code is more compute-intensive than Cubic’s logic and may be
causing excessive compute overhead, especially under poor CPU
conditions. To assess this concern, we disable BBR’s model update
upon each acknowledged packet in tcp_bbr.c and repeat the fixed
cwnd and pacing experiments. Consequently, BBR does not run its
main code logic, and our fixed cwnd values are immediately applied
every congestion loop. We find that setting Cubic-like cwnd values
still results in suboptimal performance even with BBR’s compute
disabled.

5.1.2 Fixed Pacing Rate: We next experiment with fixing a per-
connection pacing rate to get Cubic-like performance. We progres-
sively increase the pacing rate and find that only at a pacing rate of
140Mbps per connection, the goodput of BBR reaches the goodput
of Cubic (for the 20 connections case under the Low-End mobile
configuration.) However, a 140Mbps pacing rate per connection is
effectively unpaced and is a higher rate than the 16Mbps pacing
rate that is theoretically needed per connection to achieve 315Mbps.
The result is that BBR loses benefits of pacing as we show below.

5.2 Effect of Packet Pacing
5.2.1 Disabling Packet Pacing: Following from §5.1.2, we note that
a high pacing rate does in fact increase BBR’s performance, indepen-
dent of the BBR model. We hypothesize that having an extremely
high pacing rate per connection is similar to disabling packet pac-
ing because packets are effectively bursted through the network
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Figure 5: Effect of pacing under varying number of connec-
tions with a Low-End configuration. TCP pacing affects BBR
goodput negatively under all cases, and the performance gap
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with these excessively high pacing rates. To test our hypothesis, we
disable BBR’s packet pacing mechanism and allow BBR to control
sending rates only through setting the cwnd.

Figure 4 shows the difference in goodput for Low-End, Mid-End,
and Default configurations with and without packet pacing under
20 connections. It is evident that BBR’s goodput significantly in-
creases when packet pacing is disabled. For example, BBR’s goodput
under the Low-End configuration increases 2.7× when pacing is
disabled. Similar trends are present in Mid-End and Default con-
figurations, where goodput increases by 67% and 91%, respectively,
when disabling packet pacing.
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Figure 7: Benefits of pacing: The RTT of BBR under Low-End
configuration and 20 connections with and without packet
pacing. While pacing negatively affects goodput (Figure 4), it
does help decrease RTT significantly.

Figure 5 shows that even for 1 and 5 connections, BBR’s goodput
increases by 14% and 19%, respectively, when pacing is disabled.

5.2.2 Is it BBR or TCP Packet Pacing?: Next, we investigate if TCP
Pacing is the problem or if BBR’s use of pacing is not optimal. To
this end, we run experiments where we enable packet pacing in
Cubic. Recall that pacing is disabled in Cubic by default. If enabled,
Cubic uses TCP’s internal pacing rate of (𝑚𝑠𝑠 ∗ 𝑐𝑤𝑛𝑑/𝑟𝑡𝑡).

Figure 6 shows the performance of Cubic when pacing is enabled
and different pacing rates are used. For these experiments, we use
the Low-End configuration and 20 TCP connections. We find that
when pacing is enabled, Cubic goodput also drops considerably,
especially when the packet pacing rate is low. While 20Mbps should
reach a maximum of 400Mbps (20Mbps × 20 connections), it only
achieves 147Mbps. However, similar to BBR, when pacing is in-
creased to 140Mbps, Cubic goodput is similar to unpaced Cubic
performance. This suggests that, even for Cubic, pacing is problem-
atic and that TCP Pacing is not a BBR-specific problem on mobiles.

5.2.3 Benefits of Packet Pacing: While a straw-man approach to
improving BBR performance on low-end mobiles is to disable the
pacing mechanism, prior work has shown that packet pacing bene-
fits overall congestion and TCP fairness [6, 36]. For example, Fig-
ure 7 shows that RTT increases sharply for Low-End, Mid-End, and
Default configurations when disabling BBR’s packet pacing behav-
ior. For all configurations, RTT more than doubles when packets
are not paced, hinting at network congestion. We find that pacing is
important in both the slow start and congestion avoidance phases
because it reduces RTTs in both phases.

To further demonstrate this, we experiment under a 10-packet
shallow buffer that is especially congestion-susceptible.While good-
put increases when disabling BBR’s pacing, average retransmissions
increase dramatically from 37 to 13,500 packets when disabling
BBR’s pacing, and RTTs increase similarly to Figure 7. Since in-
creased retransmissions and RTTs are symptoms of network con-
gestion, BBR’s pacing does in fact help combat congestion by not
bursting packets.

Main Takeaway: Packet pacing under low-end mobiles and
large number of connections limits BBR’s performance, but pacing
is necessary to prevent congestion.



IMC ’22, October 25–27, 2022, Nice, France Vargas et al.

1x 2x 5x 10x 20x 50x
Pacing Stride

0

200

400

600

Go
od

pu
t (

M
bp

s) Low-End
Mid-End
Default
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is different for the different configurations.

6 Improving Pacing
In this section, we present a first cut solution to improving pacing
in BBR. We first go into detail on how TCP’s internal pacing mech-
anism works. Then, we introduce the concept of a pacing stride
that can potentially improve BBR’s performance by pacing less
frequently.

6.1 Background on TCP’s Pacing
BBR and BBR2 by default use TCP’s internal packet pacing mecha-
nism, which in turn works by using a timer to limit the transmission
of socket buffers. TCP’s pacer takes as input the size of the socket
buffer and the pacing rate to compute an “idle time” when packets
cannot be sent:

𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 =
𝑠𝑜𝑐𝑘𝑒𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ

𝑝𝑎𝑐𝑖𝑛𝑔𝑅𝑎𝑡𝑒
(1)

This idle sending time is implemented in the kernel as a pacing
timer such that timer expiration reschedules a callback to process
the socket and send the next socket buffer. Once a new data segment
is sent, the timer is activated, and the connection idles from sending
more data until timer expiration.

While this is an accurate pacing mechanism, setting a timer
per connection for each socket buffer that is sent can cause high
per-packet overheads, especially on low-end phones. The timer
expiration callbacks continually reschedule connections to be pro-
cessed.

6.2 Changing Pacing Stride
To regulate the pacing overhead while still sending data at the same
average pacing rate, we experiment with changing the pacing stride.
We change pacing stride by scaling 𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 so that the CPU paces
more packets but less frequently. We include pacing stride as a
scaling variable by redefining 𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 as follows:

𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 = 𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 × 𝑝𝑎𝑐𝑖𝑛𝑔𝑆𝑡𝑟𝑖𝑑𝑒 (2)

Since the goal is to reduce CPU pacing overhead, we experi-
ment with strides greater than 1, specifically 𝑝𝑎𝑐𝑖𝑛𝑔𝑆𝑡𝑟𝑖𝑑𝑒 =

{1, 2, 5, 10, 20, 50}.
Figure 8 shows the effect of different pacing strides on Low-End,

Mid-End, and Default configurations. Increasing the pacing stride
significantly improves performance of BBR across all configurations

Pacing
Stride

Skbuff
Len
(Kb)

Idle
Time
(ms)

Expected
Tx
(Mbps)

Actual
Tx
(Mbps)

RTT
(ms)

1× 32.1 0.88 729 430 3.7
2× 57.7 1.54 748 580 2.2
5× 121 3.22 751 717 1.4
10× 120.8 5.68 426 416 1.1
20× 120.6 12.7 190 185 1.3
50× 121.4 31.1 78.1 75.6 1.4

Table 2: Socket buffer length, idle time, expected throughput,
actual throughput, and RTT across different pacing strides
under the Default configuration. As idle time increases, the
pacing overhead decreases, resulting in improved through-
put. However, as idle time increases beyond a certain point
(5× in the table above), the socket buffer starts to saturate,
thereby limiting throughput.

compared to default BBR (i.e., 𝑝𝑎𝑐𝑖𝑛𝑔𝑆𝑡𝑟𝑖𝑑𝑒 = 1). For example,
the goodput under Default configuration increases from around
400Mbps to over 700Mbps, and that under Low-End increases from
below 140Mbps to 240Mbps. We find that a pacing stride of 5×
provides the best goodput for Mid-End and Default configurations
and 10× provides the best goodput for the Low-End configuration.
Further, Table 2 shows that keeping a pacing stride also maintains
a low RTT, unlike completely disabling pacing.

To further analyze these improvements, Table 2 shows the effect
of pacing strides on average socket buffer length and average idle
time. Here we perform one iPerf3 run for each pacing stride and
sample idle time and socket buffer length for each individual TCP
pacing period (e.g., one socket buffer is sent per TCP pacing period).

We see that increasing the pacing stride also increases the av-
erage socket buffer length and average idle time. While idle time
naturally increases from Eq. (2), socket buffer length increases since
more packets accumulate per pacing period. However, after a cer-
tain stride length (e.g., 20× for Low-End and 5× for Default), the
buffer length plateaus and is limited by the socket buffer capacity.
This in turn limits the goodput as stride length is further increased.

This can be seen by comparing the expected and actual (as re-
ported by iPerf3) throughput values in Table 2. Expected throughput
is modeled as a purely pacing-limited scenario:

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑥 =
𝑠𝑜𝑐𝑘𝑒𝑡𝐵𝑢𝑓 𝑓 𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ × 20 connections

𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒

For example, under the Default configuration, the actual through-
put never reaches the expected value for 1× and 2× pacing stride,
because of pacing overheads. For 5× onwards, the pacing is in-
frequent enough to mitigate CPU overheads, resulting in actual
throughput more closely matching the expected. A similar trend is
seen for Low-End configuration.

Therefore, there is an optimal stride length for which pacing
happens infrequently enough to mitigate the CPU overhead of
pacing while ensuring that the stride is not too large to risk socket
buffer saturation. This optimal length will depend on at least the
network conditions and the mobile device configuration; we plan
to investigate the optimal stride length in detail as part of future
work.
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Main Takeaway: Pacing at bigger strides with more data al-
lows BBR to achieve significantly higher throughput under CPU-
constrained configurations while maintaining low RTTs and avoid-
ing network congestion.

7 Discussion

7.1 Pacing Strides Limitations and Future Work
The pacing stride solution we outline in this paper is a first cut ap-
proach to solving the pacing problem in BBR. Below, we discuss the
implications of the solution in terms of memory usage, optimality,
TCP fairness, and hardware pacing alternatives.

7.1.1 Memory Usage: The pacing strides approach may increase
memory usage as packets have to wait longer before they are sent.
To explore this we run experiments with the Low-End configuration
and 20 connections and measure RAM usage on the mobile. We
find that memory is unaffected when using pacing strides.

7.1.2 Optimality: In this work, we explore 6 discrete pacing strides
of 1×, 2×, 5×, 10×, 20×, 50×. However, choosing an optimal pacing
stride in terms of bandwidth will depend on the mobile configura-
tion, number of connections, network workload, and system load.
We leave further exploration of the optimal pacing stride to future
work.

7.1.3 TCP Fairness and Congestion: Pacing strides change the be-
havior of TCP pacing by including more data during a data-send
but doing so less frequently. Since previous studies have show that
packet pacing improves fairness [6, 36], pacing strides may increase
the unfairness of BBR. Also, pacing strides may potentially cause
transient congestion, delay, and loss. We need further studies to
explore both fairness and congestion when using pacing strides.

7.1.4 Hardware Pacing: BBR’s authors have suggested that BBR
may benefit from fine-grained hardware pacing in the future [15].
This could be a viable alternative to the pacing strides approach we
outline in this paper.

7.2 Device Capabilities
One main question is whether low-end phone capabilities will
improve significantly by the time BBR rolls out in Android. To
explore, we enumerate the device capabilities of phones at the $60
price point (similar price to previous work on low-end phones [17])
found on Flipkart, a popular e-commerce site in India. We find that
the phones in this price range have on an average 4 cores, 1.31Ghz
max CPU frequency and run Android version 8.

These device configurations are similar to the phones in the
$60 price range found in India four years ago [17]. While the core
count and max CPU frequency are similar, the Android version has
increased from Android 6 to Android 8. This suggests that while
newer low-end phones still have the same hardware specifications
as older phones, they do indeed run newer versions of Android.
This trend was also reported in previous work which finds that
while phone OSes continue to improve, compute capacity lags
behind [30].

8 Related Work
In this section, we discuss work related to low-end mobile perfor-
mance and the BBR congestion control.

Low-End Mobile Performance: There have been a number
of studies recently that examine quality-of-experience (QoE) of
Internet applications on low-end smartphones. Low-end mobiles
are more prevalent especially in developing countries and there is
a need for device-specific changes to overcome the bottlenecks [7].
Recent studies have shown a poorweb browsing performance due to
the memory bottlenecks in low-end mobiles [29, 31]. Other studies
havemeasured QoE of Internet applications on low-endmobiles and
identified CPU as a main cause of QoE degradation [17]. Following
this line of work, we identify the bottleneck in BBR performance
on low-end mobile configurations and discuss how to alleviate this
performance bottleneck.

BBR Performance: There have also been a number of studies
on BBR performance, but not on mobile devices. For example, a
line of work looks at BBR on WiFi and cellular networks [8, 21].
BBR performance and fairness have been studied under various
non-mobile settings [9, 10, 35] with some works predicting that
BBR and BBR2 will become more prevalent in the Internet [27].
Other works have compared BBR and Cubic on satellite networks
and non-traditional settings [16, 25]. A more recent work looks at
BBR performance in WLAN settings and exposes pacing controls
to user-space to increase the pacing rate [21].

9 Conclusion
This work presents the first measurement-driven performance eval-
uation of BBR and BBR2 on different mobile device configurations.
We find that BBR and BBR2 underperform relative to Cubic under
many CPU configurations and a large number of connections. Our
investigation reveals that it is the TCP pacing mechanism used
by BBR that is primarily responsible for the poor goodput. While
removing pacing significantly improves BBR’s performance on
mobile devices, the lack of packet pacing causes high RTTs and re-
transmissions. Instead, we suggest changes to TCP’s packet pacing
whereby data-sends include more data but occur less frequently,
thus mitigating the overhead of frequent pacing. Our TCP pacing
changes significantly improve BBR performance on mobile devices
while retaining the benefits of packet pacing.
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A Appendix

A.1 Cellular Experiments
In addition to experiments on Ethernet and WiFi, we also conduct
a small set of experiments on cellular networks. Our cellular setup
is similar to Figure 1 except the phone connects to the Internet
via T-Mobile’s LTE network in order to reach our iPerf server. We
purchased a prepaid unlimited plan from T-Mobile to perform these
experiments on Pixel 6.
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Figure 9: The goodput of BBR under Low-End configuration
over cellular. BBR and Cubic performance is similar under
all settings (unlike results over WiFi and Ethernet where
Cubic outperformed BBR.) We find that this is because in
cellular networks, the setting is bandwidth-limited and not
CPU capacity-limited.

Figure 9 shows the cellular results. There is no significant differ-
ence in performance between BBR and Cubic in this setting. This
is because the cellular uplink experiments are bandwidth-limited
(less than 20Mbps of goodput) and do not reach sufficient levels
to hit a pacing bottleneck on the mobile devices. However, recent
work on mmWave 5G suggests that cellular uplinks can reach up
to 200Mbps [28] which will provide sufficient network capacity.
In this case, the capacity limitation and the pacing problems will
become significant, similar to the WiFi and Ethernet case.

A.2 Ethics
This work does not raise any ethical issues.
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