
Empirical Analysis and Modeling of Compute
Times of CNN Operations on AWS Cloud

Ubaid Ullah Hafeez, Anshul Gandhi
PACE Lab, Computer Science Department

Stony Brook University, Stony Brook, NY, USA
uhafeez@cs.stonybrook.edu, anshul@cs.stonybrook.edu

Abstract—Given the widespread use of Convolutional Neural
Networks (CNNs) in image classification applications, cloud
providers now routinely offer several GPU-equipped instances
with varying price points and hardware specifications. From
a practitioner’s perspective, given an arbitrary CNN, it is not
obvious which GPU instance should be employed to minimize
the model training time and/or rental cost. This paper presents
Ceer, a model-driven approach to determine the optimal GPU
instance(s) for any given CNN. Based on an operation-level
empirical analysis of various CNNs, we develop regression models
for heavy GPU operations (where input size is a key feature) and
employ the sample median estimator for light GPU and CPU
operations. To estimate the communication overhead between
CPU and GPU(s), especially in the case of multi-GPU training,
we develop a model that relates this communication overhead to
the number of model parameters in the CNN. Evaluation results
on AWS Cloud show that Ceer can accurately predict training
time and cost (less than 5% average prediction error) across
CNNs, enabling 36%–44% cost savings over simpler strategies
that employ the cheapest or the latest generation GPU instances.

I. INTRODUCTION

The past few years have seen a significant increase in the
adoption of Deep Neural Networks (DNNs) for a wide range
of machine learning applications [1], [2], [3]. The success of
DNNs is primarily due to their large models which have the ca-
pacity to learn complex features from big data. Convolutional
Neural Networks (CNNs) are a popular and efficient class of
DNNs that employ the convolution operation for processing
data that has a known grid-like topology, such as images,
making CNNs among the most popular techniques for image
classification [4], [5].

Despite their success, CNNs, and DNNs in general, are
expensive models for training owing to their large compute
requirements and numerous parameters. Most CNN models are
trained, using training frameworks such as TensorFlow [6], on
machines equipped with expensive GPUs; see Section II for
more details on CNN training. Modern servers equipped with
commodity GPUs can be prohibitively expensive; for example,
a 4-GPU (NVIDIA Tesla V100) NVLink-equipped server can
easily cost upwards of $35,000 [7].

A promising alternative to purchasing such expensive
servers is to rent similar cloud resources for the duration of
model training. Most public cloud providers, including AWS,
Google Cloud, and Azure, now provide several GPU-equipped
Virtual Machine (VM) offerings [8], [9], [10]. Specifically,

AWS currently offers VM instances that support four different
GPU models [8] with hourly rental costs of a basic single-GPU
VM instance ranging from $0.75 to $3.06 [11].

Within the context of cloud-deployed CNN model training,
an important concern is determining the best GPU instance (or
VM) to employ, from among the available options, for a given
CNN model to minimize the completion time and/or resource
rental costs. For realistic model training, the training time
(or completion time) can last from a few minutes to several
days [12], [13], owing to the numerous model parameters that
need to be learned; consequently, training a single model can
be an expensive undertaking. As a specific example, the win-
ner of the ImageNet challenge 2017, Squeeze-and-Excitation
Networks (SENets), employed 145.8 million parameters with
a training time of at least 250 GPU-hours [14]. Based on
the rental cost of a similar AWS GPU model instance as
employed by the above work [15], the model training cost
can be estimated to be as high as $750.

Given an arbitrary CNN, deciding which GPU instance to
employ to minimize the training time and/or rental cost is a
non-trivial problem because of the following challenges:
• The available GPU instances may offer widely varying

price points and hardware specifications. A more expensive
instance may not necessarily result in the smallest training
time, and vice-versa. Thus, simple strategies such as em-
ploying the cheapest instance or employing the latest GPU
offering need not be optimal.

• CNNs can be functionally and structurally very different
from each other, making it difficult to predict the training
time of a given CNN based on performance analyses of
other CNNs, even if on the same GPU model. Further, the
training time of a CNN depends critically on its input (or
training) data size.

• To reduce training time, practitioners often employ multiple
GPUs and train the model in parallel over partitions of input
data; this practice is referred to as data parallelism [16].
However, the training time under data parallelism need not
scale perfectly with the number of GPUs due to commu-
nication overheads between CPU and GPUs. Worse, this
overhead is GPU- and model-specific, making it difficult to
predict the training time when using multiple GPUs.

Most of the prior work in this area has focused on the
empirical analysis of DNN end-to-end training time on specific

GPU devices [5], [17]. By contrast, the cloud-deployed GPU
instance cost optimization problem we consider in this paper
requires an understanding of the constituent operation-level
compute times (that make up the training time) across different
commodity GPUs offered by cloud providers. Further, while
much of the prior work has focused on speeding up the training
time of a specific model under consideration [18], [19], we are
more concerned with finding the optimal GPU instance for an
arbitrary CNN. While some prior works aim to predict training
time for arbitrary CNNs [4], [20], they only focus on layer-
level modeling (a layer is a set of operations) and ignore small
operations, which, as we discuss in Section IV, significantly
hurts prediction accuracy.

In this paper, we perform a detailed empirical study of
operation-level compute times and compute costs of several
frequently used CNN models on all four publicly available
GPU model types in the AWS cloud. Our analysis yields
insights on the relationship between specific GPU hardware
characteristics and the type of compute operations in the
CNN model. For example, while the latest generation of GPU
model instances (P3) are better suited, in terms of cost and
performance, for memory-intensive operations (e.g., MaxPool-
Grad), older generation of GPU instances (e.g., G4) are more
cost-efficient for moderately compute-intensive operations. We
also make the key finding that the set of unique operations
that contribute to much of the training time across CNNs
is typically small, and the compute time of these “heavy”
operations exhibits low variability.

Based on our empirical analysis, we develop a model-
driven approach, Ceer (a seer for CNNs), to accurately predict
the training time and training cost of CNNs across GPU
instances. The primary component of Ceer is the regression
models for heavy operations that relate their compute time to
input size for each GPU model; while linear regression works
well for most operations, quadratic models are required for
a few operations. Combined with our empirical finding that
(present-day) CNNs are typically composed of the same set
of these heavy operations, our regression models allow Ceer
to recommend the optimal GPU instance choice for any CNN.

However, we find that only considering the heavy operations
does not provide a good prediction accuracy for training time.
While other “light” operations and operations that execute on
the CPU often have small compute times, they do exhibit high
variability, and so ignoring these operations hurts prediction
accuracy by 15–25%. Instead of exhaustively modeling each
of these operations for every GPU, Ceer uses a much simpler
and practical approach, resulting in accurate training time and
training cost predictions.

Finally, and importantly, to predict training time on multi-
GPU instances, we develop a CNN-oblivious model that ac-
curately estimates the communication delay between CPU
and GPUs in each training iteration. Interestingly, the com-
munication between CPU and GPU must also be taken into
account for accurately predicting the training time on single-
GPU instances; ignoring this overhead can increase prediction
error by 20–30% for certain CNNs.

3x 4x 2x

Convolution
Max. Pool
Avg. Pool
Concat

Fully Connected
Soft Max
Drop out
Layer

Fig. 1: Illustration of the DAG for the Inception-v3 CNN.

We evaluate Ceer on AWS cloud and show that Ceer
consistently recommends the optimal GPU instance deploy-
ment in every scenario we consider and across (previously
unseen) CNNs. This is enabled by the accurate training time
and training cost models employed by Ceer; our average
(test set) prediction error across CNNs and GPU instance
types is about 4.2%. Compared to the strategy of picking the
cheapest or most expensive (thus, latest) GPU model, Ceer can
reduce rental costs by as much as 36% and 44%, respectively;
alternatively, for a given cost budget, Ceer can reduce the
corresponding training time by 89% and 48%.

The rest of this paper is organized as follows. Section II pro-
vides the necessary background on CNN training and describes
the commercially available GPU model types on AWS cloud.
Section III presents our empirical study of the operation-level
compute times and compute costs of various CNN models on
all AWS GPU model types. Section IV describes our modeling
approach, Ceer, that accurately predicts the training time and
cost for an arbitrary CNN. We evaluate the efficacy of Ceer
in Section V. Finally, we discuss related work in Section VII
and conclude the paper in Section VIII.

II. BACKGROUND AND OVERVIEW

This section provides the necessary background on CNNs and
CNN training, and then discusses the various GPU models
offered by AWS that we employ in our empirical study.

Convolutional Neural Networks (CNNs). A CNN is a con-
volutional neural network model with multiple layers that can
learn the (possibly non-linear) relationship between the input
features and the output variable, often expressed as model
parameters or weights, based on training over (typically)
labeled data sets. As the name indicates, CNNs employ a
mathematical operation called convolution in place of general
matrix multiplication in at least one of the layers; convolutions
are more memory- and compute-efficient as compared to
general matrix multiplication [21]. Further, almost all CNNs
employ another mathematical operation called pooling as well;
pooling operations enable CNNs to reduce the number of
model parameters and computations, while avoiding overfit-
ting [21]. The CNN model consists of sequence of layers of
different types, with each layer consisting of several nodes,
corresponding to computational operations. In this work, we
specifically focus on CNNs given their popularity in practice.

CNN training. Modern CNN training frameworks, such as
TensorFlow [6], model CNNs as directed acyclic graphs

(DAGs) where each graph node is a compute operation (e.g.,
multiplication, gradient calculation), typically run on a GPU
or CPU, and each edge represents the data communication
between operations. Figure 1 shows the underlying DAG of the
Inception-v3 CNN model [22]. Here, the edges connecting dif-
ferent rectangles denote data flow between them. The colored
rectangles in the figure represent a functional compute unit
(see legend), which we refer to in this paper as an operation.
Note the × multiplier in some of the (dotted boundary) layers;
these indicate that the layer repeats several times in sequence.

Training generally consists of multiple iterations of the
training data over the same model. For example, if the total
training data set size is D samples, and each iteration processes
a batch size of B samples, then the training will complete in
D/B iterations. Some data is typically transferred between
the CPU and GPU at the start and end of each iteration. The
entire training may be repeated multiple times in epochs until
a convergence criteria is reached [13].

A commonly employed technique to enhance CNN training
across GPUs is data parallelism. Under data parallelism,
multiple GPUs are employed, each with a complete replica
of the CNN model, to process subsets of the input training
data in parallel. The learned weight updates from each GPU
are periodically aggregated in a synchronization phase and up-
dated for subsequent iterations; the communication overhead
for synchronization can be substantial [23].
AWS GPU models available for CNN training. Several com-
mercial cloud service providers, including AWS [8], Google
Cloud [9], and Azure [10], now offer GPU instances (as VMs)
to customers. In this work, we focus specifically on AWS, the
largest commercial cloud resource provider [24], [25]. AWS
offers various GPU instance types, each consisting of one of
the following GPU models [8]:
• NVIDIA Tesla V100 (P3 instances) with 5,120 CUDA Cores,

640 Tensor Cores, and (default of) 16GB of GPU memory.
• NVIDIA K80 (P2 instances) with 2,496 parallel processing

cores and 12GB of GPU memory.
• NVIDIA T4 Tensor Core (G4 instances) with 2,560 parallel

processing cores and (default of) 16 GB of memory.
• NVIDIA Tesla M60 (G3 instances) with 2,048 parallel pro-

cessing cores and 8 GB of GPU memory.
While each GPU model is offered in different instance
sizes, the corresponding basic 1-GPU models we consider for
the above four GPU models, along with their hourly (On-
Demand Pricing) rental costs [11], are : p3.2xlarge ($3.06/hr),
p2.xlarge ($0.90/hr), g4dn.2xlarge ($0.752/hr), and g3s.xlarge
($0.75/hr). We also employ multi-GPU versions of these
instances in our experimental evaluation (see Section V). We
note that AWS also offers instances with custom-built chips
or FPGAs, but we omit these instances in our discussion and
evaluation given our focus on GPUs.

III. EMPIRICAL ANALYSIS

This section presents one of our main contributions — an
empirical study of compute times of CNN operations on all

Pad
Add

V2
C
on

ca
tV

2
Slic

e
Add

N

Bia
sA

dd
G
ra

d
Bia

sA
dd M
ul

R
el
uG

ra
d

R
el
u

Fus
ed

Bat
ch

N
or

m
V3

Fus
ed

Bat
ch

N
or

m
G
ra

dV
3

Avg
Poo

lG
ra

d
L2

Lo
ss

C
on

v2
D

C
on

v2
D
Bac

kp
ro

pI
np

ut

C
on

v2
D
Bac

kp
ro

pF
ilt
er

M
ax

Poo
l

Avg
Poo

l

M
ax

Poo
lG

ra
d

Operation type

10
2

10
3

10
4

A
v
g

.
c
o

m
p

u
te

 t
im

e
 (

u
s
)

P2
G3
G4
P3

Fig. 2: Average compute times of different “heavy” operations
for 4 different AWS GPU model types.

four GPU model types offered by AWS. We first present our
results for operation-level compute times and compute costs,
and then discuss how these are impacted by the input size.
We then analyze how training time scales with the number of
GPUs (under data parallelism).

For our empirical study, we consider the following popularly
employed CNN models, which together provide us with 12
distinct CNNs. We obtain empirical results by training these
CNNs on TensorFlow [6] on AWS GPU instances.
• VGG is a CNN with multiple convolutional, pooling, and

fully connected layers, and is often used for image classi-
fication [23]. We experiment with three different variants
having varying numbers of convolutional layers, i.e., VGG-
11 (with 11 layers), VGG-16, and VGG-19.

• Inception is a more memory-efficient version of VGG. We
experiment with three versions of Inception – v1, v3, and
v4, each with a different number and size of convolutions.

• ResNet can provide better accuracy in image classification
as it employs residual networks and shortcut connections.
We experiment with four popular variants of ResNet-v2 –
50-layered, 101-layered, 152-layered and 200-layered.

• Inception-ResNet-v2 is similar to Inception-v3, but aug-
mented with shortcut connections.

• AlexNet mainly consists of convolutions and fully connected
layers, and is one of the very first DNNs developed for
image classification.

From these 12 CNN models, without loss of generality, we
select Inception-v3, AlexNet, ResNet-101, and VGG-19 as
our test set, and the remaining 8 CNNs as our training set.
All empirical results in this section employ the 8 training set
CNNs; we employ the test set CNNs for model validation and
evaluation in Sections IV and V, respectively.

A. Operation-level compute times
CNN models are composed of numerous operations; however,
the number of unique operation types across CNNs is typically
small. For example, while the simplified Inception-v3 model,
shown in Figure 1, has numerous operations (denoted as

Pad

AddV2

ConcatV2
Slice

AddN

BiasAddGrad

BiasAdd
Mul

ReluGrad
Relu

FusedBatchNorm
V3

FusedBatchNorm
GradV3

AvgPoolGrad

L2Loss

Conv2D

Conv2DBackpropInput

Conv2DBackpropFilte
r

MaxPool

AvgPool

MaxPoolGrad

Operation type

102

104

A
v
g

.
c
o

m
p

u
te

 t
im

e
 (

u
s
)

x
 G

P
U

 c
o

s
t/

h
r

($
)

P2 G3 G4 P3

Fig. 3: Cost of operations (product of compute time and rental cost of GPU instance), on log scale, for different GPU models.

rectangles), the number of unique operations, represented by
their color, is fairly small. Figure 2 shows the compute time,
on log scale, for different GPU operations types on all four
AWS GPU model type instances discussed in Section II. The
compute times shown in the figure are averaged over 1,000
iterations of each of the 8 training set CNNs identified above.
For ease of presentation, in the rest of this section, we omit
operations that have negligible compute times (< 0.5 ms on
P2), unless mentioned otherwise. We refer to these operations
that have small compute times as light operations; we refer
to the other GPU operations, shown in Figure 2, as heavy
operations. Together, the light operations contribute to less
than 7% of the model training time.

We see that there is an almost consistent relative ranking
of compute times across GPU models, with P3 having the
lowest compute times and P2 almost always having the highest
compute times; for some operations, G3 has higher compute
times than P2. Averaging across all (heavy) operations, P3
provides an impressive 10× lower compute time compared to
P2, and an almost 4× lower compute time compared to G4.
While the compute times for P2 and G3 appear to be close
in the figure (note the log scale), P2 results in almost 50%
higher compute time, on average, compared to G3.

In terms of operations, the pooling operations have high
compute times, whereas the simpler Add-type operations have
lower compute times. This is because, unlike the simple Add
operations, the pooling operations involve a combination of
operations such as concatenation, addition, and multiplication,
and also involve more reads and writes to GPU memory. We
also find that the compute time of operations often scales with
their input size. For example, in Figure 2, the AddV2 operation
has an average input size of about 85MB whereas the BiasAdd
operation has an average input size of about 120MB. While the
functionality of these two operations is very similar, BiasAdd
has higher compute times because of the larger input size
(since one of the inputs is typically a matrix).

Focusing on operation-level compute times has the advan-
tage that by understanding these constituent compute times, we
can estimate the training time per iteration for any arbitrary
CNN, given that CNNs are typically composed of the same
small set of unique operations. For example, the 20 heavy
operations shown in Figure 2 contribute to 47%–94% of the
training time of our training set CNNs. Of course, for some
CNNs, only focusing on heavy operations will not suffice.

B. Operation-level compute costs
In addition to compute time, the cost of the GPU instance is
also important when determining the choice of GPU instance
to employ. Figure 3 shows the rental cost (normalized by the
number of µs in an hour, 3.6 × 109) incurred when running
the GPU operation on a specific GPU model type (assuming
the basic, single-GPU instance cost), over the duration of its
compute time. The values shown in this figure are obtained
by multiplying the average compute times from Figure 2 with
the corresponding GPU instance price.

In terms of cost over the duration of compute time, we see
that P3 and G4 are typically the best choices, depending on the
operation. However, compared to the relative improvements in
Figure 2, the cost benefit afforded by P3 is not as pronounced.
In fact, while P3 lowers the compute time by about 4×, on
average, compared to G4, the average cost (averaged over all
operations) over the compute time duration is slightly lower
for G4 compared to P3. Likewise, the 10× compute time
improvement afforded by P3 over P2 translates to a much
lower 3× when considering the average cost.

For the 20 operations shown in Figure 3, G4 provides the
lowest cost for 16 of these operations while P3 provides the
lowest cost for the remaining 4 operations. In particular, for
the pooling operations, we find that P3 lowers the cost by
about 20%, on average, compared to G4; the peak reduction,
for AvgPool, is 31%. For the 16 operations where G4 provides
a lower cost, the average cost reduction over P3 is about 16%;
the peak reduction, for FusedBatchNormGradV3, is about
29%. The GPU model supported by P3 instances (NVIDIA
Tesla V100) has high compute power and memory bandwidth,
and is thus well suited for the memory-intensive pooling
operations. While G4 is less powerful than P3, it has a much
lower cost than P3 instances, and so is more cost-efficient for
operations that are not too compute intensive.

C. Impact of input size on compute times
Thus far, we have considered average compute times for each
operation. However, each operation in a CNN operates over a
certain input data, whose data size can dictate the execution
time of the operation. The dots in Figure 4 show the compute
time of the ReLU operation (that implements the rectified
linear activation unit activation function) for different GPU
model types. Clearly, the compute time depends on the input
data size. The solid lines refer to our modeling results, and
will be discussed in the next section.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Input size (bytes) 10
8

0

2000

4000

6000

8000
C

o
m

p
u

te
 T

im
e

 (
u

s
)

P2
G3
G4
P3

Fig. 4: Compute time of ReLU operation as a function of input
size for different GPU models. Also shown, with lines, is the
linear regression fit based on the empirical observations (dots).

0 0.1 0.2 0.3 0.4 0.5 0.6

Std dev/Mean of compute time per operation

0.6

0.8

1

P2
G3
G4
P3

Fig. 5: CDF of normalized standard deviation of (heavy)
operations for different GPU models.

We also repeated the above input size analysis for other
heavy operations and found that, in all cases, the compute time
depends significantly on the input sizes. For some operations
(e.g., Conv2D, AvgPool, etc.), the compute time also depends
on the size of supplemental inputs, such as filters, strides, and
padding, in addition to the size of the input images.

While the compute times depend on the input data size,
fortunately, for each unique heavy GPU operation and unique
input data size, the compute time is largely invariant across
runs. Figure 5 shows the CDF of normalized standard devia-
tion (normalized by the mean) of compute times of different
heavy GPU operations with unique input data size over their
1,000 iterations, for each GPU model type. We see that the
normalized deviation is typically quite low, with 95% of the
values being less than 0.1. Note that we are omitting light
operations (those that have negligible compute times) and
CPU operations; we find that these operations exhibit higher
normalized deviation than heavy GPU operations. We discuss
the impact of this higher standard deviation of light GPU and
CPU operations on the design of Ceer in Section IV-D.

D. Scaling of model training time with data parallelism
Thus far, we have only considered the basic AWS GPU
instance, with a single GPU, for each GPU model type. In
this subsection, we analyze how model training time scales
under data parallelism as we employ multiple GPUs. For the
empirical analysis in this subsection, we use the following
AWS GPU instances, each of which has (at least) 4 GPUs of
the same kind: p3.8xlarge ($12.24/hr), p2.8xlarge ($7.20/hr),
g4dn.12xlarge ($3.912/hr), and g3.16xlarge ($4.56/hr).

Figure 6 shows the training time as a function of number
of GPUs, under data parallelism, for different GPU model

1 2 3 4

Number of GPUs

0

10

20

30

40

T
ra

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

P2
G3
G4
P3

Fig. 6: Impact of number of GPUs, under data parallelism, on
the training time for a sample input for different GPU model
types for the Inception-v1 CNN.

types using the Inception-v1 CNN. Here, we use an input
data with 6,400 samples of ImageNet [26] for training. As
expected, the training time drops as more GPUs are employed.
Compared to the training time for 1 GPU, the training time
under 2, 3, and 4 GPUs drops by around 35.8%, 46.6%, and
53.6%, respectively, averaged across all GPU types. While the
reduction is significant when going from 1 GPU to 2 GPUs
(35.8%), the reduction is less pronounced when going from
2 GPUs to 3 GPUs (16.9%) and from 3 GPUs to 4 GPUs
(13.1%). The trend is qualitatively similar for other CNNs.

The above results highlight the fact that adding more GPUs
does help reduce training time, but this reduction is less pro-
nounced for higher number of GPUs, suggesting diminishing
returns. This is because of the synchronization phase [16],
wherein each GPU communicates its parameter updates, and
the next training iteration can only begin once all parameter
updates have been received; as the number of GPUs increases,
so does the probability of “stragglers”. We note that other
forms of parallelism can also be employed for model training
across GPUs, such as model parallelism [27], [28], [29] and
pipeline parallelism [30], [31] (see Section VII). However, data
parallelism continues to be the default parallelization approach
employed when training models across GPUs in frameworks
such as TensorFlow [6].

Under data parallelism, the entire CNN model is replicated
on each GPU [16]. Thus, the compute times of individual op-
erations of the CNN follow the same trends on each individual
GPU as observed for the single GPU instance in Section III-C
(but with a possibly different input data size since the data is
partitioned across the multiple GPUs under data parallelism,
thereby reducing the batch size per GPU). Further, since each
GPU deals exclusively with its data partition, summing up
the constituent operations’ compute times can provide a lower
bound on the per-iteration training time, assuming a uniform
partitioning of data over the multiple GPUs. This is only a
lower bound since there is additional communication overhead
in data parallelism, as we observed in Figure 6.

IV. SOLUTION DESIGN FOR CEER

The key question we wish to address in this paper is “Given
a CNN model, which GPU instance(s) should be employed
to optimize the model training time and/or cost?” Towards
providing a solution for this problem, our empirical study
provides the following crucial insights, which together guide

the design of our model- and data-driven solution, Ceer:

(1) CNN models are composed of several operations, with a
few unique “heavy” operation types contributing to the
majority of the model training time.

(2) Different GPU models provide different cost and per-
formance benefits for different operation types, and this
tradeoff can be inferred from empirical data.

(3) For a given {heavy operation, input data size} pair,
the compute times on a given GPU model have low
variability, and can thus be accurately estimated based
on the input size(s). By contrast, light operations have
high variability in compute times.

(4) For a single GPU, the training time per iteration of the
CNN can be estimated by summing up the compute times
of constituent operations.

(5) Based on the observed overhead of data parallelism, the
training time on multi-GPU instances can be estimated
by extrapolating from the single-GPU estimate.

A. Training time and cost estimation with Ceer
For the case of a single GPU instance, based on insight (4), we
can estimate the per-iteration training time for a given CNN as∑n

i=1 tGPU,opi(inputi), where i indexes over all n operations
in the CNN and tGPU,opi

(inputi) is the function that estimates
the compute time of the operation opi (based on its operation
type) with input size inputi on GPU type GPU . Note that n
includes all operations in the CNN, including heavy, light, and
CPU operations; we discuss the tGPU,opi() function modeling
for these operations in Section IV-B.

To obtain the model training time from the per-iteration
training time, we need to determine the number of iterations
needed to process the total training data. If the total data is D
units (samples or bytes), and the batch size per iteration (often
a fixed value for a CNN) is B units, then the total number of
iterations for training is D/B. Thus, the model training time
(one epoch), T , for a given CNN executed on a GPU model
type, GPU , can be estimated as:

TCNN,GPU =

(
n∑

i=1

tGPU,opi(inputi)

)
· D
B
, (1)

Unfortunately, the above training time estimate does not
include the communication time between CPU and GPU,
which we find is typically incurred at least at the start and
end of each iteration. Ignoring this communication time, even
for a single-GPU instance, can hurt training time prediction
accuracy by 5–20%; for AlexNet, the prediction error when
using Eq. (1), and thus ignoring the communication time, is
almost 30%. Interestingly, for the case with k > 1 GPUs
(under data parallelism), we also have to take into account the
slowdown incurred in each iteration due to the communica-
tion overhead between GPUs. We thus denote the collective
communication overhead (including between CPU and GPU,
and between GPUs), which can be GPU- and CNN-dependent,
by Sk

GPU (CNN); we discuss the Sk
GPU function modeling in

Section IV-C. The corrected training time, including for multi-
GPU instances (under data parallelism), can then be estimated
based on insight (5) as:

T k
CNN,GPU =

(
Sk
GPU (CNN)+

n∑
i=1

tGPU,opi
(inputi)

)
D

k ·B
(2)

Note that the overhead is added for each iteration. Also note
that we consider here that the batch size is the same for each
GPU in the single- and multi-GPU settings, and so the number
of iterations needed for training a given input data reduces by
a factor k (since k times more data is being processed in
each iteration across k GPUs). If batch size for each GPU is
different between the single-GPU and multi-GPU setting, then
the number of iterations can be modified accordingly.

Finally, the training cost can be estimated as Ck
CNN,GPU =

T k
CNN,GPU × cGPU,k, where cGPU,k is the cost per unit time

of renting the k-GPU cloud instance (with k ≥ 1) supporting
GPU type GPU . These costs are usually published and easily
available via the cloud provider [11].

B. Modeling the compute time
To determine tGPU,op(input), the compute time estimate of
operation op on GPU type GPU with input as the input size,
we separately model heavy and light operations, given their
distinct characteristics. Note that input can be a vector; for
example, for the Conv2D (2-D convolution, in TensorFlow)
operation, the size of both input images and the size of the
filters serve as input to the compute time model, tGPU,op().

Heavy operations. We estimate the compute time of heavy
operations by employing a regression model over the training
data analyzed in Section III-A. Since different operations
have different inputs, we build a different model for each
heavy operation. We find that linear regression works well for
most heavy operations given their observed linear relationship
between compute time and input sizes; for example, see
the linear regression fit denoted by solid lines in Figure 4.
However, for a few operations, e.g., Conv2DBackpropFilter, a
quadratic fit is much better suited; this is likely because these
operations involve more complex mathematical logic beyond
simple add and multiply operations [32].

The R2 values for regression based on the training data
(using the 8 training set CNNs) range from 0.84 to 0.98 across
operations. When using the 4 test set CNNs for validation,
the mean average prediction error across all heavy operation
types ranges from 2% to 10%. One of the reasons for this high
modeling accuracy is provided by insight (3), which states that
the variability in compute times of a given {heavy operation
type, input data size} pair is low.

Light operations and CPU operations. If we only include
heavy operations in our training time model, Eq. (2), we find
that the training time prediction error is moderately high (15–
25%). While some of this error is to be expected since we
are ignoring light operations (that contribute around 5–10%
to training time), we find that there is another source of error

20 40 60 80 100 120 140 160

Number of model parameters (in Millions)

0

5

10

O
v
e

rh
e

a
d

 o
f

d
a

ta
 p

a
ra

lle
lis

m
 (

u
s
)

10
4

P2
G3
G4
P3

Fig. 7: Per-iteration communication overhead of data paral-
lelism for 2 GPUs.

that we are ignoring — compute operations that execute on
the CPU. When executing a CNN on a training framework,
such as TensorFlow, some of the CNN DAG operations, e.g.,
SparseToDense, are executed on the CPU since they lack a
GPU implementation.

The key challenge with extending the input-based regression
model to light and CPU operations is that these operations
have high variability, resulting in a poor regression fit. Since
these operations do not significantly contribute to training
time, we instead opt for a simpler approach to include their
contribution in our training time estimate. Specifically, we
use the sample median compute time of light operations, say
t̃l, and the median compute time of CPU operations, say
t̃c, computed over all instances of these operations in all
training set CNNs across all GPU types, as an estimate of their
compute time. Note that, for simplicity, these estimates are
GPU-, CNN-, and operation-oblivious. We choose the median
instead of the mean to avoid the unfair impact of possible
outliers on the compute time estimate. Thus, we have:

tGPU,op(input) = t̃l, if op is a light operation (3)

tGPU,op(input) = t̃c, if op is a CPU operation (4)

In summary, if a CNN has nh, nl, and nc heavy, light,
and CPU operations, respectively, with n = nh + nl + nc,
then the light operations contribute nl × t̃l and the CPU
operations contribute nc× t̃c to the per-iteration training time
estimate. The contribution of each of the nh heavy operations
is accounted for by their individual linear regression models.

C. Modeling the communication overhead
Recall from Section III-D that there is a communication
overhead penalty when employing data parallelism, which
results in a sub-linear scaling of training time with the number
of GPUs. The Sk

GPU (CNN) function estimates this additional
delay introduced in each iteration of the CNN model under
the data parallelism approach when using k > 1 GPUs of
type GPU . Since there is also some communication overhead
between CPU and GPU for a single-GPU instance, we denote
this overhead via the Sk

GPU (CNN) function with k = 1.
While it is possible to develop per-CNN models of com-
munication overhead, we find that there is a CNN-oblivious
modeling approach that works well in practice and is less
restrictive to apply.

The markers (dots) in Figure 7 show the per-iteration
communication overhead of data parallelism (including any

synchronization delays) when employing 2 GPUs, as a func-
tion of the number of model parameters to be trained in
the CNN; we observe a similar linear trend for 3 and 4
GPUs as well. Each value is empirically obtained for a given
CNN by subtracting the average per-iteration training time
for 1 GPU from the average per-iteration training time for
multiple GPUs; the batch size per-GPU is kept the same in
both configurations. If there was no communication overhead
due to data parallelism, this difference would be zero. For the
case of 1 GPU, we observe a similar trend when plotting the
communication time (between CPU and GPU, obtained from
GPU logs) and the number of model parameters.

Interestingly, when plotted against the number of model pa-
rameters, we find a nearly linear relationship for communica-
tion overhead, for every GPU model type. Given the observed
linear behavior, we learn this relationship by employing simple
linear regression over the training data. The R2 values for
regression for the different GPU models range from 0.88 to
0.98. The learned models for the per-iteration communication
overhead for k ≥ 1 GPUs of a given type refer to the Sk

GPU ()
function, which takes as input the number of model parameters
of the target CNN.

D. Optimal cloud instance recommendation via Ceer
At runtime, given an arbitrary CNN with training data size D
and batch size (typically a default value) B, Ceer can provide
the optimal recommendation for the cloud instance type that
should be employed for training the given CNN. Let the user-
specified objective function that needs to be minimized be
Obj(T,C), where T and C are the model training time and
training cost of the CNN; Ceer can be extended to other
related metrics as well, such as training throughput. For each
available cloud GPU instance, Ceer estimates the T (via
Eq. (2)) and C values using the trained models described
in the aforementioned subsections, and recommends the GPU
instance that provides the lowest estimated Obj(T,C) value.

To obtain the required information that serve as input to our
models, we rely on the training framework, TensorFlow (in our
case). Specifically, when the CNN is deployed on TensorFlow
(using the tf.Session API), the DAG of the CNN is available,
which provides information on the operations and operation
types involved in the CNN; we thus obtain the n (number
of operations) and opi (operation type for the ith operation)
values for the CNN. Likewise, the input features for each
operation and the number of model parameters can be obtained
from TensorFlow. For other frameworks, alternatively, the
target CNN can be executed for a single iteration on any
machine (including a non-GPU machine) to obtain these values
from logs; this approach also works for TensorFlow.

We note that when applying the models for estimating the
compute time of a heavy operation, op, of the given CNN,
we are assuming that op has been observed in the training
data with any input data size. While insight (1) provides some
justification for this assumption, it is of course possible that we
encounter a heavy operation that has not been seen in training;
this is especially true as new operations may be developed

0

5

10

15

20

25

30

T
ra

in
in

g
 c

o
s
t
($

)

AlexNet InceptionV3 ResNet-101 VGG-19
0

1

2

3

4

5

6

7

T
ra

in
in

g
 t
im

e
 (

h
rs

)
P2
P2-pred
G3
G3-Pred
G4
G4-pred
P3
P3-Pred
P2-Cost
G3-Cost
G4-Cost
P3-Cost

Fig. 8: Observed and predicted training time and training cost
of test set CNNs on 4-GPU AWS instances.

over time by researchers to support new functionalities. In
such cases, Ceer will have to be updated with new training
data to provide estimates for these new heavy operations. For
unseen light GPU or CPU operations, we can continue to use
the sample median estimates from existing training data.

V. EVALUATION RESULTS

We now present our evaluation results for Ceer. We consider
several scenarios with different optimization objectives to
highlight the efficacy of Ceer. We make use of single- and
multi-GPU instances from AWS EC2 spanning all four GPU
model types. Specifically, we employ the following 8 GPU
instances (with hourly [On-Demand Pricing] rental costs in
parenthesis, obtained from AWS [11]): p3.2xlarge ($3.06/hr),
p2.xlarge ($0.90/hr), g4dn.2xlarge ($0.752/hr), g3s.xlarge
($0.75/hr), p3.8xlarge ($12.24/hr), p2.8xlarge ($7.20/hr),
g4dn.12xlarge ($3.912/hr), and g3.16xlarge ($4.56/hr). The
first four are single-GPU instances and the last four are multi-
GPU instances (with at least four GPUs). Note that the design
of Ceer is not specific to these instance types, and so Ceer can
be applied to scenarios with different GPU model types and
costs, such as other cloud provider instances.

We evaluate Ceer on the 4 test set CNNs — Inception-v3,
AlexNet, ResNet-101, and VGG-19. As the input data set for
the CNNs, we employ ImageNet [26], which has 1.2 Million
samples, with the default batch size of 32 per GPU. We use
TensorFlow r1.14 as our CNN model training framework.

To estimate training time and training cost of test set CNNs,
we employ the models described in Section IV, trained on
the 8 training set CNNs. Note that, in certain scenarios, we
require GPU training time and cost for an instance type that
is not available via AWS. For example, a 3-GPU instance of
P2 GPU type is not available in AWS as it only supports 1-
GPU, 8-GPU, and 16-GPU versions of the P2 GPU instance.
As opposed to entirely omitting such cases, for obtaining the
training time, we employ the 8-GPU instance but only use 3
of the available GPUs; for cost, we use 3

8 th of the rental cost
of the 8-GPU instance, as a proxy.

Validation test. We start with a validation test to evaluate the
accuracy of our models. The bars in Figure 8 (left y-axis) show

AlexNet Inception-V3 ResNet-101 VGG-19
0

0.2

0.4

0.6

0.8

T
ra

in
in

g
 t

im
e

/b
a

tc
h

 (
s
e

c
o

n
d

s
)

P2
P2-pred
G3
G3-Pred
G4
G4-pred
P3
P3-Pred

Fig. 9: Observed and predicted results for per-iteration training
time given a $3/hr cost budget.

the observed and Ceer-predicted training time for our test set
CNNs when using the ImageNet [26] data set (1.2 Million
samples, with default batch size of 32 per GPU) on all 4 GPU
model types; here, we employ 4-GPU instances and use data
parallelism to train over all 4 GPUs. We see that the predicted
relative ranking of training time for each CNN is in perfect
agreement with the observed ranking; note that the test set
CNNs were not used for training our Ceer models. Across all
experiments in Figure 8, the average training time prediction
error is 5.4%. This low error highlights the high accuracy of
our compute time models and our data parallelism overhead
models. Since the training cost prediction is based off of the
training time prediction, our cost prediction error is the same
as the training time prediction error in all cases.

We see that the training time for a given 4-GPU instance
is lowest for the (latest) P3 GPU model type. Compared to
P2, G3, and G4, the P3 GPU model type reduces the training
time on average by 72.4%, 62.9%, and 48.0%, respectively.
Interestingly, the training cost (dots, right y-axis) is also quite
low for P3. However, the lowest training cost is typically
incurred by the G4 GPU model type, albeit at the expense of a
128% higher training time compared to P3 (averaged across all
4 test set CNNs). The P2 and G3 model types typically have
significantly higher costs and higher training times compared
to G4 and P3 models.
Hourly budget constrained scenario. We now consider a
scenario where the objective is to minimize the per-iteration
training time (or maximize the training throughput) given
a limit on the hourly rental expenses. Figure 9 shows the
observed and predicted results for per-iteration training time
given an hourly budget of $3/hr. Under this hourly budget, and
with the AWS pricing model [11], Ceer predicts the following
optimal instance sizes for each GPU model: 3-GPU instance
for P2, 3-GPU instance for G3, 3-GPU instance for G4, and
1-GPU instance for P3. For the 3-GPU P2 instance (since
such an instance is not supported by AWS), we assume the
cost is 3

8 th the cost of a basic 8-GPU P2 instance (p2.8xlarge,
$7.20/hr); similarly for the other 3-GPU instances. (The hourly
budget is slightly exceeded for P3, by 6 cents; we choose
to allow this trivial violation since otherwise no P3 instance
would meet the $3/hr budget. The budget is exceeded for
G3 by 42 cents, but the 3-GPU G3 instance still has poor
performance. Alternatively, we can consider the budget to be

Fig. 10: Observed and predicted results for training time of
ResNet-101 given a $10 total cost budget.

$3.42/hr to avoid this issue.)
We find that the optimal choice depends on the CNN type.

While the P3 instance is optimal for Inception-v3 and VGG-
19, the G4 instance is optimal for AlexNet and ResNet-101.
This is likely because while Inception-v3 and VGG-19 have
several pooling operations, AlexNet and ResNet-101 have
only a few pooling operations each; recall that P3 is cost-
efficient for pooling operations (see Section III-B). For all 4
CNNs, Ceer rightly predicts the relative ranking of GPU types.
Further, the per-iteration training time predictions are accurate
in each case, with an average prediction error of 5.6%.

By default, AWS lists the latest P3 instance types for GPU
tasks [33]. If we employ this baseline strategy and pick the
largest P3 instance that fits in the budget (1-GPU P3 instance),
the per-iteration training time for AlexNet and ResNet-101
would increase by 91% and 27%, respectively, compared to
employing Ceer (which picks the 4-GPU G4 instance).
Total budget constrained scenario. We now consider the
scenario where there is a limit on the total budget that can
be spent over the training time of the CNN; in this case,
we are interested in determining the GPU instance type that
provides the minimum training time while not exceeding the
budget. Figure 10 shows the observed and predicted results for
training time of ImageNet data set under ResNet-101 given a
total budget of $10. Under this budget, we find that the 4-GPU
instance of P3 and all P2 instances (with 1–4 GPUs) are unable
to complete the training within the $10 cost. Fortunately, Ceer
accurately predicts this budget violation.

Among the remaining choices, we find that the 3-GPU P3
instance provides the lowest training time. With its high pre-
diction accuracy (5.9% error, on average, for the experiments
in Figure 10), Ceer rightly predicts the 3-GPU P3 instance to
be optimal. Note that picking the cheapest feasible instance
(1-GPU G3 instance) and training the data set on this instance
would result in a 9.1× higher training time when compared
to the training time under the Ceer-predicted instance.
Budget minimization scenario. We now consider the inter-
esting scenario where the objective is to minimize the rental
cost incurred to complete model training over a given data set
without any required performance target. Figure 11 shows the
observed and predicted costs for training Inception-v3 using
the ImageNet data set. We see that the 1-GPU G4 instance
has the lowest training cost. Again, with its high prediction

P2 G3 G4 P3
0

5

10

15

C
o

s
t

o
f

tr
a

in
in

g
 I

m
a

g
e

n
e

t
d

a
ta

 (
$

) 1GPU
1GPU-pred
2GPU
2GPU-Pred
3GPU
3GPU-pred
4GPU
4GPU-Pred

Fig. 11: Observed and predicted results for total cost of
Inception-v3 training.

Fig. 12: Observed and predicted results for total cost of
Inception-v3 training using market prices for GPU.

accuracy (2.1% cost prediction error, on average, for the exper-
iments shown in Figure 11), Ceer rightly predicts this instance
to be the optimal. Note that picking the cheapest instance (the
1-GPU G3 instance) or the most powerful instance (the 4-GPU
P3 instance) would result in 1.6× and 1.8× higher training
cost, respectively, when compared to the cost under the Ceer-
predicted instance.

Budget minimization with commodity GPU prices ratio.
For AWS, we believe that the rental cost of some of the
older-generation GPU instances are not representative of their
market price, likely because they have not been updated
given the focus on newer GPUs. For a single GPU, the P3
(NVIDIA Tesla V100), G4 (NVIDIA T4 Tensor Core), G3
(NVIDIA Tesla M60), and P2 (NVIDIA K80) model type
GPUs have normalized market price ratios of 1:0.31:0.18:0.05
(based on server costs from amazon.com [34], [35], [36], [37]);
the corresponding AWS price ratio is about 1:0.25:0.25:0.29.
As a result, the older-generation GPU instances are at a
disadvantage in terms of the cost-performance tradeoff under
AWS prices. In this scenario, we consider the AWS instances
with updated rental prices to reflect their GPU market rates.
Using the market price ratio, we consider the hourly rental
costs for a single-GPU instance of GPU type P3, G4, G3, and
P2 to be $3.06 (actual AWS cost), $0.95, $0.55, and $0.15,
respectively. We consider the cost of multi-GPU instances to
be linearly scaled up versions of these costs.

Figure 12 shows the observed and predicted costs for
training Inception-v3 using the ImageNet data set, but with
market prices for the GPU instances. We see a stark contrast
between the results of Figure 11 and Figure 12, suggesting that
the GPU instance prices significantly impact the training cost.
In this case, the lowest training cost is provided by the 1-GPU
P2 instance; Ceer again rightly predicts this optimal instance,
and has a low cost prediction error of 2.1%, on average, for
the experiments shown in Figure 12. If we instead employ the
1-GPU G4 instance (which was optimal for Figure 11), the
training cost increases by 2.4×, compared to the cost of the
Ceer-predicted optimal instance.

VI. LIMITATIONS

By design, Ceer should be able to accurately predict the
training time and cost of an arbitrary CNN on different cloud
GPU instance types. However, given the range of experiments
conducted in this paper, Ceer does have some limitations.
First, as mentioned in Section IV-D, Ceer cannot predict
(without retraining) the training time of a CNN that includes
a heavy operation that has not been observed during training.
Second, all our experiments assume that the multiple GPUs
are part of the same host; with GPUs spread across hosts,
the communication model of Ceer will have to be retrained.
Third, while the simple yet accurate additive model of Ceer
(see Section IV) works well for single GPU execution or
data-parallel execution of CNNs, it may not be accurate for
model-parallel training because of the overlap of compute and
communication operations. Fourth, all the experiments in this
paper only consider CNNs. It will be interesting to see how
Ceer performs on other types of DNNs, such as Recurrent
Neural Nets (RNNs) or Transformer models for Natural Lan-
guage Processing. Finally, Ceer is currently designed to work
with TensorFlow and may not provide accurate estimations for
other machine learning frameworks, such as PyTorch [38].

VII. PRIOR WORK

Empirical studies on DNN performance. Ren et al. [39]
analyze the performance of different DNNs across platforms,
including cloud instances. However, the authors only focus on
profiling the communication overhead involved when paral-
lelizing the model training. Mojumder et al. [40] analyze the
overhead associated with different synchronization strategies
for data parallel training. Zhu et al. [41] present a DNN
benchmark and performance analysis tool for analyzing the
performance of a given DNN across multiple devices and
multiple parallel settings. While the tool can provide useful
insights on performance bottlenecks, it cannot predict the
performance of a new CNN.

Approaches for training time prediction. Most of the prior
work on predicting the training time of DNNs focuses on
higher-level components of the DNN, such as layers (com-
posed of several operations) or the per-iteration training time.
Gianniti et al. [4] present a simple linear regression based
approach for predicting execution times for a CNN on a
given underlying GPU device. However, the authors focus on

layer-level modeling, and ignore small operations and CPU
operations, resulting in prediction errors as high as 22%. As
we discuss in Section IV, ignoring light operations or CPU
operations can significantly hurt prediction accuracy.

Cai et al. [17] model the per-iteration time based on polyno-
mial regression of popular layers. Justus et al. [20] model the
training time based on a deep learning model of individual
layers. Neurosurgeon [42] leverages regression modeling to
predict the execution time of popular layers. Cai et al. and
Justus et al. focus on a single-GPU instance and do not account
for communications costs; as discussed in Section IV-A, ignor-
ing the communication overhead for a single GPU instance can
result in high prediction error. Neurosurgeon does account for
some communication overhead, but not between GPUs, and
so their model does not extend to multi-GPU instances.

PALEO [43] predicts per-iteration time based on a linear
model of the number of floating-point operations in each
iteration; however, this model does not capture the impact of
communication overhead or input data sizes on per-iteration
training time. FastDeepIoT [19] profiles different DNN op-
erations on mobile devices to build a tree-structured-linear
regression model for execution time of different DNNs on
that device. Lu et al. [5] propose a solution for predicting the
memory and compute efficiency of different CNNs on different
mobile devices. The models developed by FastDeepIoT and Lu
et al. [5] are specific to mobile devices and do not extend to
cloud GPU instances or to multi-GPU devices.

The FlexFlow [18] work develops a simulator to predict the
execution times of a DNN model under different paralleliza-
tion strategies. The simulator typically works by running the
DNN for a few iterations to collect data on the DNN, and
then simulating different strategies. In doing so, the simulator
relies on having prior observations for an operation for every
input data size encountered, thus making it difficult to employ
the simulator to predict training time for a new CNN.

Finally, prior work has shown that, for specific CNNs, a few
compute operations make up a large percentage of the training
time [44], [18]; for example, Liu et al. [32] find that operations
like conv2DBackpropFilter and Conv2DBackpropInputs con-
tribute to 40% of the training time for VGG-19 and AlexNet.
However, only considering a subset of the operations can result
in high prediction error, as discussed in Section IV-B.

Other parallelization approaches for CNN training. While
Ceer focuses on data parallelism for scaling CNN training
across GPUs, there are other parallelization techniques that
can be employed. Model parallelism partitions the CNN graph
into subgraphs, with each subgraph being placed on a dif-
ferent GPU [45], [46], [30]. Prior works have also explored
pipeline parallelism [30], [31] to better overlap communication
with computation when employing model parallelism. Finally,
recent work [18] has proposed operation-level parallelism to
reduce the compute times of individual operations by lever-
aging multiple GPUs. For these parallelization techniques, the
training time per iteration cannot be easily obtained from the
per-GPU compute times because of the dependencies between

tasks across GPUs; we will investigate training time modeling
under these techniques as part of future work.

VIII. CONCLUSION

With the proliferation of AI and ML in almost all fields of
science and technology, GPU-equipped machines are in very
high demand for training neural networks for inference and
other learning tasks. Given the high cost of GPUs, practitioners
are increasingly turning to cloud-offered GPU resources to
train their models. However, the range of GPU model types
offered by cloud providers, along with their varying price
points, makes it difficult for practitioners to determine the
best choice of GPU resources to use. Further complicating
the decision is the fact that cloud providers offer instances
with varying number of GPUs on them, with proportionally
higher costs; however, leveraging more GPUs need not result
in linearly increased performance.

This paper presents Ceer, a data- and model-driven approach
to estimate the model training time and training cost of
arbitrary CNNs across different GPU instance types. Ceer
accurately estimates the relative ranking of training time and
cost on different GPU models by relying on the key insights
that a small number of unique operation types contribute to
most of the CNN training time and that the compute time
of these operations, for a given input size, has very low
variability. To increase prediction accuracy, Ceer employs the
sample median estimate for light GPU operations and CPU
operations, resulting in a training time (and cost) prediction
accuracy of more than 94%. Ceer is also able to accurately
predict how the training time scales with the number of GPUs
by leveraging the nearly linear relationship between commu-
nication overhead under data parallelism and the number of
model parameters. Evaluation results on AWS EC2 across
various CNN scenarios show that Ceer can accurately predict
the optimal GPU configuration that minimizes a user-specified
objective function of training time and training cost.

ACKNOWLEDGMENT

This work was supported by NSF CNS grants 1717588 and
1750109, and the AWS Cloud Credits for Research program.

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural
networks for acoustic modeling in speech recognition,” IEEE Signal
processing magazine, vol. 29, 2012.

[2] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” in 52nd Annual Meeting
of the Association for Computational Linguistics. Association for
Computational Linguistics, 2014.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[4] E. Gianniti, L. Zhang, and D. Ardagna, “Performance prediction of gpu-
based deep learning applications,” in 2018 30th International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 2018, pp. 167–170.

[5] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta, “Modeling the resource
requirements of convolutional neural networks on mobile devices,” in
Proceedings of the 25th ACM international conference on Multimedia,
2017, pp. 1663–1671.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.

[7] THINKMAKE, “Thinkmate gpx xt4-24s1-4nvlink,” https :
//www.thinkmate.com/system/gpx-xt4-24s1-4nvlink.

[8] Amazon Web Services, Inc., “Amazon EC2 P3 Instances,” https:/ /
aws.amazon.com/ec2/instance-types/p3.

[9] Google Cloud, “Cloud gpus,” https://cloud.google.com/gpu”.
[10] Microsoft Azure, “Gpu optimized virtual machine sizes,” https : / /

docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu.
[11] Amazon Web Services, Inc., “Amazon EC2 Pricing,” https : / /

aws.amazon.com/ec2/pricing/on-demand.
[12] N. Strom, “Scalable distributed dnn training using commodity gpu cloud

computing,” in Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[13] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[14] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[15] T. Ridnik, H. Lawen, A. Noy, and I. Friedman, “Tresnet: High
performance gpu-dedicated architecture,” CoRR, vol. abs/2003.13630,
2020. [Online]. Available: https://arxiv.org/abs/2003.13630

[16] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff
in distributed deep learning: A systematic study,” in 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 2016, pp.
171–180.

[17] E. Cai, D. Juan, D. Stamoulis, and D. Marculescu, “Neuralpower:
Predict and deploy energy-efficient convolutional neural networks,”
in Proceedings of the 2017 Asian Conference on Machine Learning
(ACML), Seoul, South Korea, 2017.

[18] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” arXiv preprint arXiv:1807.05358, 2018.

[19] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
“Fastdeepiot: Towards understanding and optimizing neural network
execution time on mobile and embedded devices,” in Proceedings of
the 16th ACM Conference on Embedded Networked Sensor Systems,
2018, pp. 278–291.

[20] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in Proceedings of the IEEE
International Conference on Big Data, Seattle, WA, USA, 2018, pp.
3873–3882.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[24] ZDNet, “Top cloud providers in 2020: Aws, microsoft azure, and google
cloud, hybrid, saas players,” https://www.zdnet.com/article/the- top-
cloud- providers- of- 2020- aws- microsoft- azure- google- cloud- hybrid-
saas.

[25] ParkMyCloud, “Aws vs azure vs google cloud market share 2020: What
the latest data shows,” https://www.parkmycloud.com/blog/aws- vs-
azure-vs-google-cloud-market-share.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the 2009
IEEE conference on computer vision and pattern recognition, ser.
CVPR’09, Miami, FL, USA, 2009, pp. 248–255.

[27] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[28] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[29] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), 2014, pp. 571–582.

https://www.thinkmate.com/system/gpx-xt4-24s1-4nvlink
https://www.thinkmate.com/system/gpx-xt4-24s1-4nvlink
https://aws.amazon.com/ec2/instance-types/p3
https://aws.amazon.com/ec2/instance-types/p3
https://cloud.google.com/gpu"
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://arxiv.org/abs/2003.13630
http://www.deeplearningbook.org
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share

[30] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen, “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” arXiv preprint arXiv:1811.06965, 2018.

[31] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, G. R. Ganger,
and P. B. Gibbons, “PipeDream: Pipeline Parallelism for DNN Training,”
in Proceedings of the 1st Conference on Systems and Machine Learning
(SysML), Stanford, CA, USA, 2018.

[32] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
Memory for Energy-Efficient Neural Network Training: A Heteroge-
neous Approach,” in Proceedings of the 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, ser. MICRO-51, Fukuoka,
Japan, 2018, pp. 655–668.

[33] Amazon Web Services, Inc., “Amazon EC2 Instance Types,” https://
aws.amazon.com/ec2/instance-types.

[34] amazon.com, “Supermicro tesla k80 graphic card - 2 gpus - 562 mhz
core - 875 mhz boost clock - 24 gb gddr5 sdram - pci express 3.0 x16
- dual aoc-gpu-nvk80,” https://www.amazon.com/Supermicro- Tesla-
Graphic-Card-AOC-GPU-NVK80/dp/B014EC0LN0.

[35] amazon.com, “Nvidia tesla m60 16gb server gpu accelerator processing
card hp 803273-001,” https://www.amazon.com/NVIDIA-Accelerator-
Processing-HP-803273-001/dp/B01FL56SZY.

[36] amazon.com, “Hp r0w29a tesla t4 graphic card - 1 gpus - 16
gb,” https://www.amazon.com/HP-R0W29A-Tesla-Graphic-Card/dp/
B07PGY6QPT.

[37] amazon.com, “Hp nvidia tesla v100 16gb pcie x16 876340-001 876908-
001 q2n68a,” https : / / www.amazon.com / HP - nVidia - 876340 - 001 -
876908-001-Q2N68A/dp/B07DJYQ5W7.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[39] Y. Ren, S. Yoo, and A. Hoisie, “Performance analysis of deep learning
workloads on leading-edge systems,” in 2019 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS). IEEE, 2019, pp. 103–113.

[40] S. A. Mojumder, M. S. Louis, Y. Sun, A. K. Ziabari, J. L. Abellán,
J. Kim, D. Kaeli, and A. Joshi, “Profiling dnn workloads on a volta-based
dgx-1 system,” in 2018 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2018, pp. 122–133.

[41] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee,
B. Schroeder, and G. Pekhimenko, “Benchmarking and analyzing deep
neural network training,” in 2018 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2018, pp. 88–100.

[42] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” SIGARCH Comput. Archit. News, vol. 45, no. 1, p.
615–629, Apr. 2017.

[43] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model
for deep neural networks,” in Proceedings of the 5th International
Conference on Learning Representations, ICLR, 2017.

[44] J. Liu, D. Li, G. Kestor, and J. Vetter, “Runtime concurrency control
and operation scheduling for high performance neural network training,”
in Proceedings of the 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 2019, pp. 188–
199.

[45] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 2430–2439.

[46] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,
“A hierarchical model for device placement,” 2018.

https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
https://www.amazon.com/Supermicro-Tesla-Graphic-Card-AOC-GPU-NVK80/dp/B014EC0LN0
https://www.amazon.com/Supermicro-Tesla-Graphic-Card-AOC-GPU-NVK80/dp/B014EC0LN0
https://www.amazon.com/NVIDIA-Accelerator-Processing-HP-803273-001/dp/B01FL56SZY
https://www.amazon.com/NVIDIA-Accelerator-Processing-HP-803273-001/dp/B01FL56SZY
https://www.amazon.com/HP-R0W29A-Tesla-Graphic-Card/dp/B07PGY6QPT
https://www.amazon.com/HP-R0W29A-Tesla-Graphic-Card/dp/B07PGY6QPT
https://www.amazon.com/HP-nVidia-876340-001-876908-001-Q2N68A/dp/B07DJYQ5W7
https://www.amazon.com/HP-nVidia-876340-001-876908-001-Q2N68A/dp/B07DJYQ5W7

