B-MEG: Bottlenecked-Microservices Extraction Using Graph Neural Networks

Gagan Somashekar, Anurag Dutt, Rohith Vaddavalli, Sai Bhargav Varanasi, Anshul Gandhi
PACE Lab, Stony Brook University
Stony Brook, New York, USA
{gsomashekar,adutt,rvaddavalli,sbvaranasi,anshul}@cs.stonybrook.edu

ABSTRACT
The microservices architecture enables independent development and maintenance of application components through its fine-grained and modular design. This has enabled rapid adoption of microservices architecture to build latency-sensitive online applications. In such online applications, it is critical to detect and mitigate sources of performance degradation (bottlenecks). However, the modular design of microservices architecture leads to a large graph of interacting microservices whose influence on each other is non-trivial. In this preliminary work, we explore the effectiveness of Graph Neural Network models in detecting bottlenecks. Preliminary analysis shows that our framework, B-MEG, produces promising results, especially for applications with complex call graphs. B-MEG shows up to 15% and 14% improvements in accuracy and precision, respectively, and close to 10× increase in recall for detecting bottlenecks compared to the technique used in existing work for bottleneck detection in microservices [32].

KEYWORDS
microservices, anomaly detection, bottleneck detection, graph neural networks, dataset

ACM Reference Format:

1 INTRODUCTION
The microservices architecture is an architectural style that allows applications to be decomposed into fine-grained, modular, and interacting services, called microservices. Under this architecture, each microservice can be independently designed, thereby enabling independent development, maintenance, scaling, and fault isolation (at the level of microservices) [14]. These benefits make the microservices architecture well suited for designing online, customer-facing applications where performance and availability are critical [11, 12].

Detecting and mitigating performance bottlenecks in online applications is crucial to provide a good customer experience [6, 12]. Long tail latencies that significantly affect the revenues of online applications are often a result of performance bottlenecks that do not necessarily lead to errors or faults and instead arise due to resource saturation, resource contention, or microservices application misconfiguration [14, 15, 32, 38]. Regardless of the underlying cause of performance bottlenecks, it is essential to have a technique that quickly adapts to dynamic online workloads and accurately detects bottlenecks with high recall and precision. A low recall is especially problematic as it implies that performance issues go unaddressed.

Microservices architecture has unique characteristics compared to other architectural styles that complicates bottleneck detection:

• While the modular architecture allows isolating performance issues at the level of individual microservices, the complex interaction between microservices leads to back-pressure effects and cascading performance degradation, making it difficult to precisely pinpoint the performance bottleneck(s) [30].
• Employing data-driven approaches that can learn such complex interactions is difficult due to scarcity of labeled data for bottlenecked class in production systems [15].
• Frequent software updates, and components like caches, message queues, etc., which are inherent to microservices architecture, lead to time-varying interactions between microservices [26, 32] necessitating a technique that can generalize to such dynamicty.

For applications implemented using monolithic or multi-tier architecture, the problem of bottleneck detection has been studied extensively [3–5, 8, 18, 33, 34, 39, 41, 42]; these studies continue to influence bottleneck detection research for microservices. For the microservices architecture, a popular approach to detect bottlenecks is to employ end-to-end distributed tracing systems like Jaeger [22], that are commonly employed by distributed systems deployed in the industry today [27]. However, such systems cannot capture the complex relationships between different microservices [32]; further, such systems still require manual effort and insight to actually detect performance bottlenecks. In general, the problem of detecting bottlenecks has garnered wide attention from the academic community as well [7, 16, 17, 19, 24, 25, 40, 44–46]. Recently, the availability of vast amount of tracing data has motivated data-driven approaches for performance management of microservices architecture [13, 15, 26, 32]. However, prior works that incorporate data-driven approaches either fail to fully use the structural information of the application deployment [15, 32], or use multiple complex models, thereby complicate the solution [13].

This work explores the use of Graph Neural Networks (GNNs) [9, 49] to detect bottlenecks in online microservices applications. GNNs are ideally suited for analyzing microservices applications:
• GNNs and their variants have produced ground-breaking performance on graph data [49] making them a natural choice for analyzing microservices call graphs [26, 28, 30].
• Models like GNNs are ideally suited to capture back-pressure and cascading performance degradation [14, 30] along the call graphs as they learn the dependence of graphs via message passing between the nodes of graphs [49].
• GNNs can generalize to dynamic graphs through transfer learning [20, 21] making them an ideal choice for microservices architecture where the call graphs are dynamic in nature [26, 32], saving retraining costs.
• GNN architectures can be regularized to ensure representation learning equilibrium across multiple classes thereby avoiding the multi-class imbalance problem seen in traditional ML algorithms [35]. The difficulty in collecting traces with bottlenecks in production systems makes GNN an ideal choice as it does not overfit on the majority (non-bottlenecked) class [15].

Motivated by the above observations, this work-in-progress paper explores the use of GNNs for detecting performance bottlenecks in microservices applications by designing B-MEG (Bottlenecked-Microservices Extraction using GNNs), a framework with two stages of GNN models. Preliminary results on a public dataset [31] are encouraging and show that B-MEG performs better than existing works that we compared against [32] for benchmark applications with a large number of microservices and complex call graphs (even when the training dataset is highly imbalanced). Compared to the Support Vector Machine (SVM) model used in existing work, B-MEG provides up to 15% and 14% improvements in accuracy and precision, respectively, and close to 10x improvement in recall of the bottlenecked classes. A detailed empirical comparison of B-MEG against other models and tools, such as those discussed in Section 2.1, is left for future work.

2 BACKGROUND AND RELATED WORK

Call Graphs and Traces: The series of Remote Procedure Calls (RPC) between microservices that service a user request is called a call graph [26]. The nodes of the call graph are RPCs of microservices and the edges correspond to an invocation of RPC from an upstream microservice to a downstream microservice. An analysis of microservices deployment in Alibaba clusters showed that at least 10% of the call graphs contain more than 40 microservices, and some call graphs have thousands of microservices [26].

A single request type can have different call graphs due to different user parameters, components like caches and message queues, and asynchronous executions [26]. Further, agility in microservices architecture can lead to updates in microservices that can change the dependencies between them, thereby changing the call graphs.

Call graphs can be obtained using end-to-end tracing systems like Jaeger [22]. A trace is a data/execution path through the system, and can be thought of as a directed acyclic graph of spans, where a span is a logical unit of work. A distributed application can be instrumented at the RPC-level to get call graphs of each request.

Graph Neural Networks (GNN) GNNs are neural network models that are designed to learn representations on graph-structured data via feature propagation and aggregation. The input to a GNN is the graph representation of the problem being solved, where the graph could be explicit like in the case of call graphs, or implicit where an effort is involved to build the graph [49]. GNN outputs a representation for the input graph, called the embedding, using the features of the initial graph representation and the structure of the graph. These learnt representations are used to perform downstream tasks like graph classification, graph clustering, node classification, etc. The key advantage of GNN compared to standard ML frameworks is that GNNs can provide hierarchical convolutions in non-euclidean spaces. This is accomplished by a message passing process aggregating the embeddings of the neighbors of individual nodes, which in turn contain information about their neighbors. This way, the influence of neighboring microservices in a call graph can be learnt and the patterns that lead to propagation of bottlenecks to neighbors can be detected.

2.1 Related Work

Bottleneck detection in microservices applications: There is a large body of literature related to the general problem of bottleneck detection; we refer interested readers to a recent survey [37]. We now discuss more closely related prior works to put our work in context. FIRM [32] uses a Support Vector Machine (SVM) model to detect bottlenecks on the critical path of the call graph. The SVM model is trained using hand-crafted features that capture the per-critical-path and per-microservice performance variability. However, FIRM does not capture structural effects of call graphs as it treats each microservice independently for bottleneck detection.

Seer [15] is an online cloud performance debugging system that leverages deep learning to detect and prevent QoS violations. Seer uses a hybrid neural network consisting of CNN and LSTM networks to learn spatial and temporal patterns that lead to QoS violations. However, analysis of Alibaba’s production systems suggests that CNN-based approaches fail to characterize complex graph dynamics and are not applicable to real-world applications; instead, the authors suggest the use of GNNs [26], motivating our work.

SuanMing [17] presents a framework for predicting future root causes to prevent the consequent performance loss. However, the assumption in SuanMing that the non-leaf nodes’ latency is determined by the wait time of its child nodes might not always hold [26]. Recent works [43, 47] have shown that GNNs can capture such causal relations, making additional models to capture causality redundant.

FIRM [32] uses a Causal Bayesian Network (CBN) to capture the dependencies between microservices. However, the assumption in Sage that the non-leaf nodes’ latency is determined by the wait time of its child nodes might not always hold [26]. Recent works [43, 47] have shown that GNNs can capture such causal relations, making additional models to capture causality redundant.

SuanMing’s approach is that GNNs can provide hierarchical convolutions in non-euclidean spaces. This is accomplished by a message passing process aggregating the embeddings of the neighbors of individual nodes, which in turn contain information about their neighbors. This way, the influence of neighboring microservices in a call graph can be learnt and the patterns that lead to propagation of bottlenecks to neighbors can be detected.

T-Rank [46], using latency as a bottleneck metric, detects bottlenecks based on Spectrum Based Fault Localization (SBFL). However, SBFL cannot capture the complex nature of microservices and incorrectly categorizes hot-spots, microservices that are shared across a significant number of call graphs [26], as bottlenecks.

Brandón et al. [7] present a graph-based framework that employs expert knowledge to detect bottlenecks. Through this framework, the authors also demonstrate the advantages of using graph techniques over ML techniques that do not exploit graph data. Our framework combines these two strategies by using a graph ML technique and alleviates the need of expert knowledge.
We divide the problem of detecting bottlenecks into two sub-problems, with the first stage responsible for classifying potential anomalous traces that can be controlled by varying the classification threshold of Application Performance Monitoring (APM) tools:

The traces classified as anomalous are provided as input to the second stage that detects potential bottlenecks in them. The main disadvantage of this design is the error propagation from first stage to second stage, causing the anomaly. The choice of DGCNN for graph classification is due to its superior performance on inductive learning of graph representations and node classification tasks, respectively. This division of problem is motivated by the benefits of hierarchical classifiers.

In a flat classification, where a single classifier classifies all the examples, the number of classes for an application with n microservices would be n + 1, one for each microservice and one additional class that corresponds to no bottlenecks. Based on the intuition that traces with bottlenecks would be similar to each other irrespective of the specific bottlenecks, we categorize them into one meta class—anomalous traces. This allows the use of a binary classifier as the first stage that classifies a trace as abnormal or regular. The traces classified as anomalous are provided as input to the second stage that detects potential bottlenecks in them. The main disadvantage of this design is the error propagation from first stage which can be controlled by varying the classification threshold of the first stage. We empirically compared the performance of a flat classification model versus the hierarchical model (B-MEG) and found that the hierarchical model leads to two simpler models with better performance which further motivated this design.

The B-MEG framework, as shown in Figure 1, consists of 2 stages with the first stage responsible for classifying potential anomalous traces and the second stage responsible for pinpointing potential bottlenecks. The first stage uses a Deep Graph Convolutional Neural Network (DGCNN) for classifying a trace as abnormal, and the second stage uses an inductive graph convolution training regime for pinpointing the microservices that are responsible for causing the anomaly. The choice of DGCNN for graph classification is due to its superior performance on inductive learning of graph representations without feature engineering. The node classifier is a vanilla Graph Convolution Network (GCN) architecture where the number of convolution layers were decided based on experiments.

The architecture of the DGCNN model, shown in Figure 1a, consists of four sequential stages: (i) four GCN layers to hierarchically extract the local substructure features of a node and define a node ordering; (ii) one Sort Pooling layer for sorting the ordering under a pre-defined ordering and unifying the input sizes; (iii) a sequence of traditional Convolution 1D layer, a max-pooling layer, and another Convolution 1D layer to read the sorted graph representations; and (iv) one post-processing dense layer followed by a softmax layer to make predictions. For node-classification, we use a semi-supervised graph convolution framework with three GCN layers, followed by a post-processing feed-forward and a softmax layer for predictions. The GCN layers hierarchically extract node features and pass it on to post-processing layer for classification.

4 Evaluation

Dataset: The dataset is released as part of the FIRM project contains traces of social networking, media microservices, and hotel reservation applications from the DeathStarBench suite and TrainTicket benchmark. Most traces consist of a single bottleneck, the cause of which is an artificially induced resource interference, while the remaining traces have no bottlenecks.

Methodology: In this preliminary work, we focus our methodology on studying the effectiveness of GNN models on imbalanced datasets, which are the norm given the scarcity of production systems traces with bottlenecks. To evaluate B-MEG’s ability to handle the multi-class imbalance problem, we create datasets each consisting of 790,000 traces—A, B, C—with the ratio of number of traces in the dataset with a microservice as the bottleneck to the number of traces without bottlenecks being 0.3, 0.1, and 0.01, respectively. The choice of 0.3 is to evaluate the performance of B-MEG for a fairly balanced dataset. The choice of 0.1 and 0.01 is motivated by similar ratios reported in production systems. The datasets are created by random sampling to avoid any unexpected bias in them. We empirically evaluated how the performance of B-MEG varies with the total size of the dataset and chose the size at which the performance plateaued. The training time for the applications varies from 2–3 hours.

We use the bottleneck detection technique from FIRM as the baseline to evaluate B-MEG’s performance. FIRM derives two features, the relative importance and congestion intensity, from service time of microservices to train an SVM model to detect bottlenecks. Similar to FIRM, we train both the models using service time of microservices as feature as it correlates well with bottleneck occurrence, but without any feature engineering. Using 80% of the traces from each class as the training data, both the models are trained separately and inductively where each trace is treated as a stand-alone instance; the remaining 20% dataset forms the test data. Unlike prior works that focus only on accuracy, we use other metrics like recall and precision which, as discussed in Section 1, are important when the dataset is imbalanced.

Preliminary results: Figure 2 shows the results for datasets A, B, and C (with different degree of class imbalance) and different benchmarking applications for SVM and B-MEG. For the social networking (SN) application, as seen in Figure 2a, B-MEG outperforms SVM with respect to all the metrics for dataset A. This suggests B-MEG’s ability to effectively learn patterns that cause bottlenecks with a fairly imbalanced dataset without any feature engineering. For dataset B, B-MEG does better than SVM for all the metrics except for recall of bottlenecked classes, with SVM’s value being 0.81 and B-MEG’s 0.78. However, this advantage of SVM comes...
with a very small recall (0.39) for the non-bottlenecked class, an undesirable trade-off. Moreover, B-MEG is capable of maintaining a good trade-off between overall precision (0.74) and recall (0.8) among all the classes, providing a high recall (0.81) for the non-bottlenecked class even when there is significant class imbalance. For dataset C, where the class imbalance is extreme, SVM has higher accuracy (0.78) than B-MEG (0.71), but suffers from a poor recall for bottlenecked classes (0.07). B-MEG on the other hand, provides a reasonable recall for bottlenecked classes (0.67), proving its ability to balance precision and recall even when the class imbalance is extreme. We see similar trends as dataset C when we further increase the class imbalance ratio from 0.01 to 0.001. We note that the call graph of social networking application in the FIRM dataset \[31\] has 31 microservices and 18 different paths from the root of the call graph to the leaf nodes, advocating the effectiveness of B-MEG in learning patterns in complex call graphs to detect bottlenecks.

Figures 2b, 2e, and 2h show that SVM either outperforms or performs similarly to B-MEG across all the datasets. Figures 2c, 2f, and 2i show similar trends for the train ticket application. Considering that the call graphs of hotel reservation and train ticket applications consist of 5 microservices with 3 different paths, and 11 microservices with 7 different paths, respectively, the results are not surprising. SVM’s inability to exploit the structural information does not penalize its performance for these applications since their simple call graphs aid SVM in learning thresholds that signal bottlenecks. However, B-MEG still maintains a good balance between precision and recall for these two applications.

The above evaluation results show that even when the class imbalance is extreme, B-MEG is effective at detecting bottlenecks for microservices applications with large and complex call graphs. Given that such imbalance is the norm in production system traces \[15, 26\], we are encouraged by B-MEG’s ability to maintain a good trade-off between precision and recall in such cases.

5 CONCLUSION AND FUTURE WORK

This work makes the case for employing GNNs to detect bottlenecks in applications designed using the microservices architecture. We evaluate our framework, B-MEG, using a recently published trace dataset \[31\] and compare the results against SVM, the model used to detect bottlenecks in FIRM \[32\]. In our preliminary experiments, B-MEG shows superior performance in detecting bottlenecks on imbalanced datasets for large and complex call graphs compared to SVM. As part of future work, we plan to explore transfer learning to make B-MEG generalizable, thus building on the strengths of GNNs. We also plan on collecting and open-sourcing a dataset with multiple bottlenecks. Creating a dataset that contains multiple bottlenecks, where the causes of these bottlenecks are not just resource contention \[32\], would further aid research in the area of bottleneck detection. Additionally, we will conduct a detailed analysis of the impact of dataset size on performance and on training effort. Finally, we plan empirically compare our improved framework with the tools and models described in Section 2.1.

Acknowledgment: This work was supported by NSF grant CNS-1750109.
REFERENCES

[10] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020. Simple and Deep Graph Convolutional Networks. In ICML.

