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ABSTRACT
The microservices architecture enables independent development
andmaintenance of application components through its fine-grained
and modular design. This has enabled rapid adoption of microser-
vices architecture to build latency-sensitive online applications. In
such online applications, it is critical to detect and mitigate sources
of performance degradation (bottlenecks). However, the modular
design of microservices architecture leads to a large graph of inter-
acting microservices whose influence on each other is non-trivial.
In this preliminary work, we explore the effectiveness of Graph
Neural Network models in detecting bottlenecks. Preliminary anal-
ysis shows that our framework, B-MEG, produces promising results,
especially for applications with complex call graphs. B-MEG shows
up to 15% and 14% improvements in accuracy and precision, respec-
tively, and close to 10× increase in recall for detecting bottlenecks
compared to the technique used in existing work for bottleneck
detection in microservices [32].
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1 INTRODUCTION
The microservices architecture is an architectural style that allows
applications to be decomposed into fine-grained, modular, and inter-
acting services, called microservices. Under this architecture, each
microservice can be independently designed, thereby enabling inde-
pendent development, maintenance, scaling, and fault isolation (at
the level of microservices) [14]. These benefits make the microser-
vices architecture well suited for designing online, customer-facing
applications where performance and availability are critical [11, 12].
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Detecting and mitigating performance bottlenecks in online ap-
plications is crucial to provide a good customer experience [6, 12].
Long tail latencies that significantly affect the revenues of online
applications are often a result of performance bottlenecks that do not
necessarily lead to errors or faults and instead arise due to resource
saturation, resource contention, or microservices application mis-
configuration [14, 15, 32, 38]. Regardless of the underlying cause
of performance bottlenecks, it is essential to have a technique that
quickly adapts to dynamic online workloads and accurately detects
bottlenecks with high recall and precision. A low recall is especially
problematic as it implies that performance issues go unaddressed.

Microservices architecture has unique characteristics compared
to other architectural styles that complicates bottleneck detection:

• While the modular architecture allows isolating performance
issues at the level of individual microservices, the complex in-
teraction between microservices leads to back-pressure effects
and cascading performance degradation, making it difficult to
precisely pinpoint the performance bottleneck(s) [30].

• Employing data-driven approaches that can learn such complex
interactions is difficult due to scarcity of labeled data for bottle-
necked class in production systems [15].

• Frequent software updates, and components like caches, message
queues, etc., which are inherent to microservices architecture,
lead to time-varying interactions between microservices [26, 32]
necessitating a technique that can generalize to such dynamicity.

For applications implemented using monolithic or multi-tier ar-
chitecture, the problem of bottleneck detection has been studied
extensively [3–5, 8, 18, 33, 34, 39, 41, 42]; these studies continue to
influence bottleneck detection research for microservices. For the
microservices architecture, a popular approach to detect bottlenecks
is to employ end-to-end distributed tracing systems like Jaeger [22],
that are commonly employed by distributed systems deployed in
the industry today [27]. However, such systems cannot capture
the complex relationships between different microservices [32];
further, such systems still require manual effort and insight to ac-
tually detect performance bottlenecks. In general, the problem of
detecting bottlenecks has garnered wide attention from the aca-
demic community as well [7, 16, 17, 19, 24, 25, 40, 44–46]. Recently,
the availability of vast amount of tracing data has motivated data-
driven approaches for performance management of microservices
architecture [13, 15, 26, 32]. However, prior works that incorpo-
rate data-driven approaches either fail to fully use the structural
information of the application deployment [15, 32], or use multiple
complex models, thereby complicating the solution [13].

This work explores the use of Graph Neural Networks (GNNs) [9,
49] to detect bottlenecks in onlinemicroservices applications. GNNs
are ideally suited for analyzing microservices applications:
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• GNNs and their variants have produced ground-breaking per-
formance on graph data [49] making them a natural choice for
analyzing microservices call graphs [26, 28, 30].

• Models like GNNs are ideally suited to capture back-pressure and
cascading performance degradation [14, 30] along the call graphs
as they learn the dependence of graphs via message passing
between the nodes of graphs [49].

• GNNs can generalize to dynamic graphs through transfer learn-
ing [20, 21] making them an ideal choice for microservices ar-
chitecture where the call graphs are dynamic in nature [26, 32],
saving retraining costs.

• GNN architectures can be regularized to ensure representation
learning equilibrium across multiple classes thereby avoiding
the multi-class imbalance problem seen in traditional ML algo-
rithms [35]. The difficulty in collecting traces with bottlenecks
in production systems makes GNN an ideal choice as it does not
overfit on the majority (non-bottlenecked) class [15].
Motivated by the above observations, this work-in-progress pa-

per explores the use of GNNs for detecting performance bottlenecks
in microservices applications by designing B-MEG (Bottlenecked-
Microservices Extraction using GNNs), a framework with two
stages of GNN models. Preliminary results on a public dataset [31]
are encouraging and show that B-MEG performs better than exist-
ing work that we compared against [32] for benchmark applications
with a large number of microservices and complex call graphs (even
when the training dataset is highly imbalanced). Compared to the
Support Vector Machine (SVM) model used in existing work, B-
MEG provides up to 15% and 14% improvements in accuracy and
precision, respectively, and close to 10× improvement in recall of
the bottlenecked classes. A detailed empirical comparison of B-
MEG against other models and tools, such as those discussed in
Section 2.1, is left for future work.

2 BACKGROUND AND RELATEDWORK
Call Graphs and Traces: The series of Remote Procedure Calls
(RPC) between microservices that service a user request is called a
call graph [26]. The nodes of the call graph are RPCs of microser-
vices and the edges correspond to an invocation of RPC from an
upstream microservice to a downstream microservice. An analysis
of microservices deployment in Alibaba clusters showed that at
least 10% of the call graphs contain more than 40 microservices,
and some call graphs can have thousands of microservices [26].

A single request type can have different call graphs due to differ-
ent user parameters, components like caches and message queues,
and asynchronous executions [26]. Further, agility in microservices
architecture can lead to updates in microservices that can change
the dependencies between them, thereby changing the call graphs.

Call graphs can be obtained using end-to-end tracing systems
like Jaeger [22]. A trace is a data/execution path through the system,
and can be thought of as a directed acyclic graph of spans, where
a span is a logical unit of work. A distributed application can be
instrumented at the RPC-level to get call graphs of each request.
Graph Neural Networks (GNN) GNNs are neural network mod-
els that are designed to learn representations on graph-structured
data via feature propagation and aggregation. The input to a GNN
is the graph representation of the problem being solved, where the
graph could be explicit like in the case of call graphs, or implicit

where an effort is involved to build the graph [49]. GNN outputs
a representation for the input graph, called the embedding, using
the features of the initial graph representation and the structure
of the graph. These learnt representations are used to perform
downstream tasks like graph classification, graph clustering, node
classification, etc. The key advantage of GNN compared to standard
ML frameworks is that GNNs can provide hierarchical convolu-
tions in non-euclidean spaces. This is accomplished by a message
passing process aggregating the embeddings of the neighbors of
individual nodes, which in turn contain information about their
neighbors. This way, the influence of neighboring microservices in
a call graph can be learnt and the patterns that lead to propagation
of bottlenecks to neighbors can be detected.

2.1 Related Work
Bottleneck detection in microservices applications: There is a
large body of literature related to the general problem of bottleneck
detection; we refer interested readers to a recent survey [37]. We
now discuss more closely related prior works to put our work in
context. FIRM [32] uses a Support Vector Machine (SVM) model
to detect bottlenecks on the critical path of the call graph. The
SVM model is trained using hand-crafted features that capture
the per-critical-path and per-microservice performance variability.
However, FIRM does not capture structural effects of call graphs as
it treats each microservice independently for bottleneck detection.

Seer [15] is an online cloud performance debugging system that
leverages deep learning to detect and prevent QoS violations. Seer
uses a hybrid neural network consisting of CNN and LSTM net-
works to learn spatial and temporal patterns that lead to QoS viola-
tions. However, analysis of Alibaba’s production systems suggests
that CNN-based approaches fail to characterize complex graph dy-
namics and are not applicable to real-world applications; instead,
the authors suggest the use of GNNs [26], motivating our work.

Sage [13] uses Causal Bayesian Network (CBN) to capture the
dependencies between microservices. However, the assumption in
Sage that the non-leaf nodes’ latency is determined by the wait time
of its child nodes might not always hold [26]. Recent works [43, 47]
have shown that GNNs can capture such causal relations, making
additional models to capture causality redundant.

SuanMing [17] presents a framework for predicting future root
causes to prevent the consequent performance loss. However, the
assumption in SuanMing that the performance of the application is
only dependent on type and amount of requests arriving at each
service instance need not hold for data stores of the application
which affect performance significantly [14, 15]. Even for stateless
microservices, performance can depend on the payload size.

T-Rank [46], using latency as a bottleneck metric, detects bottle-
necks based on Spectrum Based Fault Localization (SBFL). However,
SBFL cannot capture the complex nature of microservices and incor-
rectly categorizes hot-spots, microservices that are shared across a
significant number of call graphs [26], as bottlenecks.

Brandón et al. [7] present a graph-based framework that employs
expert knowledge to detect bottlenecks. Through this framework,
the authors also demonstrate the advantages of using graph tech-
niques over ML techniques that do not exploit graph data. Our
framework combines these two strategies by using a graph ML
technique and alleviates the need of expert knowledge.
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(a) Graph classifier (stage 1) (b) Node classifier (stage 2)

Figure 1: The two stages in the B-MEG framework.

Application Performance Monitoring (APM) tools: AppDy-
namics [1] leverages specialized ML models and various metrics
collected across the application to detect bottleneck microservices.
Dynatrace [2] uses context (topology, traces, and code-level) infor-
mation to build and analyse a fault-tree to pinpoint bottlenecks.

3 OBJECTIVE AND SYSTEM DESIGN
Wedivide the problem of detecting bottlenecks into two sub-problems,
the detection of potential anomalous traces (i.e., traces affected
by bottlenecks), followed by detection of potential bottlenecks in
such anomalous traces. We translate the sub-problems of detecting
anomalous traces and potential bottlenecks into graph classification
and node classification tasks, respectively. This division of problem
is motivated by the benefits of hierarchical classifiers [36].

In a flat classification, where a single classifier classifies all the
examples, the number of classes for an application with 𝑛 microser-
vices would be 𝑛 + 1, one for each microservice and one additional
class that corresponds to no bottlenecks. Based on the intuition that
traces with bottlenecks would be similar to each other irrespective
of the specific bottlenecks [29], we categorize them into one meta
class—anomalous traces. This allows the use of a binary classifier
as the first stage that classifies a trace as anomalous or regular.
The traces classified as anomalous are provided as input to the
second stage that detects potential bottlenecks in them. The main
disadvantage of this design is the error propagation from first stage
which can be controlled by varying the classification threshold of
the first stage. We empirically compared the performance of a flat
classification model versus the hierarchical model (B-MEG) and
found that the hierarchical model leads to two simpler models with
better performance which further motivated this design.

The B-MEG framework, as shown in Figure 1, consists of 2 stages
with the first stage responsible for classifying potential anomalous
traces and the second stage responsible for classifying potential
bottlenecks. The first stage uses a Deep Graph Convolutional Neural
Network (DGCNN) [10] for classifying if a trace is anomalous, and
the second stage uses an inductive graph convolution training
regime for pinpointing the microservices that are responsible for
causing the anomaly. The choice of DGCNN for graph classification
is due to its superior performance on inductive learning of graph
representations without feature engineering. The node classifier is a
vanilla Graph Convolution Network (GCN) architecture where the
number of convolution layers were decided based on experiments.

The architecture of the DGCNN model, shown in Figure 1a, con-
sists of four sequential stages: (i) four GCN layers to hierarchically
extract the local substructure features of a node and define a node

ordering [23]; (ii) one Sort Pooling layer for sorting the ordering
under a pre-defined ordering and unifying the input sizes [48]; (iii)
a sequence of traditional Convolution 1D layer, a max-pooling layer,
and another Convolution 1D layer to read the sorted graph repre-
sentations; and (iv) one post-processing dense layer followed by a
softmax layer to make predictions. For node-classification, we use
a semi-supervised graph convolution framework with three GCN
layers, followed by a post-processing feed-forward and a softmax
layer for predictions. The GCN layers hierarchically extract node
features and pass it on to post-processing layer for classification.

4 EVALUATION
Dataset: The dataset [31] released as part of the FIRM project [32]
contains traces of social networking, media microservices, and
hotel reservation applications from the DeathStarBench [14] suite
and TrainTicket benchmark [50]. Most traces consist of a single
bottleneck, the cause of which is an artificially induced resource
interference, while the remaining traces have no bottlenecks.
Methodology: In this preliminary work, we focus our methodol-
ogy on studying the effectiveness of GNN models on imbalanced
datasets, which are the norm given the scarcity of production sys-
tems traces with bottlenecks [15]. To evaluate B-MEG’s ability to
handle the multi-class imbalance problem, we create three datasets
each consisting of 790,000 traces—A, B, C—with the ratio of number
of traces in the dataset with a microservice as the bottleneck to
the number of traces without bottlenecks being 0.3, 0.1, and 0.01,
respectively. The choice of 0.3 is to evaluate the performance of
B-MEG for a fairly balanced dataset. The choice of 0.1 and 0.01 is
motivated by similar ratios reported in production systems [24].
The datasets are created by random sampling to avoid any unex-
pected bias in them.We empirically evaluated how the performance
of B-MEG varies with the total size of the dataset and chose the
size at which the performance plateaued. The training time for the
applications varies from 2–3 hours.

We use the bottleneck detection technique from FIRM [32] as the
baseline to evaluate B-MEG’s performance. FIRM [32] derives two
features, the relative importance and congestion intensity, from
service time of microservices to train an SVM model to detect
bottlenecks. Similar to FIRM [32], we train both the models using
service time of microservices as feature as it correlates well with
bottleneck occurrence, but without any feature engineering. Using
80% of the traces from each class as the training data, both the
models are trained separately and inductively where each trace is
treated as a stand-alone instance; the remaining 20% dataset forms
the test data. Unlike prior works [15, 32] that focus only on accuracy,
we use other metrics like recall and precision which, as discussed
in Section 1, are important when the dataset is imbalanced.
Preliminary results: Figure 2 shows the results for datasets A,
B, and C (with different degree of class imbalance) and different
benchmarking applications for SVM and B-MEG. For the social net-
working (SN) application, as seen in Figure 2a, B-MEG outperforms
SVM with respect to all the metrics for dataset A. This suggests
B-MEG’s ability to effectively learn patterns that cause bottlenecks
with a fairly imbalanced dataset without any feature engineering.
For dataset B, B-MEG does better than SVM for all the metrics
except for recall of bottlenecked classes, with SVM’s value being
0.81 and B-MEG’s 0.78. However, this advantage of SVM comes
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Figure 2: Performance comparison of SVM and B-MEG on the traces of social networking (SN) [14], hotel reservation (HR) [14],
and train ticket (TT) [50] applications. Metrics employed are accuracy (A), precision for non-bottlenecked (NBP) and bottle-
necked classes (BP), recall for non-bottlenecked (NBR) and bottlenecked classes (BR). For all metrics, higher values are better.

with a very small recall (0.39) for the non-bottlenecked class, an
undesirable trade-off. Moreover, B-MEG is capable of maintaining
a good trade-off between overall precision (0.74) and recall (0.8)
among all the classes, providing a high recall (0.81) for the non-
bottlenecked class even when there is significant class imbalance.
For dataset C, where the class imbalance is extreme, SVM has higher
accuracy (0.78) than B-MEG (0.71), but suffers from a poor recall for
bottlenecked classes (0.07). B-MEG on the other hand, provides a
reasonable recall for bottlenecked classes (0.67), proving its ability
to balance precision and recall even when the class imbalance is ex-
treme. We see similar trends as dataset C when we further increase
the class imbalance ratio from 0.01 to 0.001. We note that the call
graph of social networking application in the FIRM dataset [31] has
31 microservices and 18 different paths from the root of the call
graph to the leaf nodes, advocating the effectiveness of B-MEG in
learning patterns in complex call graphs to detect bottlenecks.

Figures 2b, 2e, and 2h show that SVM either outperforms or
performs similarly to B-MEG across all the datasets. Figures 2c, 2f,
and 2i show similar trends for the train ticket application. Con-
sidering that the call graphs of hotel reservation and train ticket
applications consist of 5 microservices with 3 different paths, and
11 microservices with 7 different paths, respectively, the results are
not surprising. SVM’s inability to exploit the structural information
does not penalize its performance for these applications since their
simple call graphs aid SVM in learning thresholds that signal bot-
tlenecks. However, B-MEG still maintains a good balance between
precision and recall for these two applications.

The above evaluation results show that even when the class
imbalance is extreme, B-MEG is effective at detecting bottlenecks
for microservices applications with large and complex call graphs.
Given that such imbalance is the norm in production system traces [15,
26], we are encouraged by B-MEG’s ability to maintain a good trade-
off between precision and recall in such cases.

5 CONCLUSION AND FUTUREWORK
This workmakes the case for employing GNNs to detect bottlenecks
in applications designed using the microservices architecture. We
evaluate our framework, B-MEG, using a recently published trace
dataset [31] and compare the results against SVM, the model used
to detect bottlenecks in FIRM [32]. In our preliminary experiments,
B-MEG shows superior performance in detecting bottlenecks on
imbalanced datasets for large and complex call graphs compared to
SVM. As part of future work, we plan to explore transfer learning
to make B-MEG generalizable, thus building on the strengths of
GNNs. We also plan on collecting and open-sourcing a dataset with
multiple bottlenecks. Creating a dataset that contains multiple bot-
tlenecks, where the causes of these bottlenecks are not just resource
contention [32], would further aid research in the area of bottleneck
detection. Additionally, we will conduct a detailed analysis of the
impact of dataset size on performance and on training effort. Finally,
we plan empirically compare our improved framework with the
tools and models described in Section 2.1.
Acknowledgment: This work was supported by NSF grant CNS-
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