
GUIDE - GNN based Unified Incident Detection
for Microservices Application Deployments

Anurag Dutt∗, Doseok Jang†, Joao Nadkarni†, Kai Su†, Anshul Gandhi∗
∗Stony Brook University, †Observe, Inc.

Abstract—Microservices deployments in the real-world present
significant challenges in detecting and localizing performance bot-
tlenecks due to their scale, complexity, and dynamic interactions.
This paper presents GUIDE, a GNN-based framework for unified
incident detection and bottleneck localization, leveraging multi-
source telemetry and a customizable incident trigger warning
mechanism. Specifically, GUIDE employs a novel integration of
Graph Attention Networks, temporal embeddings, and an expert
classifier to predict and localize bottlenecks efficiently in practice.
Evaluation results on real-world traces collected from Observe—
a live, cloud-native platform—show that GUIDE achieves an F1-
score of 87% for anomaly detection and 84% for bottleneck local-
ization, outperforming existing baselines. Additionally, GUIDE’s
incident trigger warning mechanism achieves an F1-score of 85%,
ensuring early and accurate detection of system failures.

I. INTRODUCTION

The rapid adoption of microservices architectures in cloud-
native environments has significantly improved scalability and
maintainability for large-scale applications. However, due to
the sheer scale of modern microservices applications, such as
Netflix and Amazon, diagnosing and mitigating performance
bottlenecks has become increasingly challenging. Microser-
vices application graphs are inherently complex due to their
large size, dynamic interactions, asynchronous calls, caching
mechanisms, and evolving service dependencies [12], [15].
This complexity makes it difficult to efficiently detect and
localize performance degradation as bottlenecks can propagate
across services in unpredictable ways.

Traditional performance debugging tools rely on hand-
crafted features or rule-based heuristics to analyze microser-
vice interactions. While these approaches may work for sim-
pler or synthetic systems, they struggle with modern, real-
world, cloud-native microservices applications due to their
dynamic nature, workload variability, and complex service
dependencies. Additionally, existing methods often fail to
generalize across different architectures, leading to ineffective
bottleneck detection in real-world scenarios [10], [15], [16].

Much of the prior work has been designed and evaluated
for synthetic benchmarks and datasets (such as DeathStar-
Bench [2]). However, real-world traces exhibit complexities
that are not present in synthetic benchmarks. For example, pro-
duction microservices compete for shared resources, causing
noisy neighbor effects that lead to latency spikes and resource
contention. Unpredictable failures, such as cascading depen-
dency failures, packet loss, garbage collection pauses, and
database locks, further add to complexity. Further, real deploy-
ments exhibit variations in CPU usage, memory architectures,
and storage backends introduce performance inconsistencies
that are absent in synthetic environments.

This work presents an efficient and practical Graph Neural
Network (GNN)-based unified incident detection approach,
GUIDE, that learns latent representations of microservice
interactions through a data-driven model. GUIDE enables ef-
ficient and accurate anomaly detection and bottleneck localiza-
tion, and also includes a framework to trigger incident warn-
ings. GUIDE leverages Graph Attention Network (GAT) [19]
to model dynamic service dependencies and accurately lo-
calize bottlenecks. To ensure robust detection across diverse
workloads, GUIDE leverages multi-source telemetry, including
latency and resource utilization metrics. The telemetry data
also allows GUIDE to identify patterns that correlate with
failures, thereby aiding the mitigation of failures before they
escalate. To respond to dynamic variations in practice, GUIDE
introduces an adaptive thresholding mechanism that automati-
cally adjusts based on telemetry data, reducing false positives
and improving early detection of persistent bottlenecks.

One of the key contributions of our work is that we have
validated GUIDE on real-world data that we collected
from a production microservices platform. Our dataset is
derived from actual operational telemetry at Observe, a cloud-
native observability platform that enables telemetry analysis
for cloud applications. The dataset includes 2.4 million dis-
tributed traces from a live environment, capturing real-world
challenges that synthetic datasets often fail to reproduce. By
leveraging real-world telemetry data, GUIDE accurately and
efficiently predicts bottlenecks, distinguishes between transient
and systemic failures, and provides a holistic view of system
performance, all of which are critical requirements for real-
world deployments.

We implement GUIDE as an incident-detection and warning
system that can be integrated with, for example, a Kubernetes
cluster. Designed for scalability, GUIDE achieves low-latency
inference, making it suitable for real-time deployment in
large-scale microservices environments. Our evaluation results
show that, using F1-score, GUIDE outperforms existing Deep
Learning-based approaches by 11%, existing state-of-the-art
heuristic-based approaches by 234%, and is able to success-
fully detect incidents with an overall accuracy of 81%. By
evaluating on real-world operational conditions, we ensure that
GUIDE generalizes beyond controlled lab environments.

II. RELATED WORK

In the context of efficient and scalable incident detection
solutions, prior work can be categorized into two main areas:
(a) anomaly detection, and (b) bottleneck localization (or root
cause analysis). Below, we discuss the most relevant related



work for incident detection in microservices applications; for
a broader overview, we refer readers to survey articles [14].

A. Anomaly Detection
DeepTraLog [22] embeds log events into a unified trace

event graph, leveraging a gated GNN for anomaly scoring.
TraceVAE [21] employs a dual-variable graph variational
autoencoder with Negative Log-Likelihood (NLL) to detect
anomalies. Similarly, TraceAnomaly [7] utilizes deep Bayesian
networks trained offline to recognize deviations from normal
trace patterns. While these methods effectively detect anoma-
lies, they do not address the localization of root causes, which
is essential for performance mitigation.

B. Bottleneck Localization
Existing bottleneck localization techniques are often tailored

for single bottlenecks and overlook the complexity of multiple,
possibly interacting, failures. Groot [20] constructs a causality
graph based on domain knowledge, requiring continuous man-
ual intervention to track evolving dependencies. CRISP [24],
Uber’s tool for critical path analysis, necessitates constant
recomputation due to the dynamic nature of microservices
applications. Murphy employs a linear model that struggles to
capture the complexities of microservices environments [4].

FIRM [12] relies on a Support Vector Machine (SVM)
trained on handcrafted features, focusing solely on latency
while disregarding structural dependencies within the call
graph. Seer [3], an online debugging system using CNNs
and LSTMs, has been shown to be ineffective in capturing
complex graph dynamics, prompting researchers to advocate
for GNN-based approaches [8]. ϵ-diagnosis [13] localizes bot-
tlenecks using threshold-based anomaly detection and distance
correlation, but its lack of structural information impacts its
effectiveness in identifying multiple bottlenecks.

Other heuristic and graph-based approaches also exhibit
limitations. AutoMAP [9] employs random walk heuris-
tics for bottleneck localization but struggles with large call
graphs [24]. B-MEG [16] applies a two-stage graph learning
model but is restricted to single bottlenecks. GAMMA [15] is
a follow-up work for multiple bottlenecks but is not designed
for real-time incident detection and also does not differentiate
between transient and sustained bottlenecks. Eadro [6] inte-
grates traces, logs, and metrics for joint anomaly detection
and localization but suffers from interpretability issues due to
its multi-model pipeline. MicroCU [5] relies on API logs and
Granger causality, despite studies indicating that logs provide
limited value in bottleneck detection [6]. Sage [1] models
dependencies using a Causal Bayesian Network but assumes
that a microservice’s latency is dictated by its child nodes,
an assumption that breaks down for real-world microservices
applications [8].

C. Summary of key gaps in prior works
Most existing works either focus exclusively on single

bottlenecks [1], [3], [6], [9], [12], [13], [16], [20] or fail to
leverage the rich telemetry and distributed tracing data avail-
able in microservices application deployments [23]. Methods

that do utilize telemetry often rely on coarse-grained metrics
or static thresholds, limiting their adaptability to dynamic
workloads and real-time failure patterns. Additionally, many
existing approaches are not trained on real-time data, making
them ineffective for production environments.

Our framework, GUIDE, aligns with prior works such as
GAMMA [15] and ART [17] but introduces key distinctions.
While GAMMA performs multi-bottleneck localization, it
does not function as a complete incident management tool
with an incident trigger warning mechanism. Conversely, ART
unifies anomaly detection, failure triage, and root cause local-
ization but does not explicitly handle multiple bottleneck lo-
calization and cascading failures within microservices. GUIDE
addresses these limitations by integrating real-time telemetry-
driven incident warning generation and multi-bottleneck lo-
calization, ensuring both proactive incident detection and
granular failure analysis within Kubernetes-based microservice
deployments.

III. DEPLOYMENT DETAILS AND TELEMETRY DATA

The dataset used in this study was collected from a real-
world deployment of microservices pipelines that constitute
the Observe platform. Briefly, the Observe platform ingests
machine data via open endpoints and agents, and provides
a framework for users to efficiently transform this data into
curated temporal datasets that correspond to the logs, metrics,
traces, and more for the customer’s system, all viewable in a
single unified product. The dataset specifically focuses on the
apiserver and transformer microservices, which form
a critical part of the platform.

The apiserver microservice manages the data query
pipeline, which operates with 66 concurrent Go routines,
efficiently managing incoming API requests, whereas the
transformer microservice manages the data transforma-
tion pipeline, which executes 70 Go routines to process
and optimize data transformations in real-time [11]. The
scheduler microservice serves both the data query and data
transformation pipelines and schedules queries to Snowflake.

The deployment consisted of Kubernetes-managed mi-
croservices distributed across multiple VMs, each instru-
mented with tracing, logging, and system metrics collection.
The telemetry data was collected using the OpenTelemetry
(OTEL) platform [18] and processed through Observe, en-
abling comprehensive observability and real-time performance
monitoring. System-level metrics such as CPU and memory
consumption are continuously recorded on the Observe plat-
form via OpenTelemetry, while request-level trace call-graphs
are used to provide detailed visibility into service-to-service
interactions. Additionally, all collected traces and metrics are
segmented into 10 second time windows, allowing for the
identification of time-dependent trends in system performance.
This windowed segmentation plays a crucial role in detecting
bottlenecks as they evolve over time, ensuring that both
transient and persistent anomalies are captured.

To ensure the dataset reflected real-world operational chal-
lenges, data was collected under varying workloads, includ-



Fig. 1: Architectural overview of GUIDE.

ing normal operations, peak loads, and induced bottlenecks.
The bottlenecks were induced via two techniques: (i) re-
ducing the resource availability of critical services such as
the apiserver to induce localized bottlenecks, and (ii)
increasing workload intensity (from 600 to 1800 queries per
minute). By combining these techniques, GUIDE generates
different types of bottlenecks, including specific microservice
bottlenecks that affect services such as the apiserver
or transformer, and systemic bottlenecks that result in
cascading failures across multiple services in the pipeline,
including the scheduler. Further, by pushing the system
beyond its standard operational capacity, the propagation of
stress through the Kubernetes cluster can be analyzed to
determine which microservices experience the most significant
performance degradation.

The final dataset consists of 2.4 million traces, with 33% ex-
hibiting bottlenecks, capturing CPU usage, memory consump-
tion, and request propagation patterns. This dataset provides a
robust foundation for training and evaluating GUIDE.

IV. DESIGN OF GUIDE
Figure 1 illustrates the architecture design of GUIDE. The

design of GUIDE is broken down into two distinct compo-
nents: (i) Anomaly Detection and Bottleneck Localization, and
(ii) Incident Trigger. The Incident Trigger relies on a thresh-
olding mechanism, which is abstracted out as the Threshold
Validity component in the figure. GUIDE starts by ingesting
the call graph of the application along with the deployment
details and the telemetry data, as shown in the figure; these
are fed to the Graph Attention Network (GAT), which is the
core of GUIDE.

A. Architecture of GUIDE for Detection and Localization
The detection and localization component of GUIDE oper-

ates in two phases: anomaly detection and bottleneck local-
ization. An initial binary classifier determines if an anomaly
exists, while a subsequent localizer ranks microservices by
their likelihood of being bottlenecks. By integrating separate
classifiers tailored to individual microservices, GUIDE ensures
robust and explainable outputs. The model’s joint training
process minimizes a combined loss function for anomaly
detection and localization, leading to efficient identification of
multiple, often cascading, bottlenecks. This approach distin-
guishes GUIDE from traditional methods that treat these tasks
separately, enhancing its adaptability to real-world, dynamic
scenarios.

At a high-level, GUIDE’s architecture uses a novel integra-
tion of GATs, temporal embeddings, and an expert classifier
framework to target complex, multi-bottlenecked systems.
GUIDE processes collected telemetry data through its archi-
tecture to predict and localize bottlenecks effectively. GUIDE
begins with multi-source temporal embeddings, analyzed via
a Dilated Causal Convolution Network (DCC) where it ana-
lyzes temporal changes in resource usage to identify patterns
indicative of failures. By leveraging DCC embeddings, GUIDE
efficiently captures long-range dependencies in time-series
data. This capability allows it to detect early warning signs of
microservice stress or failure before they escalate into major
incidents.

Next, GUIDE constructs dependency graphs from the col-
lected traces, mapping microservice interactions across the
Kubernetes cluster. Using GATs, it prioritizes nodes (pods)
that contribute most significantly to bottlenecks. GATs are
particularly helpful in identifying cascading failures, as they
dynamically assign higher attention weights to nodes whose
anomalies propagate across the system. This ensures that the
analysis reflects real-time issues, making it easier to pinpoint
problematic services that disrupt overall system performance.

Then, GUIDE performs detection and localization to deter-
mine whether the observed behavior constitutes an anomaly,
such as resource contention. In the final stage, the Bottle-
neck Localizer module employs a set of microservice-specific
classifiers to predict whether a microservice is experiencing
a bottleneck. These classifiers are trained to recognize pat-
terns indicative of degraded performance based on resource
utilization and request handling characteristics. By accurately
identifying affected microservices, GUIDE helps engineers
diagnose performance issues efficiently and take targeted mit-
igation actions, minimizing system disruption.

The model design of GUIDE incorporates key hyperparam-
eters that were optimized for performance in detecting and
localizing bottlenecks. The temporal convolution layers use
DCC with kernel sizes of [3, 3], allowing efficient long-range
dependency capture. GATs, with 4 attention heads, enhance the
identification of critical microservices, while fully connected
layers, with 64 hidden units, process embeddings for detection
and localization. The model employs a weighted loss function,
where a balancing parameter (λ) controls the trade-off between
anomaly detection and bottleneck localization, ensuring both
tasks contribute effectively to the training objective.

B. Incident Detection and Warning Paradigm
A key component of GUIDE, that distinguishes it from prior

efforts, is the incident warning system. This is achieved by
setting an appropriate threshold to trigger incident warnings
while minimizing both false positives and false negatives. The
goal of this thresholding mechanism is to ensure that genuine
bottlenecks are accurately flagged while avoiding unnecessary
alerts caused by transient or minor fluctuations in resource
availability. To achieve this, GUIDE utilizes a queue-based ap-
proach where simulated incidents are sent into a predetermined
processing pipeline at a controlled rate. Within this pipeline,



failures are dynamically induced by progressively reducing
resource availability and introducing workload variability. By
doing so, GUIDE simulates realistic failure conditions and
observes how microservices react under varying stress.

The challenge in setting this threshold lies in striking a
balance between sensitivity and specificity. To optimize this
balance, the system undergoes an iterative calibration process
where different threshold values are tested against historical
incident data to evaluate their impact on detection accuracy.
This calibration process takes into account various factors,
including workload variability, microservice dependency struc-
tures, and observed failure propagation patterns. In particular,
the relationship between leading indicators of failure—such
as increasing response latency and declining throughput—and
actual incident occurrences is analyzed to determine the most
effective threshold setting. By setting the threshold based on
real-world observations, GUIDE remains robust to changes in
workload dynamics and infrastructure configurations.

To trigger the warning in practice, before flagging an
incident, GUIDE continuously monitors service traces within
a rolling 2-minute window, analyzing the proportion of traces
that exhibit bottleneck characteristics. This window size was
determined empirically to be the smallest duration that pro-
vides sufficient statistical power while enabling timely incident
detection. For each simulated failure scenario, the predefined
threshold (discussed above) is applied to determine whether
an incident warning should be triggered. If the percentage of
traces classified as bottlenecks within the 2-minute window
surpasses the predefined threshold, the system generates an
incident trigger warning.

V. EVALUATION

To evaluate the effectiveness of GUIDE in general, we
conducted extensive experiments on a Kubernetes-based de-
ployment of Observe (deployment details in Section III).
To monitor and analyze the system’s behavior, we collect
a combination of Prometheus metrics and OpenTelemetry
traces. Prometheus metrics track critical system states, in-
cluding CPU usage, memory consumption, and latency across
all microservices. These metrics provided a detailed view
of resource utilization and system health during bottlenecks.
Simultaneously, the microservices were instrumented to gen-
erate distributed OpenTelemetry traces which were collected,
enabling the visualization and analysis of request propagation
and interdependencies among microservices. Together, these
tools provided comprehensive observability into the cluster’s
performance.

To evaluate the specific incident warning framework, we
designed an experiment where service traces are queued and
grouped into 10-second windows. These windows are contin-
uously monitored over a 2-minute observation period. If the
proportion of bottlenecked windows exceeds the predefined
threshold, an incident trigger warning is generated.

Our experiments were conducted on an AWS back-end
consisting of m6i.2xlarge instances, with a total of 10
nodes, each equipped with 32GB of RAM and 8 Intel Xeon

8375C cores. This infrastructure supports approximately 200
pods, 46 deployments, and 64 microservices, providing a
realistic microservices environment for evaluating incident
detection and bottleneck localization. We trained GUIDE for
250 epochs on an NVIDIA H100 GPU.

A. Comparison Baselines
To evaluate the empirical performance of GUIDE for

anomaly detection and bottleneck localization, we experimen-
tally compare it with three other recent solutions.

1) Seer [3]: applies deep learning to distributed RPC-
level tracing to predict and mitigate Quality of Service (QoS)
violations in microservices. It detects spatial and temporal
patterns in tracing data to localize performance degradation
and inform resource management decisions.

2) FIRM [12]: is an ML-based framework for managing
resources in SLO-oriented microservices. It employs an SVM-
based detection mechanism to identify contention for shared
resources and a reinforcement learning agent to optimize
resource allocation.
ϵ-Diagnosis [13]: is an unsupervised heuristic-based frame-

work for identifying root causes of small-window long-tail
latency issues in microservices. It uses a two-sample hypoth-
esis testing algorithm with ϵ-statistics to detect significant
deviations in system metrics, narrowing down root causes from
large-scale telemetry data.

B. Evaluation Results
Our evaluation focused on three key aspects: (i) the accuracy

of anomaly detection, (ii) the precision of bottleneck localiza-
tion, and (iii) performance of the incident warning system.

1) Anomaly detection and localization evaluation: Bottle-
neck localization in GUIDE consists of two tasks: (1) trace
window anomaly detection, which determines whether a 10
second trace window contains a bottleneck, and (2) localiza-
tion, which identifies the specific microservice functions (e.g.,
Go-routines) contributing to the performance degradation, for
subsequent mitigation efforts.

For trace window anomaly detection, shown in Figure 2a,
GUIDE achieves an accuracy of 86% and an F1-score of 87%,
outperforming FIRM (accuracy: 84%, F1-score: 85%) and ϵ-
diagnosis (accuracy: 44%, F1-score: 44%).

For bottleneck localization, shown in Figure 2b, GUIDE
surpasses other baselines with an accuracy of 78% and an F1-
score of 84%, compared to FIRM (72%, 76%), Seer (46%,
59%), and ϵ-diagnosis (22%, 25%); we note that Seer only fo-
cuses on localization and not anomaly detection. These results
highlight GUIDE’s ability to detect and localize bottlenecks
more effectively than existing approaches.

2) Incident warning evaluation: For the incident warning
system, shown in Figure 3, GUIDE must first determine
the threshold value which when exceeded for the proportion
of bottlenecked windows, triggers the incident warning (see
Section IV-B). This threshold is customizable and can be
adjusted based on operational needs, allowing the system to be
more sensitive in environments where missing failures could
lead to cascading pod failures and broader service disruptions.



(a) Performance evaluation results for anomaly detection.

(b) Performance evaluation results for bottleneck localization.

Fig. 2: Performance comparison of GUIDE against baselines.

To determine the optimal threshold, we evaluated multiple
values and assessed their impact on detection accuracy, F1-
score, precision, and recall. The objective was to identify a
threshold that strikes a balance between sensitivity (capturing
genuine incidents) and specificity (avoiding false positives due
to transient fluctuations). Our results indicated that a thresh-
old of 78.5% provided the best trade-off between sensitivity
and specificity (referring to the point where the sensitivity
and specificity curves intersect). At this threshold, we also
achieve the highest accuracy (78%) and F1-score (85%), while
maintaining competitive precision (78%) and recall (92%); see
Figure 3. Lower thresholds (e.g., 65%) led to higher recall
(93%) but significantly lower precision (60%), resulting in
frequent false positives. Conversely, higher thresholds (e.g.,
85%) increased precision (82%) but at the cost of reduced
recall (84%), leading to undetected failures.

To assess the reliability of our trigger warnings, we eval-
uated their accuracy over a 10-minute observation window
leading up to an incident. The system analyzes service traces
at different time intervals (T-10, T-8, T-6, T-4, T-2), where T
represents the actual moment of failure and T−x represents
x minutes before the failure. Note that at T−x, GUIDE has

Fig. 3: Impact of threshold value on incident trigger warning
performance.

Fig. 4: Performance of incident trigger warning subsystem
over a 10-minute observation window.

access to the preceding 2 minutes (T−x−2 to T−x) of data.
Our results, shown in Figure 4, indicate that accuracy

increases gradually from 69% at T-10 to 81% at T-2, reflecting
the increasing difficulty of early-stage detection. Similarly, the
F1-score improves as the system gets closer to the failure
event, rising from 71% at T-10 to 86% at T-2. The system
maintains a competitive balance between precision and recall,
with precision ranging from 78% at T-2 to 72% at T-10,
while recall is highest at T-2 (96%) and lowest at T-10 (71%).
Overall, across the 10-minute observation window, GUIDE
achieves an F1-score of 0.85, with a precision of 0.78 and
a recall of 0.92. These results highlight the system’s ability
to generate early trigger warnings with high accuracy while
maintaining sensitivity to evolving failure patterns.

C. Impact on Mitigation and Incident Resolution Time
C. Impact on Mitigation and Incident Resolution Time A

key advantage of GUIDE is its ability to reduce the time
required for engineers to diagnose and mitigate incidents.
Prior to deploying GUIDE, incident resolution often required
extensive manual investigation. When integrated with pro-
duction systems, GUIDE can incorporate a binary feedback



mechanism, allowing operators to validate or reject detection
results, which can enable continuous improvement of the
model through active learning techniques.

Given the large-scale nature of modern microservices en-
vironments, the computational efficiency of GUIDE was a
critical evaluation criterion. GUIDE is designed to operate
with minimal overhead while processing millions of traces in
real-time. The end-to-end inference time for incident detection
and localization averaged 0.2 seconds per prediction, mak-
ing it feasible for deployment in high-throughput production
environments. The inference times can be further reduced by
processing larger batch sizes. In comparison, simple rule-based
approaches exhibited lower computational overhead but at the
cost of significantly reduced accuracy and adaptability.

VI. CONCLUSION

GUIDE advances existing research on bottleneck detection
and localization in microservices by leveraging real-time dis-
tributed tracing and telemetry data. Our evaluation results,
using real-world traces collected from a production cloud-
native system, demonstrate that GUIDE outperforms existing
baselines (including FIRM and Seer) achieving an F1-score of
87% for trace window anomaly detection— 98% higher than
existing heuristic-based methods. For bottleneck localization,
GUIDE surpasses all baselines we compared with, with an F1-
score of 85%, 11% higher than FIRM and, over 234% higher
than ϵ-Diagnosis.

Compared to prior works, GUIDE not only excels at multi-
bottleneck localization but also introduces an integrated in-
cident warning mechanism. Our practical and robust incident
trigger warning system effectively predicts failures in advance,
with an accuracy of 81%, while demonstrating that the system
gains sensitivity as incidents approach. Future work will
explore ML-based techniques for threshold optimization to
further improve incident warning accuracy and reduce manual
calibration requirements. These results highlight GUIDE’s
efficacy as a scalable, real-time incident management tool for
modern microservices deployments.

REFERENCES

[1] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. Sage: Practical and Scalable ML-Driven Performance Debugging
in Microservices. ASPLOS ’21, pages 135–151, 2021.

[2] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud & Edge Systems.
ASPLOS ’19, pages 3–18, 2019.

[3] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. Seer: Leveraging Big Data to Navi-
gate the Complexity of Performance Debugging in Cloud Microservices.
ASPLOS ’19, pages 19–33, 2019.

[4] Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore,
Brighten Godfrey, and Sujata Banerjee. Murphy: Performance Diagnosis
of Distributed Cloud Applications. SIGCOMM ’23, pages 438–451,
2023.

[5] Xinrui Jiang, Yicheng Pan, Meng Ma, and Ping Wang. Look Deep into
the Microservice System Anomaly through Very Sparse Logs. WWW
’23, pages 2970–2978, 2023.

[6] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R.
Lyu. Eadro: An End-to-End Troubleshooting Framework for Microser-
vices on Multi-Source Data. ICSE ’23, pages 1750–1762, 2023.

[7] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen,
Shenglin Zhang, Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and
Dan Pei. Unsupervised Detection of Microservice Trace Anomalies
through Service-Level Deep Bayesian Networks. ISSRE ’20, pages 48–
58, 2020.

[8] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu,
Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu. Characterizing
Microservice Dependency and Performance: Alibaba Trace Analysis.
SoCC ’21, pages 412–426, 2021.

[9] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang,
and Ping Wang. AutoMAP: Diagnose Your Microservice-Based Web
Applications Automatically. WWW ’20, pages 246–258, 2020.

[10] Hoa Xuan Nguyen, Shaoshu Zhu, and Mingming Liu. A survey on graph
neural networks for microservice-based cloud applications. Sensors,
22(23), 2022.

[11] Daniel Odievich. How observe uses snowflake to deliver the observabil-
ity cloud, March 2024.

[12] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. FIRM: An Intelligent Fine-grained Resource
Management Framework for SLO-Oriented Microservices. OSDI ’20,
pages 805–825, 2020.

[13] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao,
Xiaofeng He, Min Li, and Wei Ding. ϵ-Diagnosis: Unsupervised and
Real-Time Diagnosis of Small- Window Long-Tail Latency in Large-
Scale Microservice Platforms. WWW ’19, pages 3215–3222, 2019.

[14] Jacopo Soldani and Antonio Brogi. Anomaly Detection and Failure
Root Cause Analysis in (Micro) Service-Based Cloud Applications: A
Survey. ACM Comput. Surv., 55(3), Feb 2022.

[15] Gagan Somashekar, Anurag Dutt, Mainak Adak, Tania Lorido Botran,
and Anshul Gandhi. GAMMA: Graph Neural Network-Based Multi-
Bottleneck Localization for Microservices Applications. WWW ’24,
pages 3085–3095, 2024.

[16] Gagan Somashekar, Anurag Dutt, Rohith Vaddavalli, Sai Bhargav
Varanasi, and Anshul Gandhi. B-MEG: Bottlenecked-Microservices
Extraction Using Graph Neural Networks. ICPE ’22, pages 7–11, 2022.

[17] Yongqian Sun, Binpeng Shi, Mingyu Mao, Minghua Ma, Sibo Xia,
Shenglin Zhang, and Dan Pei. ART: A Unified Unsupervised Framework
for Incident Management in Microservice Systems. ASE ’24, pages
1183–1194, 2024.

[18] Aadi Thakur and M. B. Chandak. A review on opentelemetry
and http implementation. International journal of health sciences,
6(S2):15013–15023, Jun. 2022.

[19] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018.

[20] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang,
Selcuk Kopru, and Tao Xie. Groot: An Event-Graph-Based Approach
for Root Cause Analysis in Industrial Settings. ASE ’21, pages 419–429,
2022.

[21] Zhe Xie, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai Jiang, Liangfei
Su, Hanzhang Wang, and Dan Pei. Unsupervised Anomaly Detection on
Microservice Traces through Graph VAE. WWW ’23, pages 2874–2884,
2023.

[22] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu,
Xiya Wu, Qingwei Lin, and Dongmei Zhang. DeepTraLog: Trace-Log
Combined Microservice Anomaly Detection through Graph-based Deep
Learning. ICSE ’22, pages 623–634, 2022.

[23] Chenxi Zhang, Xin Peng, Tong Zhou, Chaofeng Sha, Zhenghui Yan, Yiru
Chen, and Hong Yang. TraceCRL: Contrastive Representation Learning
for Microservice Trace Analysis. ESEC/FSE ’22, pages 1221–1232,
2022.

[24] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek
Parwal, Timothy Sherwood, and Milind Chabbi. CRISP: Critical Path
Analysis of Large-Scale Microservice Architectures. ATC ’22, pages
655–672, 2022.


