
Optimizing Near-Data Processing for Spark
Sri Pramodh Rachuri
Stony Brook University

srachuri@cs.stonybrook.edu

Arun Gantasala
Stony Brook University

agantasala@cs.stonybrook.edu

Prajeeth Emanuel
Stony Brook University

pvethanayaga@cs.stonybrook.edu

Anshul Gandhi
Stony Brook University

anshul@cs.stonybrook.edu

Robert Foley
FutureWei

robfoley972@gmail.com

Peter Puhov
FutureWei

peterpuhov@gmail.com

Theodoros Gkountouvas
OpenInfra Labs

tedgoud@gmail.com

Hui Lei
OpenInfra Labs

dr.huilei@gmail.com

Abstract—Resource disaggregation (RD) is an emerging
paradigm for data center computing whereby resource-optimized
servers are employed to minimize resource fragmentation and
improve resource utilization. Apache Spark deployed under the
RD paradigm employs a cluster of compute-optimized servers
to run executors and a cluster of storage-optimized servers to
host the data on HDFS. However, the network transfer from
storage to compute cluster becomes a severe bottleneck for big
data processing. Near-data processing (NDP) is a concept that
aims to alleviate network load in such cases by offloading (or
“pushing down”) some of the compute tasks to the storage cluster.
Employing NDP for Spark under the RD paradigm is challenging
because storage-optimized servers have limited computational
resources and cannot host the entire Spark processing stack.
Further, even if such a lightweight stack could be developed and
deployed on the storage cluster, it is not entirely obvious which
Spark queries would benefit from pushdown, and which tasks of
a given query should be pushed down to storage.

This paper presents the design and implementation of a
near-data processing system for Spark, SparkNDP, that aims
to address the aforementioned challenges. SparkNDP works by
implementing novel NDP Spark capabilities on the storage cluster
using a lightweight library of SQL operators and then developing
an analytical model to help determine which Spark tasks should
be pushed down to storage based on the current network and
system state. Simulation and prototype implementation results
show that SparkNDP can help reduce Spark query execution
times when compared to both the default approach of not pushing
down any tasks to storage and the outright NDP approach of
pushing all tasks to storage.

Index Terms—resource disaggregation, near-data processing;
spark; pushdown; modeling.

I. INTRODUCTION

Data centers are typically composed of racks of general
purpose servers, with each server equipped with an adequate
amount of compute, memory, and storage resources to ex-
ecute a variety of applications. However, when a specific
application (e.g., a compute-intensive job) is executed on a
general purpose server, the non-dominant resources (memory
and storage, in this example) remain severely underutilized.
To avoid resource fragmentation and improve utilization, data
centers are moving towards a disaggregated infrastructure (DI)
model, also referred to as resource disaggregation, whereby
servers are built to optimize for a specific resource, such as
compute or storage [1]. DI also helps to make upgrades to
technologies independently and reduces time to adoption as

Compute

Spark Executors

Local Network

Wide area network

Compute Optimized
Nodes

Storage Optimized
Nodes

Compute

Spark Executors

....
Compute

Spark Executors

Storage Controller Storage
Drive

HDFS Datanode

Storage Controller Storage
Drive

HDFS Datanode

Storage Controller Storage
Drive

HDFS Datanode

Local Network

....

Fig. 1. Illustration of a disaggregated infrastructure (DI) deployment of
Spark over a cluster of compute optimized nodes (running Spark executors)
connected over the network to a cluster of storage optimized nodes (hosting
HDFS datanodes).

the development of new motherboard designs and integration
testings are no longer needed.

Under the DI model, resource-optimized servers are inter-
connected over the network. As such, data transfer between
groups of optimized servers can quickly overwhelm the net-
work, resulting in a performance bottleneck [2]–[4]. A popular
application that is often deployed under the DI model in
enterprise settings is Spark data processing [4], [5]. Consider
the DI model shown in Figure 1 which consists of a cluster
of compute-optimized nodes (servers or VMs or containers)
running Apache Spark [6] connected via the network to a
cluster of storage-optimized nodes hosting data on HDFS [7].
Typically, the Spark executors on the compute nodes would
pull the entire data, in the form of partitions, from HDFS
datanodes over the finite-bandwidth network [8]. Since modern
datasets can be several hundred or gigabytes or even petabytes
in size [9], the data transfer overhead poses a significant barrier
for deploying Spark over DI.

Near-data processing (NDP) attempts to alleviate network
latencies for large data transfers by moving computation closer
to the source data [10]. In the aforementioned Spark example,

consider the dataset to consist of order history for a bookstore.
A user interested in analyzing the dataset might first filter the
data based on a date range and then apply analysis on the
filtered data; the analysis itself might involve some compute-
intensive ML modeling tasks. Without NDP, the data partitions
on HDFS will have to be transferred over to the Spark
executors before the individual filter and analysis operations
can be executed on them. However, if we can leverage any
available compute power at the storage nodes to execute the
filter operation at the storage nodes, then only the filtered data
(and not the full dataset) will have to be transferred over the
network to the compute nodes.

Prior work has shown that NDP has the potential to reduce
query execution time for Spark over DI by “pushing down”
the Spark operations to the storage cluster [11]. However, this
outright pushdown of all Spark operations to storage may not
work well for all queries as the available compute resources at
the storage cluster may get quickly saturated, thereby harming
the end-to-end performance. This is especially problematic be-
cause the overhead of supporting Spark operations on storage
nodes already reduces the available compute resources on the
storage cluster that can be leveraged to execute the pushed
down operations. What is needed is a careful accounting of the
end-to-end performance implications of pushdown and insight
into which queries will benefit more from pushdown.

As such, to fully leverage NDP for Spark, there are three
key questions that must be addressed: (1) what software
support is required to enable NDP at HDFS nodes? (2)
which queries will benefit from pushdown? and (3) which
operations of a given Spark query should be pushed down
to HDFS to maximize the NDP benefits? By default, HDFS
nodes do not provide any support for executing parts of a
Spark job. Further, since storage-optimized nodes may have
very limited computing power, Spark executors or other such
regular processes cannot be deployed on the HDFS nodes.
What is needed is a lightweight software capable of executing
parts of a Spark query. Even if such support is available, it is
not entirely obvious whether a given Spark query, are parts
of the query, should be pushed down for execution at the
HDFS nodes. Different queries will have different compute
requirements, and the optimal pushdown strategy will likely
be dictated by current network and system conditions.

In this paper, we present the design and implementation of
SparkNDP, a software framework that enables NDP for Spark.
SparkNDP works by deploying a lightweight library of SQL
operators on storage-optimized HDFS nodes. To provide suf-
ficient query-level information to HDFS for performing NDP,
we create a datasource extension for Spark. This extension
converts Scala job queries on-the-fly to SQL commands to be
executed at HDFS nodes. Our SparkNDP prototype is publicly
available [12].

To determine which queries can benefit from pushdown,
SparkNDP considers the reduction in data size after each
query operator to decide whether the reduction in data transfer
size over the network is worth the slow execution time at
storage. To figure out which operations should be pushed

down to HDFS, SparkNDP relies on an analytical model
that we develop to estimate the latency benefits of each
potential operation pushdown. Our model takes into account
the throughput at HDFS and Spark clusters and the network
delay in transferring intermediate data between the clusters.
We integrate this model with SparkNDP to enable runtime
decision making for optimal pushdown for any Spark query.
Although we designed SparkNDP on top of HDFS, our system
design and model can work with other services such as AWS
S3, Azure Data Lake Storage, etc.

To evaluate the pushdown decision making of SparkNDP
under different conditions, we develop a practical, data-driven
simulator that allows us to consider arbitrary queries and
cluster sizes. Our simulation results show that SparkNDP
reduces the query execution time by upto 71% compared to
the systems without NDP and 6% compared to the already
existing NDP solutions. It also reduces the query execution
time as much as 38% compared to the already existing NDP
solutions when there are multiple jobs running simultaneously.

To validate the real-world potential of SparkNDP, we imple-
ment a prototype on top of Spark and HDFS and empirically
evaluate its benefits using TPC-H Spark queries. Using our
experimental setup, we consider a few different cluster sizes,
different network bandwidths, and different operating frequen-
cies for the storage cluster. Our empirical results show that
SparkNDP can make the right choice between no pushdown
and full pushdown in most cases, and can also sometimes
determine the optimal selective pushdown when such an option
provides significant benefits. Compared to the default strategy
of no pushdown, SparkNDP reduces average query execution
time by around 42%. Further, the query execution time under
SparkNDP is within 5% of that under the offline Oracle policy,
highlighting the near-optimal behavior of SparkNDP.
To summarize, the contributions of this paper are:
• We design and implement SparkNDP, a lightweight system

built on top of Spark and HDFS that enables selective
pushdown (to disaggregated storage) of several Spark query
operations.

• We develop an analytical model for SparkNDP to determine
which operations of a Spark query should be pushed down
as a function of network and system conditions.

• We empirically evaluate SparkNDP on a distributed cluster
setup using TPC-H Spark queries and show that SparkNDP
can reduce query execution times (by as much as 25%)
compared to the best of non-NDP and full-NDP Spark
deployments.

The rest of this paper is organized as follows. Section II
provides the necessary background on how Spark works in an
DI environment. Section III summarizes relevant prior works
in the areas of Near Data Processing and Disaggregated Infras-
tructure. Section IV discussed our design and implementation
of SparkNDP. We evaluate SparkNDP in Section V using
simulation and empirical results under various network and
system conditions. We discuss related work in Section III and
conclude the paper in Section VI.

2

II. BACKGROUND

A. Data processing in Spark

Distributed data processing applications exchange and ma-
nipulate data by formatting them into objects or data structures
they understand. Spark provides multiple such data structures
and we use DataFrame (DF) among them. DFs are optimized
for storing the required data on memory and allowing Spark
to perform operations like filter, project, aggregate-sum, map,
sort, etc. As DFs are generally present in memory (unless
memory space is limited), the disk I/O delay is not incurred
and data transfers are quick. Spark can load data into DFs
either from a local file system or from network storage
applications like Hadoop Distributed File System (HDFS) [7].
This gives a possibility for users to disaggregate the persistent
storage requirements from computational requirements by
using systems like HDFS.

The data processing flow of Spark jobs can be visualized
as a Directed Acyclic Graph (DAG) in which every vertex is
a user-specified operation on an DFs. In order to use all the
available cores, Spark increases the parallelism of a given job
by breaking down the input DataFrame into multiple partitions
based on memory availability on the executors. An executor is
a spark daemon running on worker nodes and are the in charge
of running the spark tasks. Consider a Spark job that needs to
work on a file of size 100 GB and each executor can handle a
maximum of 256 MB of data. Spark master divides the 100GB
data into 400 partitions and add them into a task queue along
with the operations meant to be performed on them. Every
time an executor is available and free, it picks up a task from
the queue, copies the data from the storage stack, runs the
operations on this partition and submits the intermediate data
to the next stage. Here, we found an opportunity to pushdown
the operations into the storage stack and run them before the
copying process.

A spark job can be written in either in Scala or Python.
Code written in scala for spark are known to be faster and
once compiled, they can be launched on a Spark using spark-
submit utility.

B. Hadoop Distributed File System (HDFS)

HDFS is a popular utility to store persistent data on multiple
nodes in a distributed fashion. An HDFS cluster primarily con-
sists of a namenode that handles all connection initializations
and maintains information about the file blocks and a datanode
that stores the actual file blocks. HDFS can be configured to
add redundancy by copying the same file blocks into multiple
datanodes for fault tolerance. It also provides an interface
called “WebHDFS” that allows clients (like Spark) to access
the contents using an HTTP restful API without installing
any Hadoop extensions/libraries. In our implementation, we
take advantage of the replication factor to increase the number
of datanodes that can perform our pushdown operations and
intercept the WebHDFS communication between the client and
the datanode to run NDP operations.

Fig. 2. An example spark code

C. An example of a Spark job involving HDFS and NDP

Figure 2 shows an example code written in scala to load
a CSV file containing sales records of a store and perform
“filter” and “aggregate” operations to output the sum of
prices of items sold in the year 1994. Spark first divides the
dataset into partitions of manageable sizes; then, each executor
working on a partition loads the dataset from a datanode, filters
the data based on the date, and aggregates the sum of entries in
column “price”. Figure 3 illustrates this flow of data. We note
that running the filter operation before transferring the records
will reduce the transfer size/time between Spark and HDFS.
For instance, if the sales record dataset contains all records
from start of 1990 to end of 1999, then the filter operation
may reduce the data size by about 10×; if the filter operation
is pushed down to storage, then only the filtered data will have
to be sent to the compute cluster for running the aggregate
operation.

III. RELATED WORK

This section discusses relevant works in the fields of NDP
and DI. Subsection III-A discusses works that perform NDP
using specialized hardware. Subsection III-B discusses works
that design strategies for task distribution to improve per-
formance. Subsection III-C discusses works that have imple-
mented NDP for Spark.

A. NDP using specialized hardware

The concept of Near-Data Processing has been around re-
cently and is known to have the potential to improve efficiency
of computation in data centres [13]. Modern storage devices
built on NVMe and Flash technologies offer great bandwidth
and random access to data. For example, nKV [10] proposes
a design to implement a fast key-value store for smart storage
devices by directly controlling the physical data to achieve
high I/O parallelism. Their system design also provides nec-
essary data structures and meta data to the compute elements
present on these smart storage devices to allow performing
NDP. Experiments show 1.4×–2.7× better performance on
complex graph-processing algorithms. This work differs from
our work by executing operations on different hardware based
on their optimality.

Likewise, Huang et al. [14] propose an in-network comput-
ing architecture which has a three-phase processing procedure,
offloading the computation near data in the memory network
for execution and aggregating the results along their routing
path. Their in-network NDP architecture, Active-Routing, can
achieve up to 7× speedup with a geometric mean of 60% per-
formance improvement, and can reduce energy-delay product
by 80% on average across benchmarks.

3

Spark and HDFS in DI without NDP

Executor

. . .

Spark Master

P1 P2 Partition Pn

..............

..............

Collecting Results

Transfer of
data

Filter

Aggregate

HDFS
Namenode

Fetching details
of datanode

HDFS Datanode

Transfer of
data

Project

Spark and HDFS in DI with NDP

Executor

. . .

Spark Master

P1 P2 Partition Pn

.......

.......

Collecting Results

Transfer of
data

HDFS
Namenode

Fetching details
of datanode

HDFS Datanode

Filter

Aggregate

Project

Fig. 3. Overview of how Apache Spark and HDFS share data.

Similar to nKV [10], JetStream [15] incorporates storage
data structure in the form of OLAP data cubes, so data is
stored for analysis near where it is generated. Experiments
show that the end-to-end latency is within a few seconds, even
when bandwidth drops by a factor of two. The work differs
from our work by implementing data cubes which capture
aggregates of data encapsulated within them to serve queries
faster.

While the above works propose useful NDP designs, they
require specialized hardware architecture support and are thus
expensive to deploy in existing data centers.

B. Policies for distributing tasks

Gaia [16] implements a geo-distributed ML system that
employs an intelligent communication mechanism over WANs

to efficiently utilize the scarce WAN bandwidth. Experi-
ments show a 1.8×-–53.5× speedup over two state-of-the-
art distributed ML systems. This paper specifically deals with
optimizing ML workloads by storing an approximate copy of
the saved model locally at each computing node for decreasing
the communication required between the nodes.

Given the scarcity of works that develop policies for NDP,
we aim to fill this gap by developing an analytical model for
NDP that takes decisions on which operations should be placed
where (compute versus storage clusters).

C. NDP implementations

Octopus [17] proposes a technique of query pushdown for
performing NDP by allowing Spark to remotely run SQL
queries at the MySQL instances located on the storage devices.
Experiments show that Octopus outperforms the recent Spark
version 1.4.0 by about 5.25× in terms of running time to
process an aggregation query. The heuristic solution proposed
leverages the data locality principle which minimizes the
amount of data movement. While Octopus generates sub-
queries that seek to reduce the overall query processing time,
our work reduces the time by deciding the exact subset of
operations to be pushed down.

PushdownDB [18] implements a new DBMS which pushes
down parts of analytics queries into the S3 Select engine of
AWS. A program written in C++ and python works as a driver
to access the results after performing SQL queries on the DB.
An extensive experiments have shown that PushdownDB is
30% cheaper and 6.7× faster than a baseline without it. In our
work, we use HDFS as the storage service, SparkNDP as the
near-data processing system, Spark for running the jobs and
develop an analytical model that can decide which operations
should be pushed down to the storage cluster.

An important related work to our project is λFlow [11].
The authors present a framework to perform NDP and push
operations like map, flat map, and filter to OpenStack Swift
on the storage cluster from Spark on the compute cluster.
They implement this as an extension to Crystal [19], a
software-defined storage framework for OpenStack Swift. As
the application of NDP is in software, the deployment can be
inexpensive. λFlow can reduce data transfers significantly and
achieve 1.47×–3.39× speedup in job completion times. The
evaluations report a 90% reduction in network bandwidth and
memory requirements.

In our work, we show that always pushing down every
operation to the storage stack is not beneficial due to resource
constraints. Instead, by selectively pushing down operations
depending on the network and system state, SparkNDP can
achieve 25% improvement over complete pushdown strategies
like λFlow.

IV. SYSTEM DESIGN

This section describes the design of our NDP-enabling
Spark framework, SparkNDP, and the analytical model we
construct to decide on which queries and operations to push
down to storage.

4

In a general use case of Spark, the user launches a Spark
driver that processes the incoming queries and distributes them
to its worker nodes that may be present on different physical
hosts or VMs or containers. When the worker nodes start
working on their part of the query, they make individual read
requests to the storage system to get the required data and then
process it as shown in Figure 3. After receiving the requested
data, the workers perform operations on the tables.

This approach of transferring the complete dataset is ineffi-
cient as it is slowed down by the network capacity. To alleviate
the network load, we investigated supporting the execution
of specific operations at the HDFS datanodes, such as Filter,
Project, and some Aggregate operations. These operations are
simple enough and can be ported into the storage cluster,
essentially performing Near Data Processing for Spark. Once
NDP is implemented, the data flow in Spark and HDFS
clusters is as illustrated in Figure 3. To perform NDP at HDFS,
we create extensions to Spark and HDFS instead of modifying
them. The extensions we made are described in the following
subsections.

A. Extension for Spark

For pushdown operations to be run at HDFS, we require
Spark to provide sufficient information to HDFS while ex-
ecuting the query. Spark provides an API called the Data-
source V2 API to allow building a custom handler to any
data source (like HDFS). We leverage this API to create
an NDP Datasource extension for Spark. Our extension not
only supports the requirements of the API but also talks to
our NDP-enabled HDFS cluster to perform pushdown. Our
implementation allows pushdown of Filter, Project, and some
limited Aggregate operations like sum, average, max, and min.
When an aggregate operation is pushed down to our NDP-
enabled HDFS, the datanodes are responsible for performing
the operation only for the partition it is currently handling.
We handle the overall aggregation of these individual results
in our NDP Datasource Extension.

In our implementation, when a query is being processed
by Spark, it first interacts with the datasource extension to
get metadata about the tables it needs and gets the partition
details from the HDFS and our NDP client extension. The
Spark master shares these details with the executors so they
can independently communicate with the HDFS cluster. When
an executor tries to connect to the datanodes, our NDP proxy
intercepts the requests and performs NDP. More details about
the NDP proxy is given in the next subsection. We also made
an “NDP client” extension for Spark to enable communication
with our NDP Proxy on HDFS datanodes.

The actual access to HDFS data blocks in executors is
achieved through Java’s InputStream [20]. We added a new
parameter called “readParam” to HDFS’s open API (that ini-
tializes InputStream) to send XML data required for filesystem
operations and NDP pushdown. For performing NDP at the
datanodes, we use SQLite. We convert the queries in Scala jobs
to equivalent SQL commands on the fly at NDP Datasource to

be sent to the NDP Proxy. For example, the following Scala
can be converted to an SQL code as shown below.

Scala −
employee. filter ($‘‘department ’’=‘‘ HR’’). select ($‘‘name’’)
SQL −
SELECT name FROM employee WHERE department = ‘‘HR’’

In this query, “FROM employee” gives us the table to be
read from storage. “WHERE department = “HR”” is the filter
operation and “SELECT name” is the project operation. We
send this SQL query through the “readParam” parameter in
XML data format. Below is an example of how the XML
data looks like. We add the column names of the CSV table
we wish to process to the “Scheme” element, the SQL query
to “Query” element and other miscellaneous parameters like
delimiters required to parse the CSV file as a table.

<?xml version=’1.0’ encoding=’UTF−8’?>
<Processor>
<Name>dikeSQL</Name>
<Version>0.1 </Version>
<Configuration>
<Schema>l orderkey LONG, l partkey LONG, l suppkey LONG,

l linenumber LONG, l quantity NUMERIC, l extendedprice
NUMERIC, l discount NUMERIC, l tax NUMERIC,
l returnflag STRING, l linestatus STRING, l shipdate
STRING, l commitdate STRING, l receiptdate STRING,
l shipinstruct STRING, l shipmode STRING, l comment
STRING

</Schema>
<Query><![CDATA[SELECT SUM(”l extendedprice” * ”

l discount”) FROM CaerusObject s WHERE l shipdate IS
NOT NULL AND s.”l shipdate” >= ’1994−01−01’ AND s.”
l shipdate” < ’1995−01−01’ AND s.”l discount” >= 0.05
AND s.”l discount” <= 0.07 AND s.”l quantity” < 24.0]]>

</Query>
<BlockSize>134217728</BlockSize>
<FieldDelimiter>44</FieldDelimiter>
<RowDelimiter>10</RowDelimiter>
<QuoteDelimiter>34</QuoteDelimiter>
</Configuration>
</Processor>

B. Extension for HDFS

HDFS provides options to connect using the protocols
Hadoop RPC (Google proto-buff based) and Hadoop Web-
HDFS (REST API based). We decided to work with Web-
HDFS because of its similarity with AWS S3 (for possible
future compatibility) and since it allows for a more flexible
architecture. For implementing NDP at HDFS datanodes, we
chose to implement a reverse proxy (or called Application
Proxy in Hadoop’s terms) and deploy it on every datanode
to intercept the communication between HDFS processes and
Spark executors. We implemented this reverse proxy, which
we call NDP Proxy, using the POCO framework [21].

While stock WebHDFS open/read APIs contain all the
parameters required to provide access to file blocks, they have
no provision to pass the XML file containing the additional
parameters needed to perform NDP. The following is the
syntax of the API provided in the official documentation [22].

5

Spark

Datasource
V2 NDP Client

HDFS
NDP Proxy

REST API
Handler SQLite

Engine
SQLite

Streamer

Fig. 4. Dataflow diagram of our SparkNDP implementation.

http ://<HOST>:<PORT>/webhdfs/v1/<PATH>?op=OPEN[&
offset=<LONG>][&length=<LONG>][&buffersize=<INT>]

We work around this problem by injecting the XML code
mentioned in the previous subsection into the HTTP message
header. Our NDP Proxy on datanodes inspects the header
of incoming requests to decide if it should perform NDP or
simply forward the request (as is currently the case). In case
it receives a request with the NDP header, it performs the
following actions to perform NDP.

1) Extract and validate XML configuration from HTTP
Header.

2) Connect to HDFS Datanode process to get the data.
3) Launch a new SQLite instance with a streaming plugin.
4) Start processing data on the fly while retrieving data using

SQLite.
5) Send results back to the Spark executor.
6) Destroy SQLite instance.
Figure 4 summarizes the flow of requests through our

extensions in Spark and HDFS. We have open sourced our
implementation [12].

C. Analytical model to decide the best pushdown strategy

While our aforementioned SparkNDP design enables selec-
tive push down (of a given operator in a query), it is not
entirely obvious which operators should be selectively pushed
down. Further, the decision to push down an operator is not
deterministic and depends on the network and system state;
for example, if the network is expected to be congested, then
pushdown may be preferred to minimize the subsequent data
transfer size from storage to compute cluster.

To help decide on selective pushdown, we construct an
analytical model for SparkNDP. Our analytical model, Net-
Aware, works by estimating: (i) the execution time of an
operation (across all partitions), including any queueing time,
if served at the compute cluster; (ii) the execution time of an
operation (across all partitions), including any queueing time,
if served at the storage cluster; (iii) the time needed to transfer
the input data for the operation across the network; and (iv)
the time needed to transfer the output data for the operation
across the network. Typically, the reduction factor, the ratio
of input data size to output data size for an operation, is large
enough in practice that item (iv) can be considered negligible.
If the sum of items (i) and (iii) is greater than the items (ii) and
(iv), then Net-Aware recommends SparkNDP to push down the
operator (associated with the operation) to the storage cluster.
For a given query, Net-Aware iteratively makes this decision

for each operation in the query while taking into account the
implementation requirement that if an operator is not pushed
down, then all subsequent operations cannot be pushed down
either.

To estimate the execution time of an operator at a cluster,
Net-Aware considers the outstanding queue size, Q (in terms
of number of partitions) at that cluster and the “drain rate”,
X (in units of partitions/s) at the cluster. If the operator
being considered for pushed down is working on P parti-
tions, then the execution time at a cluster, in seconds, is
Tc(Q,X) = Q+P

X . For simplicity, the queue size and drain
rate are considered for the entire cluster (as opposed to per
core or per node) and the competing network load is assumed
to be constant.

To estimate the transfer time for a given data of size D
GB over a network with bandwidth B Gbps, Net-Aware also
considers the number of simultaneous data transfers at the net-
work, S. We assume that the number of queries, Smax, that can
simultaneously transfer data between HDFS and Spark clusters
is limited by the application configuration parameters, e.g.,
the max-jobs-per-context parameter in Spark. Alternatively, the
cluster operator might decide to set the concurrent queries limit
to the ratio of number of executors to number of datanodes, or
something similar. Regardless, if S < Smax, then the network
transfer time is simply Tn(D) = D×8

B/S seconds, assuming that
new data transfers cannot overtake existing transfers in the
network. Note that some active transfers can complete before
our target data transfer but we ignore the subsequent potential
increase in network bandwidth for simplicity. However, if
S ≥ Smax, then the query in consideration will first have
to wait until sufficient outstanding data, DS GB, can be
transferred before it can start sharing the network (i.e., until
the number of active transfers falls below Smax) to transfer
its data. In this case, we have Tn(D) = (DS+D)×8

B/Smax
seconds.

Based on the above, Net-Aware decides to push down
an operator if Tc(QSpark, XSpark) + Tn(Dinput) >
Tc(QHDFS , XHDFS) + Tn(Doutput). Here, Dinput and
Doutput denote the data size, in GB, for the input and output
of the operator, respectively; and the subscript of Q and X
represent the cluster whose queue size and throughput they
denote, respectively. Finally, considering a query is made up
of a sequence of n operators, o1, o2, . . . , on, Net-Aware will
push down the first i operators if it determines (using the
above decision equation) that operations 1 through i should
be pushed down but not operation (i + 1). For example, if
operations 1 and 2 benefit from pushdown but not operation

6

3, then Net-Aware will disregard the decision for subsequent
operations and only push down operations 1 and 2. This is
because, in practice, once the query is sent for execution to
the compute cluster (Spark), it cannot subsequently be pushed
down again to the HDFS cluster. While other query topologies,
like trees, are possible, Net-Aware currently only consider the
bottleneck path as the sequence of operations.

V. EVALUATION

We now evaluate SparkNDP via simulations and prototype
experiments. We start by exploring a wide range of scenarios
via simulation and then present empirical results based on
our prototype implementation (as described in Section IV)
on our experimental setup. We run our Net-Aware analytical
model before launching every query to estimate the latest
optimal pushdown strategy for that query. We compare our
work against two policies mainly: No-Pushdown where all
the data is brought to the compute cluster for processing
(i.e., no NDP), and λFlow [11] which pushes down all the
compatible operations (Filter, Project, and Aggregate) to the
storage cluster (full NDP). In some results, we show the
Oracle policy, which is the offline optimal pushdown policy,
for comparison. In some cases, we also include the results from
partial pushdowns. Filter Pushdown policy performs only the
Filter operation at the storage cluster where as Filter+Project
Pushdown performs Filter and Project operations at the storage
cluster but not Aggregate. We use the terms jobs and queries
interchangeably in this section as we run “jobs” on Spark by
submitting a TPC-H “query”. Note that, for all jobs, the input
dataset initially resides at the storage cluster and the final query
output should be available at the compute cluster (since the
user interfaces with Spark).

A. Simulation Results

We designed a discrete event simulator to simulate how
Spark processes tasks using an HDFS cluster in a DI setting.
A discrete event simulator models a system in the order of
occurrence of events instead of progression of time. This
allows us to simulate clusters of any size and very long events
in a very short time, making our simulator highly scalable. We
use SimPy [23] to create the simulator.

We simulate resources like CPU cores as simple discrete
resources that can be requested by jobs. If a core is taken
up by a task, all other task requests to the same core will be
added to a queue and they will be served in a FIFO manner.
Simulating network congestion is an important requirement
since, in real life, concurrent data transfers between Spark
executors and datanodes end up sharing the total available
bandwidth. We chose to simulate the network by breaking the
data transfers into smaller chunks, similar to the Maximum
Transmission Unit (MTU) in computer networks, that reserve
the network channel for a very short duration. We found that
this abstraction handles network congestion quite well and thus
the executors of the same job will also compete for network
bandwidth similar to real-world networks.

Parameter Value
Number of machines in Spark Cluster 35
Number of cores per machine in Spark Cluster 2
Clock Frequency of cores in Spark Cluster 2.27 GHz
Number of machines in HDFS Cluster 4
Number of cores per machine in HDFS Cluster 1-4
Input file size 150 GB
Clock Frequency of cores in HDFS Cluster 2.27 GHz
Bandwidth between the clusters 4 Gbps
Input size of a task 256 MB

TABLE I
CLUSTER CONFIGURATION OF OUR EXPERIMENTAL SETUP

1 Core 2 Cores 4 Cores
Number of cores in Datanodes of HDFS

0

50

100

150

200

250

300

350

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

309309
351353

376

176

309

176176188

89

309

89 89 95

Net-Aware
No-Pushdown

Filter Pushdown
Filter+Project Pushdown

Lambda-Flow

Fig. 5. Simulated query execution time when a single job is being processed.

1) Single query results: We first simulate a cluster that
has specifications similar to our experimental setup (see
Section V-B1) and execute a single job. Table I shows the
specifications of our experimental setup, which are also used in
our simulator. We report simulation results averaged over 500
runs. Each query consist of three operations: Filter, Project,
and Aggregate with respective reduction factors (ratio of input
to output data size) of 60, 1, and 10,000 respectively. These
numbers are inspired by the reduction factors of real-world
Spark jobs that we encountered in production.

Figure 5 shows the average query execution time under
different pushdown policies as a function of the number of
cores for the HDFS cluster nodes. In the case of 1 core
HDFS nodes, we see that the default No-Pushdown policy
performs the best, and λFlow performs the worst. However,
for the 2 core and 4 core HDFS nodes, No-Pushdown is the
worst option. While λFlow performs well in these cases, since
storage nodes have reasonable computing power, selective
pushdown (where we push down a subset of the operators
to HDFS cluster) actually performs the best. This is because
selective pushdown optimally balances the tradeoff between
reducing the data transfer time by pushing down the initial
operations to storage and reducing the compute time by
leveraging the increased processing capability (70 cores) of
the compute cluster. This shows that NDP is beneficial when
the storage cluster has sufficient processing capacity; as the
processing capacity at the storage cluster increases, the gains
from NDP also increase.

In all cases, Net-Aware rightly picks the optimal policy,
despite the optimal pushdown strategy being different. Com-

7

1 Core 2 Cores 4 Cores
Number of cores in Datanodes of HDFS

0

2000

4000

6000

8000
Qu

er
y

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

4512

7293
819482268859

2620

7293

3447
34633779

804

7293

1074
1082

1240

Net-Aware
No-Pushdown

Filter Pushdown
Filter+Project Pushdown

Lambda-Flow

Fig. 6. Simulated query execution time when multiple jobs are processed.

pared to the No-Pushdown policy, Net-Aware reduces query
execution time by about 71% for the case of 4 core HDFS
nodes. Similarly, compared to the λFlow policy, Net-Aware
reduces query execution time by about 18% for the case of
1 core HDFS nodes. Clearly, Net-Aware is superior to No-
Pushdown and λFlow. Even compared to the best of No-
Pushdown and λFlow, Net-Aware still provides about 6%
improvement for the 2 and 4 core HDFS nodes cases.

2) Multiple query results: We now consider scenarios
where a stream of queries is processed as opposed to a single
query, similar to the real-world scenario where multiple users
are using the Spark cluster at the same time. In such cases, a
job competes for resources with other active jobs already in
the system. We launch 50 jobs in the simulation at a rate of 1
job every 50 seconds. We report the average query execution
time across all 50 jobs. We use the same query and system
configuration as in Section V-A1.

Figure 6 shows our results for the multiple jobs scenario.
We see that the differences are more pronounced in this case
due to the build of jobs in queues and the contention for shared
compute and network resources. As for the case of single job,
λFlow is better than No-Pushdown only when HDFS nodes
have more than 1 core. In all cases, Net-Aware is always the
optimal policy. In fact, compared to the best of λFlow and No-
Pushdown, Net-Aware provides about 38% reduction in query
execution time for the 1 core case, a significant improvement.

Interestingly, Net-Aware is superior to individual selective
pushdown options as well. This is because, the same selective
pushdown option might not be optimal for all 50 jobs in the
stream. For example, while the first few jobs can benefit from
(full) pushdown, subsequent jobs might be better served at
the compute cluster as the storage cluster is busy processing
the initial jobs. Net-Aware adapts to the current load at each
cluster and can thus pick the optimal selective pushdown
policy for each job. Compared to the best selective pushdown,
the dynamic Net-Aware still provides at least 25% reduction
in query execution time for all cases in Figure 6.

3) Queries with decompression under larger cluster setup:
In production jobs, the input dataset is often compressed (e.g.,
in Parquet data format) to save space. In such cases, before
executing the query, the dataset will first have to go through a

0.8 0.4 0.2 0.1
Efficiency Of Cores On Datanodes

0

2000

4000

6000

8000

10000

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

5359
5899

9326

57775899

9969

58245899

10798

56155899

11333

Net-Aware No-Pushdown Lambda-Flow

(a) 100 cycles/byte needed for Filter and Project

0.8 0.4 0.2 0.1
Efficiency Of Cores On Datanodes

0

2000

4000

6000

8000

10000

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

3554

4938

8302

4344
4938

9236

48184938

9968

48854938

10798

Net-Aware No-Pushdown Lambda-Flow

(b) 50 cycles/byte needed for Filter and Project

0.8 0.4 0.2 0.1
Efficiency Of Cores On Datanodes

0

2000

4000

6000

8000

10000

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

588

4915
5583

3132

4915

7880

4115
4915

9114

46614915

9574

Net-Aware No-Pushdown Lambda-Flow

(c) 20 cycles/byte needed for Filter and Project
Fig. 7. Simulated query execution time when multiple jobs are processed and
the input dataset is compressed.

compute-heavy decompression operation. The decompression
operation may be better served at the compute cluster so that
the larger output data size need not be transferred to compute
cluster.

For this simulation, we consider queries similar to those
in the previous simulations except that they initially have a
decompression operation with reduction factor of 0.2 (meaning
a compression factor of 5×). We also consider a larger cluster
setup: 150 compute nodes and 50 storage nodes. Figure 7
shows our simulation results for three different job sizes (using
cycles/byte needed for operations as a proxy) and as a function
of the efficiency of the storage nodes. This efficiency is a
representation of the operation slow down caused by execution
the operations at the lightweight storage cluster.

In all cases, we see that λFlow is significantly slower at
processing queries due to the heavy decompression operation;

8

as expected, λFlow does worse as the storage nodes’ efficiency
decreases. While the No-Pushdown option is reasonable in
most cases, it does suffer performance degradation when the
operations are light enough (Figure 7 (c)) that some of them
will benefit from being pushed to storage to leverage the
data transfer reduction when moving the query over to the
compute cluster. In such cases, Net-Aware carefully balances
the selective pushdowns to achieve as much as 8× reduction
in query time over the best of No-Pushdown and λFlow.

B. Empirical Results

To evaluate SparkNDP and Net-Aware in real-world clusters
(where complexity is much higher than in the simulated setup),
we perform a limited evaluation in our experimental testbed.

1) Experimental setup: Our experimental setup consists of
10 servers. We employ 6 of them (each equipped with two Intel
Xeon L5520 for a total of 16 cores) for the compute cluster.
Each server runs 6 Spark containers, giving us a total of 35
Spark executors each with two cores and 0.5 GB memory.
The remaining 4 servers comprise the storage cluster and
each run 1 instance of HDFS datanode on a container using
a maximum of 4 cores. We underclock the storage cluster
CPU from 2.67 GHz to 1.6 GHz in some of our experiments
using the CPUFreq governor of linux kernel [24] to experiment
with different storage cluster settings. Each server is capable
of achieving a network throughput of 1 Gbps, resulting in a
maximum of 4Gbps across the clusters. The servers hosting
Spark (compute cluster) and the servers hosting HDFS (storage
cluster) are physically present on two different racks connected
by a 10Gbps network. In some of our experiments, we use
Traffic Control (TC) [25] and Network Emulation (NETEM)
[26] modules of the Linux kernel to reduce the bandwidth
between the clusters. The replication factor is set to 4 on HDFS
to make the data available to all datanodes to perform NDP.

2) Experimental methodology: We use the prototype im-
plementation described in Section IV to evaluate SparkNDP
experimentally on our aforementioned experimental setup. We
use TPC-H Spark queries as our workload and run then on a
100 GB dataset generated by DBGEN. We obtain end-to-end
query execution time from Spark, and use this as our metric.
For comparison, we also run Spark without any pushdown
(No-Pushdown) and Spark with full pushdown (λFlow [11]).
Finally, we also denote the best-performing policy among all
possible pushdown combinations as Oracle, which is the best
offline optimal policy.

C. Experimental results

Figure 8 shows our empirical results for the case of a single
job being processed; we show results for two different TPC-H
queries, with Q19 being more computationally involved than
Q06. The vertical lines at the top of each bar illustrates the
standard deviation of that set of results (since each result is
averaged over multiple experimental runs). Figure 8 (a) shows
our results when we have 4 storage nodes underclocked to the
lowest frequency (to emulate weaker storage cluster). We see
that No-Pushdown is the best option when the storage nodes

have only 1 core, but full pushdown (λFlow) is typically the
best when we have more than 1 core. In some cases, selective
pushdown is optimal, as in the case of Q19 when we have
4-core storage nodes. We see that, even in real experiments,
Net-Aware typically is able to pick the best pushdown option,
even if selective pushdown is the optimal option. Compared to
No-Pushdown, λFlow, and best of No-Pushdown and λFlow,
Net-Aware achieves as much as 42%, 11%, and 5% reduction
in query execution time.

In Figure 8 (b), we reduce the bandwidth between the
clusters to 1 Gbps. In this case, even single core HDFS nodes
provide query execution time reduction over No-Pushdown
since the network is a significant bottleneck. Net-Aware adapts
to this slower network and ensures that operations are aggres-
sively pushed down to storage; while Net-Aware is not always
optimal, it does result in significant improvements over No-
Pushdown.

Figure 8 (c) shows our results for the case of 2 HDFS nodes
at full clock frequency. In this case, the effective bandwidth
between the clusters is 2 Gbps since each HDFS node has a
maximum bandwidth of 1 Gbps. This set of results shows that
selective pushdown can indeed improve over No-Pushdown
and full pushdown even in real experimental settings. In most
cases, Net-Aware does recognize selective pushdown as the
right policy, providing as much as 6% improvement over the
best of No-Pushdown and λFlow.

Finally, we also experiment with the case of multiple
jobs being processed. As seen in simulations, the benefit of
selective pushdown can be more pronounced in such cases.
We consider Query 06 and run 10 jobs with an inter-arrival
time of 50s. Figure 9 shows our results under three different
settings (as denoted by the x-axis labels). We find that Net-
Aware chooses only Filter pushdown as the right option in all
three scenarios. By doing so, Net-Aware is always superior
to No-Pushdown and near-optimal in all cases. For the case
of 2 storage nodes with 2 cores each, Net-Aware indeed
picks the optimal selective pushdown policy, providing around
25% reduction in query execution time over the best of
No-Pushdown and λFlow. This is a substantial improvement
compared to the existing approaches of no NDP and full NDP.

VI. CONCLUSION

Data processing and analysis is a frequently employed task
in the industry, and improving the execution time of such tasks
can substantially speed up analytics processes. Frameworks
like Spark are routinely employed to run such data processing
tasks on clusters of servers. Disaggregated infrastructure set-
tings are being increasingly employed in practice to improve
resource usage and avoid resource fragmentation; however, the
network overhead in such settings poses a serious problem
for data processing tasks that require data transfer from the
storage cluster to the compute cluster. As such, an important
problem is how to best design data processing frameworks for
disaggregated infrastructure settings.

This paper presents our experience and insights from
designing and using an NDP-based Spark framework,

9

Q06 Q19
TPCH Query number

0

50

100

150

200

250

300

350
Qu

er
y

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

271 271 271
306 291

308
291

325

Oracle Net-Aware No Pushdown Lambda-Flow

Q06 Q19
TPCH Query number

0

50

100

150

200

250

300

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

183 183

284

188 194 196

289

194

Oracle Net-Aware No Pushdown Lambda-Flow

Q06 Q19
TPCH Query number

0

50

100

150

200

250

300

350

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

175 175

302

181 184 184

312

193

Oracle Net-Aware No Pushdown Lambda-Flow

(i) 1 core (ii) 2 cores (iii) 4 cores
(a) Number of storage nodes = 4, storage nodes clock speed = 1.60 GHz, network bandwidth between clusters = 4 Gbps.

Q06 Q19
TPCH Query number

0

100

200

300

400

500

600

700

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

299 299

690

311 313 335

731

313

Oracle Net-Aware No Pushdown Lambda-Flow

Q06 Q19
TPCH Query number

0

100

200

300

400

500

600

700

800

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)
179 190

692

179 198 201

750

198

Oracle Net-Aware No Pushdown Lambda-Flow

Q06 Q19
TPCH Query number

0

100

200

300

400

500

600

700

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

177 190

690

184 193 198

714

193

Oracle Net-Aware No Pushdown Lambda-Flow

(i) 1 core (ii) 2 cores (iii) 4 cores
(b) Number of storage nodes = 4, storage nodes clock speed = 1.60 GHz, network bandwidth between clusters = 1 Gbps.

Q06 Q19
TPCH Query number

0

100

200

300

400

500

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

366 385
438

379 388 391

480

398

Oracle Net-Aware No Pushdown Lambda-Flow

Q06 Q19
TPCH Query number

0

100

200

300

400

500

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

351 354

482

373 354 374

498

370

Oracle Net-Aware No Pushdown Lambda-Flow

Q06 Q19
TPCH Query number

0

100

200

300

400

500

600

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

429 447

558

429 429 429

580

456

Oracle Net-Aware No Pushdown Lambda-Flow

(i) 1 core (ii) 2 cores (iii) 4 cores
(c) Number of storage nodes = 2, storage nodes clock speed = 2.67 GHz, network bandwidth between clusters = 2 Gbps.

Fig. 8. Empirical query execution time when a single job is being processed under various system configurations.

4 Datanodes
4 Cores

Full clock speed

2 Datanodes
4 Cores

Underclocked

2 Datanodes
2 Cores

Full clock speed

0

500

1000

1500

2000

2500

Qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

891

1488

891938869

2072

2602

207220052064

1469

2517

1469
1735

1971

Net-Aware
No-Pushdown

Filter Pushdown
Filter+Project Pushdown

Lambda-Flow

Fig. 9. Empirical query execution time when multiple jobs are processed
under various system configurations.

SparkNDP, in a disaggregated infrastructure setting. We de-
signed and open sourced SparkNDP, a framework built on top
of Spark and HDFS that allows specific Spark operators to be

pushed down to storage, thus enabling NDP for Spark, includ-
ing selective push down of operations. SparkNDP works by
leveraging SQLite to execute a subset of Spark operations in a
lightweight manner on the storage cluster. We also constructed
an analytical model to help SparkNDP decide which queries
to use pushdown for and which specific operations of a query
to push down, to optimize query execution time.

Our simulation results show that pushdown should be
carefully employed based on the current system and network
state and based on the query being executed. We find that
full pushdown is only beneficial when the storage cluster
has sufficient compute resources as needed for the pushed
down query operators or when the initial dataset is too large
to be quickly transferred over the network. We also find
that selective pushdown is often a superior choice compared
to the default no pushdown or full pushdown options, thus
highlighting a novel NDP push down option that can benefit
the community.

Our prototype experimental results show that there is sig-

10

nificant query execution time reduction possible by employing
the right pushdown strategy. Our implementation results also
highlight the importance of taking into account the system
and network state when deciding on the pushdown strategy to
adopt for a given query.

ACKNOWLEDGMENT

This work was supported by NSF CNS grants 1750109,
1909356, 2106434, and a gift from OpenInfra Labs.

REFERENCES

[1] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated,
distributed OS for hardware resource disaggregation,” in Proceedings
of the 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), Carlsbad, CA, USA, 2018, pp. 69–87.

[2] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker, “Network requirements
for resource disaggregation,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, Nov. 2016, pp. 249–264. [On-
line]. Available: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gao

[3] V. Jalaparti, C. Douglas, M. Ghosh, A. Agrawal, A. Floratou, S. Kandula,
I. Menache, J. S. Naor, and S. Rao, “Netco: Cache and i/o management
for analytics over disaggregated stores,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’18, Carlsbad, CA, USA,
2018, p. 186–198.

[4] A. Klimovic, H. Litz, and C. Kozyrakis, “Selecta: Heterogeneous cloud
storage configuration for data analytics,” in Proceedings of the 2018
USENIX Annual Technical Conference (USENIX ATC 18), Boston, MA,
USA, 2018, pp. 759–773.

[5] B. Cho and E. Seyfe, “Taking advantage of a disaggregated storage and
compute architecture,” Spark+ AI Summit, 2019.

[6] The Apache Software Foundation, “Apache Spark,”
http://spark.apache.org/.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), Incline Village, NV, USA, 2010, pp.
1–10.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’12, San Jose, CA, USA, 2012, pp. 15–
28.

[9] R. Xin, “World record set for 100 tb sort by open source and
public cloud team,” https://opensource.com/business/15/1/apache-spark-
new-world-record.

[10] T. Vinçon, A. Bernhardt, I. Petrov, L. Weber, and A. Koch,
“Nkv: Near-data processing with kv-stores on native computational
storage,” in Proceedings of the 16th International Workshop on Data
Management on New Hardware, ser. DaMoN ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3399666.3399934

[11] R. Gracia-Tinedo, M. Sanchez-Artigas, P. Garcia-Lopez, Y. Moatti, and
F. Gluszak, “Lamda-flow: Automatic pushdown of dataflow operators
close to the data,” in 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2019, pp. 112–121.

[12] Open Infrastructure Labs, “Caerus dike,” https://github.com/open-
infrastructure-labs/caerus-dike/tree/v1.

[13] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a micro-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[14] J. Huang, P. Majumder, S. Kim, T. Fulton, R. R. Puli, K. H. Yum,
and E. J. Kim, “Computing en-route for near-data processing,” IEEE
Transactions on Computers, vol. 70, no. 6, pp. 906–921, 2021.

[15] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J.
Freedman, “Aggregation and degradation in JetStream: Streaming
analytics in the wide area,” in 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14).
Seattle, WA: USENIX Association, Apr. 2014, pp. 275–288. [On-
line]. Available: https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/rabkin

[16] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-Distributed machine
learning approaching LAN speeds,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, Mar. 2017, pp. 629–647. [On-
line]. Available: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/hsieh

[17] Y. Chen, C. Xu, W. Rao, H. Min, and G. Su, “Octopus: Hybrid big
data integration engine,” in 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom), 2015, pp.
462–466.

[18] X. Yu, M. Youill, M. Woicik, A. Ghanem, M. Serafini,
A. Aboulnaga, and M. Stonebraker, “Pushdowndb: Accelerating
a dbms using s3 computation,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.05837

[19] CRYSTAL, “Crystal: Software-defined storage for openstack swift,”
http://cloudlab.urv.cat/crystal/.

[20] Oracle, “Java class InputStream,”
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html.

[21] Applied Informatics Software Engineering GmbH,
“POCO C++ Libraries - Simplify C++ Development,”
https://pocoproject.org/index.htmll.

[22] The Apache Software Foundation, “WebHDFS REST API,”
https://hadoop.apache.org/docs/r1.0.4/webhdfs.html.

[23] “Simpy,” https://simpy.readthedocs.io/en/latest/.
[24] Linux Kernel Organization Inc., “Cpufreq governors,”

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.
[25] B. Hubert, “Traffic control in the linux kernel,”

https://man7.org/linux/man-pages/man8/tc.8.html.
[26] Linux Foundation, “Network emulation,”

https://wiki.linuxfoundation.org/networking/netem.

11

