Towards Optimal Configuration of Microservices

Gagan Somashekar and Anshul Gandhi
PACE Lab, Stony Brook University
Stony Brook, New York, USA
{gsomashekar,anshul}@cs.stonybrook.edu

Abstract
The microservice architecture allows applications to be designed in a modular format, whereby each microservice can implement a single functionality and can be independently managed and deployed. However, an undesirable side-effect of this modular design is the large state space of possibly inter-dependent configuration parameters (of the constituent microservices) which have to be tuned to improve application performance. This workshop paper investigates optimization techniques and dimensionality reduction strategies for tuning microservices applications, empirically demonstrating the significant tail latency improvements (as much as 23%) that can be achieved with configuration tuning.

Keywords: ML for systems, microservices, configuration tuning, optimization, tail latency

ACM Reference Format:

1 Introduction
The emerging microservice architecture allows applications to be decomposed into different, interacting modules, each of which can then be independently managed for agility, scalability, and fault isolation [24, 25, 27, 29, 40]. Each module or microservice typically implements a single business capability. The communication between the microservices, usually stateless, is via well-defined light weight APIs.

The microservice architecture is especially well suited for designing online, customer-facing applications where performance and availability are paramount [12, 20, 21, 25]. For example, an online application can be deployed as frontend microservices (e.g., Nginx), database microservices (e.g., MongoDB), caching microservices (e.g., Memcached), along with services that implement the logic of the application. The latter services that implement the logic may each have their own database and cache microservices. Consequently, an application can have numerous microservices. Distributed applications implemented using the microservices architecture are widely replacing existing deployments implemented using monolithic or multi-tier architectures at Amazon, Netflix, Uber, and Twitter [25].

Despite the benefits of the microservice architecture, a specific challenge that this distributed deployment poses is that of tuning the configuration parameters of the constituent microservices. Tuning the parameters of monolithic or N-tier application deployments for maximizing performance is already a difficult task [33, 40, 44, 45, 45–47] (see Section 4). With microservice applications, configuration tuning is especially complicated owing to the following challenges:

- **Very large configuration space.** Microservices applications have numerous, interacting microservices that each have several parameters that can be configured. Further, frameworks that aid microservices development, such as Apache Thrift [10] and gRPC [28], introduce additional parameters that impact application performance.
- **Inter-dependent parameters.** The parameter setting of a microservice can influence the optimal value of a different parameter of the same microservice. As a result, the numerous parameters cannot be independently optimized (see Section 3). For example, for MongoDB, a low value of the cache size parameter can amplify the number of concurrent read transactions, making it difficult to independently tune the latter parameter [8].
- **Dependency between parameters of different microservices.** The dependency between parameter values extends beyond a single microservice; parameters of upstream services are often dependent on the parameter settings of downstream services [44]. For example, the thread pool size of a microservice may dictate how many concurrent requests are sent to the downstream microservice.
- **Interference among colocated microservices.** Microservices, typically deployed as containers, can be colocated on the same physical host. Consequently, due to potential resource contention, the resource configuration of a microservice can impact the performance of all other colocated microservices.
- **Non-linear relationship between microservices parameters and performance.** Application performance need
When tuning microservices applications, we first identify problems that focus on optimizing the configuration of individual services [19, 46], but as explained above, the dependencies between the parameters of microservices makes it infeasible to optimize them in isolation. To the best of our knowledge, there is no prior work that focuses on the problem of comprehensively tuning the configuration parameters of a microservice application.

This workshop paper explores the problem of configuration tuning of microservices applications. We conduct an extensive experimental investigation of various black-box optimization algorithms with the goal of minimizing the tail latency of a given microservice application deployment. As shown in Figure 1, the best optimization algorithm can reduce the tail latency of the social networking microservice application [25] by as much 23% and 21% compared to the default configuration setting and the suggested configuration in prior work [25], respectively.

To address the key challenge of a large configuration space when tuning microservices applications, we first identify potential performance-impacting parameters for popularly deployed microservices, such as Nginx, Memcached, MongoDB, etc. We then investigate various dimensionality reduction approaches to identify a subset of microservices that are most likely to impact end-to-end application latency. As illustrated by the two rightmost bars in Figure 1, by employing dimensionality reduction, we can achieve roughly the same improvement in tail latency (0.2% difference) while only tuning about 43% of all microservices (roughly 57% reduction in number of parameters tuned).

This workshop paper makes the following contributions:

1. **Problem formulation.** We frame the configuration tuning problem as an optimization problem, making it amenable to optimization algorithms.

2. **Automated framework to aid the configuration optimization.** We implement a framework to experimentally explore and evaluate the configuration space of parameters for microservices. The framework is fully automated and can be integrated with any optimization technique.

3. **Experimental evaluation of different optimization algorithms.** We implement six different representative optimization algorithms using open-sourced libraries and compare their efficacy in choosing the best configuration with respect to minimizing the application tail latency. To assess the optimization algorithms’ applicability in practice, we also analyze their convergence and overhead.

4. **Dimensionality reduction.** For scalability, we investigate techniques to reduce the overhead of optimization algorithms by limiting the set of microservices whose parameters will be configured. We consider various subsets of microservices: (i) those on the critical path, (ii) those that cause performance variability, and (iii) those identified by prior works to be performance bottlenecks.

2 Problem Formulation and System Design

In this section, we formulate the microservices configuration tuning problem as an optimization problem. We then describe our system design for the automated framework that aids our experimental evaluation (presented in Section 3).

2.1 Microservices configuration tuning problem

Let $f(c)$ denote the objective function (or performance metric) for the microservices application under the configuration c; here, c is the (potentially large) vector of parameter settings for all tunable parameters of all microservices. Let C denote the set of all configurations, i.e., all feasible values that vector c can take. Finally, let $c_{opt} \in C$ denote the configuration that minimizes the performance metric, $f()$. Thus, $c_{opt} = \arg\min_{c \in C} f(c)$. We could consider metrics that need to be maximized by minimizing the negative of the objective function. Our problem statement is to find c_{opt} or a near-optimal configuration. We focus on the realistic case where no assumptions can be made on the structure of $f()$ or on the availability of offline training data. We further assert, for practical purposes, that the (near-)optimal configuration should be determined in a reasonable amount of time.

![Figure 1. Comparison of 95th percentile of latency for the social networking application [25] under (i) default configuration values (Default), (ii) the configuration used by Death-StarBench benchmark developers [2] (DSB), and the configuration found by the best optimization technique among those we explored (iii) with dimensionality reduction (considering only a subset of microservices for tuning) and (iv) without any reduction (tuning all microservices).](image-url)
While \(f() \) can represent any metric of interest, including combinations of metrics, we consider the \(95^{th} \) percentile of end-to-end application latency to be our metric, \(f() \). We note that customer-facing applications often employ such tail latency metrics to assess application performance [21].

Given the dependencies between parameters and the possible non-linear relationship between performance and parameter values (as described in Section 1), it is unlikely that \(f() \) can be determined or inferred accurately. Thus, classic convex optimization techniques cannot be readily applied to determine \(c_{opt} \). However, for a given \(c \), the value of \(f(c) \) can be observed or measured by setting the parameter values in \(c \) for the microservices and running an experiment. This suggests that black-box optimization techniques, that iteratively observe the value of \(f() \) at a given \(c \) and determine the next configuration value \(c' \) to explore, can be applied to find \(c_{opt} \) or near-optimal \(c \) values.

2.2 Automated framework to aid optimization

Unlike prior works [16, 19] that run optimization algorithms over readily available datasets, we evaluate the value of the objective function, \(f() \), by running an experiment. To streamline the iterative exploration of configurations (for determining \(c_{opt} \)), we thus require a robust framework that can automatically: (i) configure the parameters of the microservices as directed and run the application, (ii) collect the required metrics, and (iii) run the optimization algorithm to obtain the next configuration to experiment with. The framework should also be application-agnostic and should allow the optimization algorithm to be a pluggable module.

Figure 2 illustrates the design of our automated framework that we use to conduct our experiments. The *application deployment file* has the list of microservices, their images, the host details, etc. The *controller* passes the value of the measured objective function, \(f(c(i)) \), of the current iteration, \(i \), and queries the *optimizer* for the next configuration setting, \(c(i+1) \). Using the details in the *application deployment file* and the \(c(i+1) \) configuration passed by the *optimizer*, the *controller* generates *docker-compose files* on the fly with the necessary network settings and mounts. The application is then deployed on the servers using these *docker-compose files* and the *client* sends the workload to the application. The request traces are collected by a tracing framework and the latency metrics are calculated by the *controller*. These metrics are passed to the *controller* which then calculates the objective function, \(f(c(i+1)) \), and repeats the process iteratively until a good enough configuration is found or until an exploration time limit is reached. Our framework currently supports any linear combination of average, median, or tail latency for the objective function. The framework can be employed for any microservices application by including the *application deployment file* for that application. Any optimization algorithm can be added by inheriting the *Optimizer* class and implementing its methods.

3 Evaluation

In this section, we first discuss our experimental setup and methodology, and then present our experimental results.

3.1 Experimental setup

We use a cluster with four servers, each with 24 (hyper)cores, 40 GB of memory, and 250GB of disk space. We deploy the microservices of the application on these servers based on their functionality: one server hosts front-end microservices, one hosts back-end microservices, one hosts the microservices that implement the logic, and one server is dedicated for monitoring the microservices and the application performance. We restrict monitoring services, Jaeger [4] with Elasticsearch [3] back-end, to a different server to avoid interference with the application. *docker-compose* is used to deploy the application and overlay network connects the microservices across the servers.

We employ the social networking application from the DeathStarBench benchmark [25] to evaluate the efficacy of different black-box optimization algorithms. The social networking application has 28 microservices that together implement several features of real-world social networking applications. The constituent microservices are Nginx, Memcached, MongoDB, Redis, as well as microservices that implement the logic of the application. The application workload consists of 10% requests that create a post, 30% requests that read the user’s own timeline, and 60% requests that read the timeline of other users; this division is based on an empirical estimate of a user’s typical behaviour.

We change the type of server in the social networking application of DeathStarBench to *TNonblockingServer*. The Apache Thrift C++ *TNonblockingServer* provides good performance and exposes numerous settings for the developer to customize the server [10]. We also make modifications to change the thread pool size dynamically based on the value suggested by the optimizer for each iteration.

3.2 Evaluation methodology

For evaluation, we consider the \(95^{th} \) percentile of latency as the performance metric; other latency metrics can be readily used as well. For each microservice, we select at most five parameters to tune; we refer to product documentation [1, 5–7, 10] to identify the performance-impacting parameters. For
each configuration to be tested, we run the application under that configuration three times for a duration of 5 minutes each, and collect latency metrics across all runs. We next discuss the optimization algorithms and dimensionality reduction strategies we investigate in our evaluation.

3.2.1 Black-box optimization algorithms. We consider 6 optimization algorithms in our evaluation. The first 2 are representative of heuristic-based probabilistic algorithms, the next 2 are evolutionary algorithms inspired by population-based biological evolution, and the last 2 are sequential model-based optimization algorithms that approximate the objective function with a cheaper, surrogate function [13] to aid optimization. We use skopt [9], Hyperopt [14], and Nevergrad [38] libraries to implement the algorithms.

1. **Simulated Annealing** (SA) [36] starts with an initial configuration, \(c_0 \), and at each iteration considers a neighbouring configuration, \(c_n \). It then picks the next configuration based on the value of the objective function at \(c_0 \) and \(c_n \) and a time varying parameter, \(T \), whose value slowly decreases (annealing) with each iteration leading to more exploitation and less exploration.

2. **Dynamically Dimensioned Search** (DDS) starts with an initial configuration and then perturbs the values of the parameters of the configuration based on a perturbation factor [42]. The algorithm moves from a global search towards a local search as the iterations progress by dynamically and probabilistically reducing the number of parameters that are perturbed.

3. **Particle Swarm Optimization** (PSO) [32] works by iteratively improving the candidate solution with regard to the objective function. Each candidate solution is known as a particle and all particles together form a swarm. The particles are moved around the search-space based on the best value the particle has seen so far (exploration) and the global best value seen by the whole swarm (exploitation).

4. **Genetic Algorithms** (GA) [34] start with an initial random population of candidate configurations which is then pruned based on the value of the objective function at these configurations. This pruned subset is used to generate a new set of candidates through mutation (randomly changing the configurations of some parameters) and crossover (combining configurations of the candidates).

5. **Bayesian Optimization** (BO) starts with a prior distribution of the search space guided by the surrogate; we experiment with the popular Gaussian Process (GP) [13], Gradient Boosted Regression Trees (GBRT) [22], and Random Forests (RF) [23] surrogate models. The posterior distribution is updated at each step of exploration using Bayesian method.

6. **Tree-structured Parzen Estimator** (TPE) is similar to BO, but models the likelihood and prior instead of the posterior [13].

3.2.2 Dimensionality reduction strategies. If an application has \(m \) microservices each with \(p_i \) parameters (for \(i = 1, 2, \ldots, m \)), then the number of dimensions in a configuration vector \(c \) is \(n = \sum_{i=1}^{m} p_i \). For the purpose of illustration, if each parameter can take \(v \) different values, then the number of possible configurations is \(|C| = v^n \). Clearly, the search space of configurations grows exponentially with the number of microservices. To reduce the search space, we thus consider strategies that allow us to focus our configuration tuning effort on only a subset of the microservices. Another advantage of dimensionality reduction is that not all optimization algorithms work well in high dimensions (number of tunable parameters, in our case), for example, Bayesian Optimization (BO) is known to not perform well when the number of parameters to optimize is more than 20 [35].

1. **Critical path.** In the call graph of a request, the critical path is the path formed by microservices that determines the latency of the request. We employ standard practices [37] to determine the critical path of a request and only consider configuration tuning for these microservices. We rely on the service time (or span) measurements provided by Jaeger for each microservice to determine the critical path. We also exclude all microservices on the critical path whose service time is less than 1ms; we find that such microservices do not contribute significantly to latency and can be omitted to reduce the configuration search space (by as much as 33% in our experiments).

2. **Known bottlenecks.** Prior work on performance diagnosis of microservices applications conducted thorough empirical analysis to identify performance bottlenecks [26]. We thus investigate configuration tuning only for the 8 bottleneck microservices identified by these works. Since this approach requires prior knowledge of bottlenecks, we consider it an unrealistic approach but one that serves as ground truth for comparison.

3. **Performance variance.** Prior works [20, 39, 41] demonstrated the improvement in performance that can be obtained by redesigning components that cause high performance variability. Inspired by this approach, we consider configuration tuning only for the 7 microservices that have a significant service time coefficient of variation [17] (above 0.5 in our experiments).

3.3 Experimental results

In practice, the optimization algorithms cannot be run indefinitely. Unless otherwise specified, we thus limit the number of configurations to be explored for each optimization algorithm to 15. For initialization, the optimization algorithms typically start with a random configuration. Note that (re)setting the configuration parameters between iterations does incur some overhead and may require restarting some microservices; during this time, the application may be momentarily offline.
Towards Optimal Configuration of Microservices

Efficacy of dimensionality reduction. Figure 3 shows the percentage improvement in tail (95th percentile) latency of the social networking application under different dimensionality reduction techniques, compared to the tail latency when using the default configuration for all parameters. For ease of illustration, we show the results for two specific optimization algorithms. We see that tuning all 28 microservices of the social networking application provides about 25% improvement in tail latency. However, tuning only the microservices on the critical path (12 microservices) provides 22–23% improvement. Tuning the known bottlenecks provides similar improvements, suggesting that the critical path approach correctly identifies the microservices that have the most impact; note that the known bottlenecks approach requires prior, offline knowledge of bottlenecks, which is not always feasible and requires significant additional effort. Finally, by focusing on the variability causing microservices, the afforded improvement in latency is about 17–20%.

To further contrast the three different dimensionality reduction techniques, we consider the overlap in subsets of microservices chosen by the techniques. We find that only two microservices are common among all the subsets: (i) post-storage-memcached is an important microservice as it caches posts that are read by requests that constitute 90% of the workload; and (ii) compose-post-service is critical in the call graph of the request that writes posts as it is called multiple times per request. This shows that, despite differences in the subsets, all three techniques have the ability to identify important, performance-impacting microservices.

Performance of different optimization algorithms. The bars in Figure 4 show the (sorted) percentage improvement (on left y-axis) in tail latency over the default configuration afforded by different optimization algorithms using the critical path approach. For comparison, we also show (as DSB) the improvement afforded (about 3%) by the configuration employed by the DeathStarBench benchmark developers [2]. We see that DDS provides the best improvement of 23.4%, followed closely by PSO (22.9%) and BO (22.1%). We note that for Bayesian Optimization, we experimented with various surrogate models; we found Gaussian Process (with the Expected Improvement acquisition function), referred to as BO GP in our figures, to provide the best results.

We also show with Serial the performance improvement afforded by the approach that sequentially tunes (using BO GP) each microservice on the critical path, as opposed to jointly tuning all microservices on the critical path. The Serial approach is similar to one of the baselines proposed in Vanir [15] for the cloud resource allocation problem (see Section 4). We find that Serial provides about 18.9% improvement, suggesting that independently tuning microservices can be sub-optimal. Further, we find that the order of optimization is also important for Serial; when sequentially optimizing microservices in the reverse order of the critical path, the percentage improvement is better.

To evaluate the overhead of different optimization algorithms, we plot (solid line with right y-axis) the time taken by the optimization across all iterations in Figure 4. We find that DDS requires the least amount of time (7ms), followed by BO (1.4s) and PSO (2.2s). SA and TPE incur a high overhead. Serial employs BO but takes a significant amount of time (9.3s) because it involves tuning each of the 12 microservices on the critical path sequentially with 15 iterations each.

Based on the above results, we conclude that, for our evaluation, **DDS is the best performing optimization algorithm.** An additional advantage of DDS is that it is designed for optimizing in high dimensions [42], making it suitable for enterprise applications that are composed of a large number of microservices.

Analysis of best configurations chosen by all the algorithms. As seen in Figure 4, different optimization algorithms provide comparable latency benefits. An important question in this context is whether the different algorithms are converging to the same globally optimal or different locally optimal configurations. Interestingly, we find that the best configuration chosen by different algorithms is indeed different. However, we do see some similarities and differences in the parameter settings in these configurations. The default memory limit value for Memcached is...
18, which is higher than the setting assigned by other algo-
randomly chosen initial configuration case. Only a 3.4% relative drop in performance compared to the
significant improvement over the default configuration, with
the poor initial configuration, the algorithm does provide
Memcached cache size to 16MB, etc. We find that, despite
1 use BO GP for this evaluation. For example, we limit the
forms poorly to check how the optimization recovers; we
cally set the initial configuration to one that we know per-
baness of number of iterations, we plot the best improvement
algorithms from among 15 iterations. To analyze the signifi-
cance of initial configuration.
The optimization
application.
64MB; however, the best configurations suggested by the
algorithms have a memory limit value of at least 4GB for the
post-storage-memcached microservice. The threading and ex-
ecution model in MongoDB is synchronous by default, but the
best performing algorithm, DDS, sets this parameter to adap-
tive for all the MongoDB microservices on the critical path,
suggesting that adaptive is a better option. Similarly, DDS
sets the number of threads in write-home-timeline-service to
18, which is higher than the setting assigned by other algo-
rithms, enabling it to exploit the host’s processing power.
Convergence analysis of algorithms. The results shown
in Figure 4 are based on the best configuration picked by the
algorithms from among 15 iterations. To analyze the signifi-
cance of number of iterations, we plot the best improvement
afforded until different iterations for the top 3 algorithms in
Figure 5. We see that DDS quickly finds good configurations
as compared to BO and PSO. We also analyzed the results
for 100 iterations and found that the additional performance
benefit afforded over 15 iterations is only about 1–2% com-
pared to the best solution in Figure 4, suggesting that the
optimization algorithms converge relatively quickly. This
is a useful feature in practice given that each additional it-
eration imposes certain overhead and unavailability on the
application.
Significance of initial configuration. The optimization
algorithms typically start with a randomly sampled config-
uration. To assess the significance of this initial configuration
on performance improvement and convergence, we specifi-
cally set the initial configuration to one that we know per-
forms poorly to check how the optimization recovers; we
use BO GP for this evaluation. For example, we limit the
number of processes for the Nginx microservice to 1, set the
Memcached cache size to 16MB, etc. We find that, despite
the poor initial configuration, the algorithm does provide
significant improvement over the default configuration, with
only a 3.4% relative drop in performance compared to the
randomly chosen initial configuration case.

4 Related Work
Microservices configuration tuning. µTune [40] is a frame-
work that reduces the tail latency of On-Line Data Intensive
(OLDI) applications implemented as microservices. µTune
builds empirically-derived piece-wise linear models for dif-
ferent threading models and thread pool sizes at various
loads, which then guides the online tuning stage. However,
as discussed in Section 3.3, microservices have numerous
other parameters that can impact performance.
Application configuration tuning. There has been con-
siderable research in parameter tuning for individual appli-
cations, such as Apache web server [44], Memcached [43],
database [46] and storage systems [19], etc. While the above
works can be used to tune individual microservices in iso-
lation, the dependencies between microservices necessitates
global optimization across microservices.
SmartConf [45] is a control-theoretic framework that au-
tomatically sets and dynamically adjusts parameters of soft-
ware systems to optimize performance metrics while meeting
the operating constraints set by the user. However, Smart-
Conf is only applicable to parameters that have a linear
relationship with performance; this is not necessarily the
case for parameters of microservices [40].
BestConfig [47] uses sampling and search-based meth-
ods to tune parameters of software systems. However, the
sampling effort required increases exponentially with the
number of parameters, suggesting that BestConfig is infeasi-
ble for microservices configuration tuning.
Cloud configuration tuning. Bilal et al. [16] perform an
exhaustive comparison of existing black-box techniques for
the problem of finding the best cloud configuration that min-
imizes objective functions like execution time or execution
cost. Vanir [15] optimizes the cloud configuration for analyt-
ics clusters using Mondrian forest-based performance model
and transfer learning. OPTIMUSCLOUD [33] jointly opti-
mizes VM configurations and database configurations for
cloud-deployed database systems by training a performance
prediction model. Kaminski et al. [30] employ black-box op-
timization algorithms to find cost-effective resource assign-
ments while meeting performance targets for a multi-tenant,
Bayesian Optimization (BO) to build a performance model
for Big Data systems, which is then used to find the best
cloud Configurations for these systems.
While some of the optimization algorithms explored in
our evaluation are similar to the ones employed by the above
works, we note that our focus is on tuning the parameters of
the numerous microservices that make up an application, as
opposed to only focusing on a handful of resource allocation
parameters, such as number of CPUs, memory capacity, etc.
Reducing the configuration space. Kanelis et al. [31] em-
ploy learning-based techniques to find the most important
parameters of database systems that impact performance.
Carver [18] employs Latin Hypercube Sampling to explore the effect of different parameters on storage system performance and use the variance in performance caused by a parameter as an indicator of the parameter’s importance. As discussed in Section 3, focusing on microservices on the critical path is a more effective approach than focusing on microservices that cause the most performance variation.

5 Conclusion

Despite the recent shift in application design to microservices architecture, the fundamental problem of setting the configuration of individual microservices to improve performance has received very little attention, with practitioners instead settling for sub-optimal performance via default or ad-hoc configuration settings. This workshop paper makes the case for configuration tuning of microservices. We formulate and investigate the problem, identify the key challenges (large state space and inter-dependent parameters), and evaluate different techniques to address these challenges. Our experimental results on a popular benchmark application show that, with moderate effort, the tail latency of microservices applications can be improved by as much as 23% by tuning the configuration parameters of specific microservices.

Acknowledgment: This work was supported by NSF grants CSN-1750109 and CNS-1717588.

References

