
Towards Optimal Configuration of Microservices
Gagan Somashekar and Anshul Gandhi

PACE Lab, Stony Brook University
Stony Brook, New York, USA

{gsomashekar,anshul}@cs.stonybrook.edu

Abstract
The microservice architecture allows applications to be de-
signed in a modular format, whereby each microservice can
implement a single functionality and can be independently
managed and deployed. However, an undesirable side-effect
of this modular design is the large state space of possibly
inter-dependent configuration parameters (of the constituent
microservices) which have to be tuned to improve applica-
tion performance. This workshop paper investigates opti-
mization techniques and dimensionality reduction strategies
for tuning microservices applications, empirically demon-
strating the significant tail latency improvements (as much
as 23%) that can be achieved with configuration tuning.

Keywords: ML for systems, microservices, configuration
tuning, optimization, tail latency

ACM Reference Format:
Gagan Somashekar and Anshul Gandhi. 2021. Towards OptimalConfiguration of Microservices. In The 1st Workshop on Machine
Learning and Systems (EuroMLSys ’21), April 26, 2021, Online, United
Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3437984.3458828

1 Introduction
The emerging microservice architecture allows applications
to be decomposed into different, interacting modules, each
of which can then be independently managed for agility,
scalability, and fault isolation [24, 25, 27, 29, 40]. Each mod-
ule or microservice typically implements a single business
capability. The communication between the microservices,
usually stateless, is via well-defined light weight APIs.
The microservice architecture is especially well suited

for designing online, customer-facing applications where
performance and availability are paramount [12, 20, 21, 25].
For example, an online application can be deployed as front-
end microservices (e.g., Nginx), database microservices (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMLSys ’21, April 26, 2021, Online, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8298-4/21/04. . . $15.00
https://doi.org/10.1145/3437984.3458828

MongoDB), caching microservices (e.g., Memcached), along
with services that implement the logic of the application. The
latter services that implement the logic may each have their
own database and cache microservices. Consequently, an
application can have numerous microservices. Distributed
applications implemented using the microservices architec-
ture are widely replacing existing deployments implemented
using monolithic or multi-tier architectures at Amazon, Net-
flix, Uber, and Twitter [25].
Despite the benefits of the microservice architecture, a

specific challenge that this distributed deployment poses is
that of tuning the configuration parameters of the constituent
microservices. Tuning the parameters of monolithic or N-tier
application deployments for maximizing performance is al-
ready a difficult task [33, 40, 44, 45, 45–47] (see Section 4).
With microservice applications, configuration tuning is es-
pecially complicated owing to the following challenges:

• Very large configuration space. Microservices applica-
tions have numerous, interacting microservices that each
have several parameters that can be configured. Further,
frameworks that aid microservices development, such as
Apache Thrift [10] and gRPC [28], introduce additional
parameters that impact application performance.

• Inter-dependent parameters. The parameter setting of
a microservice can influence the optimal value of a dif-
ferent parameter of the same microservice. As a result,
the numerous parameters cannot be independently opti-
mized (see Section 3). For example, for MongoDB, a low
value of the cache size parameter can amplify the num-
ber of concurrent read transactions, making it difficult to
independently tune the latter parameter [8].

• Dependency between parameters of differentmicroser-
vices. The dependency between parameter values extends
beyond a single microservice; parameters of upstream ser-
vices are often dependent on the parameter settings of
downstream services [44]. For example, the thread pool
size of a microservice may dictate how many concurrent
requests are sent to the downstream microservice.

• Interference among colocated microservices. Microser-
vices, typically deployed as containers, can be colocated
on the same physical host. Consequently, due to poten-
tial resource contention, the resource configuration of a
microservice can impact the performance of all other colo-
cated microservices.

• Non-linear relationship betweenmicroservices param-
eters and performance. Application performance need

https://doi.org/10.1145/3437984.3458828
https://doi.org/10.1145/3437984.3458828
https://doi.org/10.1145/3437984.3458828

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Gagan Somashekar and Anshul Gandhi

Figure 1. Comparison of 95𝑡ℎ percentile of latency for the
social networking application [25] under (i) default configu-
ration values (Default), (ii) the configuration used by Death-
StarBench benchmark developers [2] (DSB), and the configu-
ration found by the best optimization technique among those
we explored (iii) with dimensionality reduction (considering
only a subset of microservices for tuning) and (iv) without
any reduction (tuning all microservices).

not be monotonically or linearly dependent on parameter
values, making it difficult to determine optimal configura-
tion parameter settings. The thread pool size parameter
is a classic example whereby a low value results in under-
utilization of the CPU and a very high value results in
contention for network sockets or CPU resources [40].

There is very little prior work on the specific problem of
configuration tuning of microservices, and that work relies
on empirical analysis for the specific parameters of thread
pool size and threading model [40]. There are, however, prior
works that focus on optimizing the configuration of indi-
vidual services [19, 46], but as explained above, the depen-
dencies between the parameters of microservices makes it
infeasible to optimize them in isolation. To the best of our
knowledge, there is no prior work that focuses on the prob-
lem of comprehensively tuning the configuration parameters
of a microservice application.
This workshop paper explores the problem of configura-

tion tuning of microservices applications. We conduct an
extensive experimental investigation of various black-box
optimization algorithms with the goal of minimizing the
tail latency of a given microservice application deployment.
As shown in Figure 1, the best optimization algorithm can
reduce the tail latency of the social networking microservice
application [25] by as much 23% and 21% compared to the de-
fault configuration setting and the suggested configuration
in prior work [25], respectively.

To address the key challenge of a large configuration space
when tuning microservices applications, we first identify po-
tential performance-impacting parameters for popularly de-
ployed microservices, such as Nginx, Memcached, MongoDB,
etc. We then investigate various dimensionality reduction
approaches to identify a subset of microservices that are

most likely to impact end-to-end application latency. As il-
lustrated by the two rightmost bars in Figure 1, by employing
dimensionality reduction, we can achieve roughly the same
improvement in tail latency (0.2% difference) while only tun-
ing about 43% of all microservices (roughly 57% reduction in
number of parameters tuned).
This workshop paper makes the following contributions:

1. Problem formulation. We frame the configuration tun-
ing problem as an optimization problem,making it amenable
to optimization algorithms.

2. Automated framework to aid the configuration opti-
mization. We implement a framework to experimentally
explore and evaluate the configuration space of parame-
ters for microservices. The framework is fully automated
and can be integrated with any optimization technique.

3. Experimental evaluation of different optimization al-
gorithms. We implement six different representative op-
timization algorithms using open-sourced libraries and
compare their efficacy in choosing the best configuration
with respect to minimizing the application tail latency.
To assess the optimization algorithms’ applicability in
practice, we also analyze their convergence and overhead.

4. Dimensionality reduction. For scalability, we investi-
gate techniques to reduce the overhead of optimization
algorithms by limiting the set of microservices whose
parameters will be configured. We consider various sub-
sets of microservices: (i) those on the critical path, (ii)
those that cause performance variability, and (iii) those
identified by prior works to be performance bottlenecks.

2 Problem Formulation and System Design
In this section, we formulate the microservices configuration
setting problem as an optimization problem. We then de-
scribe our system design for the automated framework that
aids our experimental evaluation (presented in Section 3).

2.1 Microservices configuration setting problem
Let 𝑓 (𝑐) denote the objective function (or performance met-
ric) for the microservices application under the configuration
𝑐; here, 𝑐 is the (potentially large) vector of parameter set-
tings for all tunable parameters of all microservices. Let 𝐶
denote the set of all configurations, i.e., all feasible values
that vector 𝑐 can take. Finally, let 𝑐𝑜𝑝𝑡 ∈ 𝐶 denote the config-
uration that minimizes the performance metric, 𝑓 (). Thus,
𝑐𝑜𝑝𝑡 = argmin𝑐∈𝐶 𝑓 (𝑐). We could consider metrics that need
to be maximized by minimizing the negative of the objective
function. Our problem statement is to find 𝑐𝑜𝑝𝑡 or a near-
optimal configuration. We focus on the realistic case where
no assumptions can be made on the structure of 𝑓 () or on
the availability of offline training data. We further assert,
for practical purposes, that the (near-)optimal configuration
should be determined in a reasonable amount of time.

Towards Optimal Configuration of Microservices EuroMLSys ’21, April 26, 2021, Online, United Kingdom

 Controller

Optimizer

Application deployment file

Docker
compose

f(c(i))
c(i+1)

Docker compose files

Metrics Workload

Application

 ClientExperiment details

Figure 2. Illustration of our solution framework. 𝑓 () is ob-
jective function or performance metric of interest and 𝑐 (𝑖)
is the configuration setting for iteration 𝑖 .

While 𝑓 () can represent any metric of interest, including
combinations of metrics, we consider the 95𝑡ℎ percentile of
end-to-end application latency to be our metric, 𝑓 (). We
note that customer-facing applications often employ such
tail latency metrics to assess application performance [21].

Given the dependencies between parameters and the pos-
sible non-linear relationship between performance and pa-
rameter values (as described in Section 1), it is unlikely that
𝑓 () can be determined or inferred accurately. Thus, classic
convex optimization techniques cannot be readily applied to
determine 𝑐𝑜𝑝𝑡 . However, for a given 𝑐 , the value of 𝑓 (𝑐) can
be observed or measured by setting the parameter values
in 𝑐 for the microservices and running an experiment. This
suggests that black-box optimization techniques, that iter-
atively observe the value of 𝑓 () at a given 𝑐 and determine
the next configuration value 𝑐 ′ to explore, can be applied to
find 𝑐𝑜𝑝𝑡 or near-optimal 𝑐 values.

2.2 Automated framework to aid optimization
Unlike prior works [16, 19] that run optimization algorithms
over readily available datasets, we evaluate the value of the
objective function, 𝑓 (), by running an experiment. To stream-
line the iterative exploration of configurations (for determin-
ing 𝑐𝑜𝑝𝑡), we thus require a robust framework that can auto-
matically: (i) configure the parameters of the microservices
as directed and run the application, (ii) collect the required
metrics, and (iii) run the optimization algorithm to obtain
the next configuration to experiment with. The framework
should also be application-agnostic and should allow the
optimization algorithm to be a pluggable module.

Figure 2 illustrates the design of our automated framework
that we use to conduct our experiments. The application de-
ployment file has the list of microservices, their images, the
host details, etc. The controller passes the value of the mea-
sured objective function, 𝑓 (𝑐 (𝑖)), of the current iteration, 𝑖 ,
and queries the optimizer for the next configuration setting,
𝑐 (𝑖 + 1). Using the details in the application deployment file
and the 𝑐 (𝑖 + 1) configuration passed by the optimizer, the
controller generates docker-compose files on the fly with the
necessary network settings and mounts. The application is
then deployed on the servers using these docker-compose
files and the client sends the workload to the application.
The request traces are collected by a tracing framework and
the latency metrics are calculated by the controller. These
metrics are passed to the controller which then calculates the

objective function, 𝑓 (𝑐 (𝑖 + 1)), and repeats the process itera-
tively until a good enough configuration is found or until an
exploration time limit is reached. Our framework currently
supports any linear combination of average, median, or tail
latency for the objective function. The framework can be
employed for any microservices application by including
the application deployment file for that application. Any opti-
mization algorithm can be added by inheriting the Optimizer
class and implementing its methods.

3 Evaluation
In this section, we first discuss our experimental setup and
methodology, and then present our experimental results.

3.1 Experimental setup
We use a cluster with four servers, each with 24 (hyper)cores,
40 GB of memory, and 250GB of disk space. We deploy the
microservices of the application on these servers based on
their functionality: one server hosts front-end microservices,
one hosts back-end microservices, one hosts the microser-
vices that implement the logic, and one server is dedicated
for monitoring the microservices and the application per-
formance. We restrict monitoring services, Jaeger [4] with
Elasticsearch [3] back-end, to a different server to avoid in-
terference with the application. docker-compose is used to
deploy the application and overlay network connects the
microservices across the servers.
We employ the social networking application from the

DeathStarBench benchmark [25] to evaluate the efficacy
of different black-box optimization algorithms. The social
networking application has 28 microservices that together
implement several features of real-world social network-
ing applications. The constituent microservices are Nginx,
Memcached, MongoDB, Redis, as well as microservices that
implement the logic of the application. The application work-
load consists of 10% requests that create a post, 30% requests
that read the user’s own timeline, and 60% requests that
read the timeline of other users; this division is based on an
empirical estimate of a user’s typical behaviour.
We change the type of server in the social networking

application of DeathStarBench to TNonblockingServer. The
Apache Thrift C++ TNonblockingServer provides good per-
formance and exposes numerous settings for the developer
to customize the server [10]. We also make modifications to
change the thread pool size dynamically based on the value
suggested by the optimizer for each iteration.

3.2 Evaluation methodology
For evaluation, we consider the 95𝑡ℎ percentile of latency as
the performance metric; other latency metrics can be readily
used as well. For each microservice, we select at most five
parameters to tune; we refer to product documentation [1, 5–
7, 10] to identify the performance-impacting parameters. For

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Gagan Somashekar and Anshul Gandhi

each configuration to be tested, we run the application under
that configuration three times for a duration of 5 minutes
each, and collect latency metrics across all runs. We next
discuss the optimization algorithms and dimensionality re-
duction strategies we investigate in our evaluation.

3.2.1 Black-box optimization algorithms. We consider
6 optimization algorithms in our evaluation. The first 2 are
representative of heuristic-based probabilistic algorithms, the
next 2 are evolutionary algorithms inspired by population-
based biological evolution, and the last 2 are sequential model-
based optimization algorithms that approximate the objec-
tive function with a cheaper, surrogate function [13] to aid
optimization. We use skopt [9], Hyperopt [14], and Never-
grad [38] libraries to implement the algorithms.

1. SimulatedAnnealing (SA) [36] starts with an initial con-
figuration, 𝑐0, and at each iteration considers a neighbour-
ing configuration, 𝑐𝑛 . It then picks the next configuration
based on the value of the objective function at 𝑐0 and 𝑐𝑛
and a time varying parameter, 𝑇 , whose value slowly de-
creases (annealing) with each iteration leading to more
exploitation and less exploration.

2. Dynamically Dimensioned Search (DDS) starts with an
initial configuration and then perturbs the values of the
parameters of the configuration based on a perturbation
factor [42]. The algorithm moves from a global search
towards a local search as the iterations progress by dy-
namically and probabilistically reducing the number of
parameters that are perturbed.

3. Particle Swarm Optimization (PSO) [32] works by iter-
atively improving the candidate solution with regard to
the objective function. Each candidate solution is known
as a particle and all particles together form a swarm. The
particles are moved around the search-space based on the
best value the particle has seen so far (exploration) and the
global best value seen by the whole swarm (exploitation).

4. Genetic Algorithms (GA) [34] start with an initial ran-
dom population of candidate configurations which is then
pruned based on the value of the objective function at
these configurations. This pruned subset is used to gener-
ate a new set of candidates through mutation (randomly
changing the configurations of some parameters) and
crossover (combining configurations of the candidates).

5. Bayesian Optimization (BO) starts with a prior distri-
bution of the search space guided by the surrogate; we
experiment with the popular Gaussian Process (GP) [13],
Gradient Boosted Regression Trees (GBRT) [22], and Ran-
dom Forests (RF) [23] surrogate models. The posterior
distribution is updated at each step of exploration using
Bayesian method.

6. Tree-structured Parzen Estimator (TPE) is similar to
BO, but models the likelihood and prior instead of the
posterior [13].

3.2.2 Dimensionality reduction strategies. If an appli-
cation has 𝑚 microservices each with 𝑝𝑖 parameters (for
𝑖 = 1, 2, . . . ,𝑚), then the number of dimensions in a configu-
ration vector 𝑐 is 𝑛 =

∑𝑚
𝑖=1 𝑝𝑖 . For the purpose of illustration,

if each parameter can take 𝑣 different values, then the num-
ber of possible configurations is |𝐶 | = 𝑣𝑛 . Clearly, the search
space of configurations grows exponentially with the num-
ber of microservices. To reduce the search space, we thus
consider strategies that allow us to focus our configuration
tuning effort on only a subset of the microservices. Another
advantage of dimensionality reduction is that not all opti-
mization algorithms work well in high dimensions (number
of tunable parameters, in our case), for example, Bayesian
Optimization (BO) is known to not perform well when the
number of parameters to optimize is more than 20 [35].

1. Critical path. In the call graph of a request, the criti-
cal path is the path formed by microservices that deter-
mines the latency of the request. We employ standard
practices [37] to determine the critical path of a request
and only consider configuration tuning for these microser-
vices. We rely on the service time (or span) measurements
provided by Jaeger for each microservice to determine
the critical path. We also exclude all microservices on the
critical path whose service time is less than 1ms; we find
that such microservices do not contribute significantly to
latency and can be omitted to reduce the configuration
search space (by as much as 33% in our experiments).

2. Known bottlenecks. Prior work on performance diagno-
sis of microservices applications conducted thorough em-
pirical analysis to identify performance bottlenecks [26].
We thus investigate configuration tuning only for the 8
bottleneck microservices identified by these works. Since
this approach requires prior knowledge of bottlenecks, we
consider it an unrealistic approach but one that serves as
ground truth for comparison.

3. Performance variance. Prior works [20, 39, 41] demon-
strated the improvement in performance that can be ob-
tained by redesigning components that cause high perfor-
mance variability. Inspired by this approach, we consider
configuration tuning only for the 7 microservices that
have a significant service time coefficient of variation [17]
(above 0.5 in our experiments).

3.3 Experimental results
In practice, the optimization algorithms cannot be run indef-
initely. Unless otherwise specified, we thus limit the num-
ber of configurations to be explored for each optimization
algorithm to 15. For initialization, the optimization algo-
rithms typically start with a random configuration. Note
that (re)setting the configuration parameters between itera-
tions does incur some overhead and may require restarting
some microservices; during this time, the application may
be momentarily offline.

Towards Optimal Configuration of Microservices EuroMLSys ’21, April 26, 2021, Online, United Kingdom

Figure 3. Evaluation of different dimensionality reduction
techniques with respect to improvement in latency over the
default configuration under DDS and Bayesian optimization.

Efficacy of dimensionality reduction. Figure 3 shows the
percentage improvement in tail (95𝑡ℎ percentile) latency of
the social networking application under different dimen-
sionality reduction techniques, compared to the tail latency
when using the default configuration for all parameters. For
ease of illustration, we show the results for two specific
optimization algorithms. We see that tuning all 28 microser-
vices of the social networking application provides about
25% improvement in tail latency. However, tuning only the
microservices on the critical path (12 microservices) provides
22–23% improvement. Tuning the known bottlenecks pro-
vides similar improvements, suggesting that the critical path
approach correctly identifies the microservices that have
the most impact; note that the known bottlenecks approach
requires prior, offline knowledge of bottlenecks, which is
not always feasible and requires significant additional effort.
Finally, by focusing on the variability causing microservices,
the afforded improvement in latency is about 17–20%.
To further contrast the three different dimensionality re-

duction techniques, we consider the overlap in subsets of
microservices chosen by the techniques. We find that only
two microservices are common among all the subsets: (i)
post-storage-memcached is an important microservice as it
caches posts that are read by requests that constitute 90%
of the workload; and (ii) compose-post-service is critical in
the call graph of the request that writes posts as it is called
multiple times per request. This shows that, despite differ-
ences in the subsets, all three techniques have the ability to
identify important, performance-impacting microservices.
Performance of different optimization algorithms. The
bars in Figure 4 show the (sorted) percentage improvement
(on left y-axis) in tail latency over the default configuration
afforded by different optimization algorithms using the criti-
cal path approach. For comparison, we also show (as DSB)
the improvement afforded (about 3%) by the configuration
employed by the DeathStarBench benchmark developers [2].
We see that DDS provides the best improvement of 23.4%,
followed closely by PSO (22.9%) and BO (22.1%). We note

Figure 4. Comparison of improvement in latency compared
to default configuration (left y-axis) and the time incurred
by the optimization (right y-axis) for all algorithms when
tuning the microservices on the critical path.

that for Bayesian Optimization, we experimented with vari-
ous surrogate models; we found Gaussian Process (with the
Expected Improvement acquisition function), referred to as
BO GP in our figures, to provide the best results.
We also show with Serial the performance improvement

afforded by the approach that sequentially tunes (using BO
GP) each microservice on the critical path, as opposed to
jointly tuning all microservices on the critical path. The Se-
rial approach is similar to one of the baselines proposed in
Vanir [15] for the cloud resource allocation problem (see
Section 4). We find that Serial provides about 18.9% improve-
ment, suggesting that independently tuning microservices
can be sub-optimal. Further, we find that the order of op-
timization is also important for Serial; when sequentially
optimizing microservices in the reverse order of the critical
path, the percentage improvement is better.
To evaluate the overhead of different optimization algo-

rithms, we plot (solid line with right y-axis) the time taken by
the optimization across all iterations in Figure 4. We find that
DDS requires the least amount of time (7ms), followed by
BO (1.4s) and PSO (2.2s). SA and TPE incur a high overhead.
Serial employs BO but takes a significant amount of time
(9.3s) because it involves tuning each of the 12 microservices
on the critical path sequentially with 15 iterations each.

Based on the above results, we conclude that, for our eval-
uation, DDS is the best performing optimization algorithm.
An additional advantage of DDS is that it is designed for
optimizing in high dimensions [42], making it suitable for
enterprise applications that are composed of a large number
of microservices.
Analysis of best configurations chosen by all the algo-
rithms. As seen in Figure 4, different optimization algo-
rithms provide comparable latency benefits. An important
question in this context is whether the different algorithms
are converging to the same globally optimal or different
locally optimal configurations. Interestingly, we find that
the best configuration chosen by different algorithms is in-
deed different. However, we do see some similarities and
differences in the parameter settings in these configura-
tions. The default memory limit value for Memcached is

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Gagan Somashekar and Anshul Gandhi

Figure 5. Comparison of tuning efficiency for the top 3 al-
gorithms for 15 iterations when tuning on the critical path.

64MB; however, the best configurations suggested by the
algorithms have a memory limit value of at least 4GB for the
post-storage-memcached microservice. The threading and ex-
ecution model in MongoDB is synchronous by default, but the
best performing algorithm, DDS, sets this parameter to adap-
tive for all the MongoDB microservices on the critical path,
suggesting that adaptive is a better option. Similarly, DDS
sets the number of threads in write-home-timeline-service to
18, which is higher than the setting assigned by other algo-
rithms, enabling it to exploit the host’s processing power.
Convergence analysis of algorithms. The results shown
in Figure 4 are based on the best configuration picked by the
algorithms from among 15 iterations. To analyze the signifi-
cance of number of iterations, we plot the best improvement
afforded until different iterations for the top 3 algorithms in
Figure 5. We see that DDS quickly finds good configurations
as compared to BO and PSO. We also analyzed the results
for 100 iterations and found that the additional performance
benefit afforded over 15 iterations is only about 1–2% com-
pared to the best solution in Figure 4, suggesting that the
optimization algorithms converge relatively quickly. This
is a useful feature in practice given that each additional it-
eration imposes certain overhead and unavailability on the
application.
Significance of initial configuration. The optimization
algorithms typically start with a randomly sampled configu-
ration. To assess the significance of this initial configuration
on performance improvement and convergence, we specifi-
cally set the initial configuration to one that we know per-
forms poorly to check how the optimization recovers; we
use BO GP for this evaluation. For example, we limit the
number of processes for the Nginx microservice to 1, set the
Memcached cache size to 16MB, etc. We find that, despite
the poor initial configuration, the algorithm does provide
significant improvement over the default configuration, with
only a 3.4% relative drop in performance compared to the
randomly chosen initial configuration case.

4 Related Work
Microservices configuration tuning. 𝜇Tune [40] is a frame-
work that reduces the tail latency of On-Line Data Intensive
(OLDI) applications implemented as microservices. 𝜇Tune
builds empirically-derived piece-wise linear models for dif-
ferent threading models and thread pool sizes at various
loads, which then guides the online tuning stage. However,
as discussed in Section 3.3, microservices have numerous
other parameters that can impact performance.
Application configuration tuning. There has been con-
siderable research in parameter tuning for individual appli-
cations, such as Apache web server [44], Memcached [43],
database [46] and storage systems [19], etc. While the above
works can be used to tune individual microservices in isola-
tion, the dependencies between microservices necessitates
global optimization across microservices.

SmartConf [45] is a control-theoretic framework that au-
tomatically sets and dynamically adjusts parameters of soft-
ware systems to optimize performancemetrics whilemeeting
the operating constraints set by the user. However, Smart-
Conf is only applicable to parameters that have a linear
relationship with performance; this is not necessarily the
case for parameters of microservices [40].
BestConfig [47] uses sampling and search-based meth-

ods to tune parameters of software systems. However, the
sampling effort required increases exponentially with the
number of parameters, suggesting that BestConfig is infeasi-
ble for microservices configuration tuning.
Cloud configuration tuning. Bilal et al. [16] perform an
exhaustive comparison of existing black-box techniques for
the problem of finding the best cloud configuration that min-
imizes objective functions like execution time or execution
cost. Vanir [15] optimizes the cloud configuration for analyt-
ics clusters using Mondrian forest-based performance model
and transfer learning. OPTIMUSCLOUD [33] jointly opti-
mizes VM configurations and database configurations for
cloud-deployed database systems by training a performance
prediction model. Kaminski et al. [30] employ black-box op-
timization algorithms to find cost-effective resource assign-
ments while meeting performance targets for a multi-tenant,
container-based cloud environment. CherryPick [11] uses
Bayesian Optimization (BO) to build a performance model
for Big Data systems, which is then used to find the best
cloud Configurations for these systems.
While some of the optimization algorithms explored in

our evaluation are similar to the ones employed by the above
works, we note that our focus is on tuning the parameters of
the numerous microservices that make up an application, as
opposed to only focusing on a handful of resource allocation
parameters, such as number of CPUs, memory capacity, etc.
Reducing the configuration space. Kanellis et al. [31] em-
ploy learning-based techniques to find the most important
parameters of database systems that impact performance.

Towards Optimal Configuration of Microservices EuroMLSys ’21, April 26, 2021, Online, United Kingdom

Carver [18] employs Latin Hypercube Sampling to explore
the effect of different parameters on storage system perfor-
mance and use the variance in performance caused by a
parameter as an indicator of the parameter’s importance.
As discussed in Section 3, focusing on microservices on the
critical path is a more effective approach than focusing on
microservices that cause the most performance variation.

5 Conclusion
Despite the recent shift in application design to microser-
vices architecture, the fundamental problem of setting the
configuration of individual microservices to improve perfor-
mance has received very little attention, with practitioners
instead settling for sub-optimal performance via default or
ad-hoc configuration settings. This workshop paper makes
the case for configuration tuning of microservices. We formu-
late and investigate the problem, identify the key challenges
(large state space and inter-dependent parameters), and eval-
uate different techniques to address these challenges. Our
experimental results on a popular benchmark application
show that, with moderate effort, the tail latency of microser-
vices applications can be improved by as much 23% by tuning
the configuration parameters of specific microservices.
Acknowledgment: This work was supported by NSF grants
CSN-1750109 and CNS-1717588.

References
[1] [n.d.]. Beginner’s Guide. http://nginx.org/en/docs/beginners_guide.

html.
[2] [n.d.]. DeathStarBench. https://github.com/delimitrou/

DeathStarBench.
[3] [n.d.]. Elastic Search: The heart of the free and open Elastic Stack.

https://www.elastic.co/elasticsearch/.
[4] [n.d.]. Jaeger: open source, end-to-end distributed tracing. https:

//www.jaegertracing.io/.
[5] [n.d.]. memcached(1) - Linux man page. https://linux.die.net/man/1/

memcached.
[6] [n.d.]. MongoDB Server Parameters. https://docs.mongodb.com/

manual/reference/parameters/.
[7] [n.d.]. Redis configuration. https://redis.io/topics/config.
[8] [n.d.]. Set wiredTigerConcurrentReadTransactions based on machine

specs? https://jira.mongodb.org/browse/SERVER-19911.
[9] [n.d.]. SkOpt. https://scikit-optimize.github.io.
[10] Randy Abernethy. 2018. The Programmer’s Guide to Apache Thrift.

Manning publications.
[11] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Analytics.
In Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation (Boston, MA, USA) (NSDI’17). USENIX
Association, USA, 469–482.

[12] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The
Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, Second Edition. http://dx.doi.org/10.2200/
S00516ED2V01Y201306CAC024

[13] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
2011. Algorithms for Hyper-Parameter Optimization. In Advances
in Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel,

P. Bartlett, F. Pereira, and K. Q. Weinberger (Eds.), Vol. 24. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[14] J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28 (Atlanta,
GA, USA) (ICML’13). JMLR.org, I–115–I–123.

[15] Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. 2020. Finding
the Right Cloud Configuration for Analytics Clusters. In Proceedings
of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA,
208–222. https://doi.org/10.1145/3419111.3421305

[16] Muhammad Bilal, Marco Serafini, Marco Canini, and Rodrigo Ro-
drigues. 2020. Do the Best Cloud Configurations Grow on Trees?
An Experimental Evaluation of Black Box Algorithms for Optimizing
Cloud Workloads. Proc. VLDB Endow. 13, 12 (July 2020), 2563–2575.
https://doi.org/10.14778/3407790.3407845

[17] Charles E. Brown. 1998. Coefficient of Variation. Springer Berlin
Heidelberg, Berlin, Heidelberg, 155–157. https://doi.org/10.1007/978-
3-642-80328-4_13

[18] Zhen Cao, Geoff Kuenning, and Erez Zadok. 2020. Carver: Finding
Important Parameters for Storage System Tuning. In 18th USENIX Con-
ference on File and Storage Technologies (FAST 20). USENIX Association,
Santa Clara, CA, 43–57. https://www.usenix.org/conference/fast20/
presentation/cao-zhen

[19] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. To-
wards Better Understanding of Black-box Auto-Tuning: A Comparative
Analysis for Storage Systems. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18). USENIX Association, Boston, MA, 893–907.
https://www.usenix.org/conference/atc18/presentation/cao

[20] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles (Stevenson, Wash-
ington, USA) (SOSP ’07). Association for Computing Machinery, New
York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

[22] J. Elith, J. R. Leathwick, and T. Hastie. 2008. A working guide
to boosted regression trees. Journal of Animal Ecology 77, 4
(2008), 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
arXiv:https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-
2656.2008.01390.x

[23] Khaled Fawagreh, Mohamed Medhat Gaber, and Eyad Elyan.
2014. Random forests: from early developments to recent
advancements. Systems Science & Control Engineering 2, 1
(2014), 602–609. https://doi.org/10.1080/21642583.2014.956265
arXiv:https://doi.org/10.1080/21642583.2014.956265

[24] Y. Gan and C. Delimitrou. 2018. The Architectural Implications of
Cloud Microservices. IEEE Computer Architecture Letters 17, 2 (2018),
155–158. https://doi.org/10.1109/LCA.2018.2839189

[25] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayantara Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Bren-
don Jackson, Kelvin Hu, Meghna Pancholi, Brett Clancy, Chris Colen,
Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo
Espinosa, Yuan He, and Christina Delimitrou. 2019. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Im-
plications for Cloud and Edge Systems. In Proceedings of the Twenty
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (Providence, RI).

[26] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun
Cheng, and Christina Delimitrou. 2019. Seer: Leveraging Big Data

http://nginx.org/en/docs/beginners_guide.html
http://nginx.org/en/docs/beginners_guide.html
https://github.com/delimitrou/DeathStarBench
https://github.com/delimitrou/DeathStarBench
https://www.elastic.co/elasticsearch/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://linux.die.net/man/1/memcached
https://linux.die.net/man/1/memcached
https://docs.mongodb.com/manual/reference/parameters/
https://docs.mongodb.com/manual/reference/parameters/
https://redis.io/topics/config
https://jira.mongodb.org/browse/SERVER-19911
https://scikit-optimize.github.io
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1145/3419111.3421305
https://doi.org/10.14778/3407790.3407845
https://doi.org/10.1007/978-3-642-80328-4_13
https://doi.org/10.1007/978-3-642-80328-4_13
https://www.usenix.org/conference/fast20/presentation/cao-zhen
https://www.usenix.org/conference/fast20/presentation/cao-zhen
https://www.usenix.org/conference/atc18/presentation/cao
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://arxiv.org/abs/https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2008.01390.x
https://arxiv.org/abs/https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1080/21642583.2014.956265
https://arxiv.org/abs/https://doi.org/10.1080/21642583.2014.956265
https://doi.org/10.1109/LCA.2018.2839189

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Gagan Somashekar and Anshul Gandhi

to Navigate the Complexity of Performance Debugging in Cloud Mi-
croservices. In Proceedings of the Twenty Fourth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS) (Providence, RI).

[27] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen
Lwakatare, Claus Pahl, Stefan Schulte, and Johannes Wettinger. 2017.
Performance Engineering for Microservices: Research Challenges and
Directions. In Proceedings of the 8th ACM/SPEC on International Con-
ference on Performance Engineering Companion (L’Aquila, Italy) (ICPE
’17 Companion). Association for Computing Machinery, New York, NY,
USA, 223–226. https://doi.org/10.1145/3053600.3053653

[28] Kasun Indrasiri and Danesh Kuruppu. 2020. gRPC: Up and Running.
O’Reilly Media.

[29] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. 2018. Mi-
croservices: The Journey So Far and Challenges Ahead. IEEE Software
35, 3 (2018), 24–35. https://doi.org/10.1109/MS.2018.2141039

[30] Matthijs Kaminski, Eddy Truyen, Emad Heydari Beni, Bert Lagaisse,
and Wouter Joosen. 2019. A Framework for Black-Box SLO Tuning
of Multi-Tenant Applications in Kubernetes. In Proceedings of the 5th
International Workshop on Container Technologies and Container Clouds
(Davis, CA, USA) (WOC ’19). Association for Computing Machinery,
New York, NY, USA, 7–12. https://doi.org/10.1145/3366615.3368352

[31] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram
Venkataraman. 2020. Too Many Knobs to Tune? Towards Faster
Database Tuning by Pre-selecting Important Knobs. In 12th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage
20). USENIX Association. https://www.usenix.org/conference/
hotstorage20/presentation/kanellis

[32] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In
Proceedings of ICNN’95 - International Conference on Neural Networks,
Vol. 4. 1942–1948 vol.4. https://doi.org/10.1109/ICNN.1995.488968

[33] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Sub-
rata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020.
OPTIMUSCLOUD: Heterogeneous Configuration Optimization for
Distributed Databases in the Cloud. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). USENIX Association, 189–203.
https://www.usenix.org/conference/atc20/presentation/mahgoub

[34] Seyedali Mirjalili. 2019. Genetic Algorithm. Springer International
Publishing, Cham, 43–55. https://doi.org/10.1007/978-3-319-93025-
1_4

[35] R. Moriconi, M.P. Deisenroth, and K.S. Sesh Kumar. 2020. High-
dimensional Bayesian optimization using low-dimensional feature
spaces. Mach Learn 109, 1925–1943 (2020). https://doi.org/10.1007/
s10994-020-05899-z

[36] Panos M. Pardalos and Thelma D. Mavridou. 2009. Simulated an-
nealingSimulated Annealing. Springer US, Boston, MA, 3591–3593.
https://doi.org/10.1007/978-0-387-74759-0_617

[37] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbar-
czyk, and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-
grained Resource Management Framework for SLO-Oriented Mi-
croservices. In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20). USENIX Association, 805–825.
https://www.usenix.org/conference/osdi20/presentation/qiu

[38] J. Rapin andO. Teytaud. 2018. Nevergrad - A gradient-free optimization
platform. https://GitHub.com/FacebookResearch/Nevergrad.

[39] D. Skinner and W. Kramer. 2005. Understanding the causes of per-
formance variability in HPC workloads. In IEEE International. 2005
Proceedings of the IEEE Workload Characterization Symposium, 2005.
137–149. https://doi.org/10.1109/IISWC.2005.1526010

[40] Akshitha Sriraman and Thomas F. Wenisch. 2018. µTune: Auto-Tuned
Threading for OLDI Microservices. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). USENIX As-
sociation, Carlsbad, CA, 177–194. https://www.usenix.org/conference/
osdi18/presentation/sriraman

[41] Amoghavarsha Suresh and Anshul Gandhi. 2019. Using Variability
as a Guiding Principle to Reduce Latency in Web Applications via OS
Profiling. In The World Wide Web Conference (San Francisco, CA, USA)
(WWW ’19). Association for Computing Machinery, New York, NY,
USA, 1759–1770. https://doi.org/10.1145/3308558.3313406

[42] Bryan A. Tolson and Christine A. Shoemaker. 2007. Dy-
namically dimensioned search algorithm for computationally
efficient watershed model calibration. Water Resources Re-
search 43, 1 (2007). https://doi.org/10.1029/2005WR004723
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005WR004723

[43] Muhammad Wajahat, Salman Masood, Abhinav Sau, and Anshul
Gandhi. 2017. Lessons Learnt from Software Tuning of a Memcached-
Backed, Multi-Tier, Web Cloud Application. In Proceedings of the 8th
International Green and Sustainable Computing Conference (IGSC ’17).
Orlando, FL, USA.

[44] Qingyang Wang, Shungeng Zhang, Yasuhiko Kanemasa, Calton Pu,
Balaji Palanisamy, Lilian Harada, and Motoyuki Kawaba. 2019. Opti-
mizing N-Tier Application Scalability in the Cloud: A Study of Soft
Resource Allocation. ACM Trans. Model. Perform. Eval. Comput. Syst.
4, 2, Article 10 (June 2019), 27 pages. https://doi.org/10.1145/3326120

[45] Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa, and
Achmad Imam Kistijantoro. 2018. Understanding and Auto-Adjusting
Performance-Sensitive Configurations. SIGPLAN Not. 53, 2 (March
2018), 154–168. https://doi.org/10.1145/3296957.3173206

[46] Bohan Zhang, Dana Van Aken, JustinWang, Tao Dai, Shuli Jiang, Jacky
Lao, Siyuan Sheng, Andrew Pavlo, and Geoffrey J. Gordon. 2018. A
Demonstration of the Ottertune Automatic Database Management Sys-
tem Tuning Service. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1910–1913.
https://doi.org/10.14778/3229863.3236222

[47] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong
Ma, Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. 2017. Best-
Config: Tapping the Performance Potential of Systems via Auto-
matic Configuration Tuning. In Proceedings of the 2017 Symposium
on Cloud Computing (Santa Clara, California) (SoCC ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 338–350. https:
//doi.org/10.1145/3127479.3128605

https://doi.org/10.1145/3053600.3053653
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1145/3366615.3368352
https://www.usenix.org/conference/hotstorage20/presentation/kanellis
https://www.usenix.org/conference/hotstorage20/presentation/kanellis
https://doi.org/10.1109/ICNN.1995.488968
https://www.usenix.org/conference/atc20/presentation/mahgoub
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/s10994-020-05899-z
https://doi.org/10.1007/s10994-020-05899-z
https://doi.org/10.1007/978-0-387-74759-0_617
https://www.usenix.org/conference/osdi20/presentation/qiu
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1109/IISWC.2005.1526010
https://www.usenix.org/conference/osdi18/presentation/sriraman
https://www.usenix.org/conference/osdi18/presentation/sriraman
https://doi.org/10.1145/3308558.3313406
https://doi.org/10.1029/2005WR004723
https://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005WR004723
https://doi.org/10.1145/3326120
https://doi.org/10.1145/3296957.3173206
https://doi.org/10.14778/3229863.3236222
https://doi.org/10.1145/3127479.3128605
https://doi.org/10.1145/3127479.3128605

	Abstract
	1 Introduction
	2 Problem Formulation and System Design
	2.1 Microservices configuration setting problem
	2.2 Automated framework to aid optimization

	3 Evaluation
	3.1 Experimental setup
	3.2 Evaluation methodology
	3.3 Experimental results

	4 Related Work
	5 Conclusion
	References

