
Full-System Power Analysis and Modeling for
Server Environments

Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis
Department of Electrical Engineering

Stanford University
{dimeco,rivoire}@stanford.edu, christos@ee.stanford.edu

Partha Ranganathan
Internet Systems and Storage Lab

Hewlett-Packard Labs
partha.ranganathan@hp.com

Abstract— The increasing costs of power delivery and cooling,
as well as the trend toward higher-density computer systems,
have created a growing demand for better power management in
server environments. Despite the increasing interest in this issue,
little work has been done in quantitatively understanding power
consumption trends and developing simple yet accurate models to
predict full-system power. We study the component-level power
breakdown and variation, as well as temporal workload-specific
power consumption of an instrumented power-optimized blade
server. Using this analysis, we examine the validity of prior ad-
hoc approaches to understanding power breakdown and quantify
several interesting trends important for power modeling and
management in the future. We also introduce Mantis, a non-
intrusive method for modeling full-system power consumption
and providing real-time power prediction. Mantis uses a one-
time calibration phase to generate a model by correlating AC
power measurements with user-level system utilization metrics.
We experimentally validate the model on two server systems
with drastically different power footprints and character istics
(a low-end blade and high-end compute-optimized server) using
a variety of workloads. Mantis provides power estimates with
high accuracy for both overall and temporal power consumption,
making it a valuable tool for power-aware scheduling and
analysis.

I. I NTRODUCTION

Power management is becoming an important issue in
enterprise environments, both to reduce costs associated with
power delivery and cooling as well as to improve compaction,
reliability, and compliance with environmental standards. Re-
cent trends toward server consolidation in data centers and
adoption of higher-density computer systems such as blades
are likely to further exacerbate these problems.

For example, for a 30,000 sq.ft. 10MW data center with
1000 standard computing racks each consuming 10KW, the
annual cost of electricity for the computing equipment alone
is likely to be close to $8 million [21]. The capital costs forthe
air conditioning needed to handle such heat dissipation levels
is likely to be anywhere between $2-$5 million. Additionally,
every watt of power consumption is likely to need another 0.5
to 1W of power to operate the cooling system [21] - adding
another $4-$8 million in operational costs.

Power density is also one of the limiting factors preventing
greater compaction, particularly with smaller form factors as
in blade servers. Future blade servers are estimated to need
close to 188K BTU/hr (for 55KW racks) [20]. Such densities

may well require liquid cooling in the data center. Further-
more, increases in temperature associated with larger power
consumption have been shown to reduce the reliability and
efficiency of systems. Every 10C temperature increase over
21C can decrease the reliability of electronics by 50% [24].
Similarly, a 15C rise increases hard disk drive failure rates by
a factor of two [10]. Finally, at a more global level, increased
enterprise power consumption has also been linked with
environmental consequences (e.g., 4 million tons of annual
carbon dioxide emissions). This has led to recommendations
and incentives from several environmental agencies to reduce
enterprise power [25].

Despite the increasing interest in this issue, little work has
been done in quantitatively understanding power consumption
trends at a system level. Some of the key open questions
include: Where is the power spent in enterprise systems? What
are the key energy bottlenecks? What are the component-level
temporal trends in power variation during application execu-
tion? What is the impact of specific workloads on the power
usage characteristics of system components? To answer these
questions, we instrumented a power-optimized blade server
to extract component-level power measurements. We discuss
the insights from this experiment and their applicability to
developing power models.

Current approaches to power modeling fall into two broad
classes: measurements of power at the hardware level [8], [13],
[11] or modeling of power at the simulation level [5], [7], [9],
[14], [22], [26], [27], [29]. Direct hardware measurementsare
fast and accurate but are only applicable to existing systems.
Power modeling through simulation works for both existing
and future systems and can provide detailed analysis and
breakdown. Nevertheless, full-system simulators are extremely
slow compared to real hardware and cannot be used with
long applications and large data-sets. Moreover, simulation
cannot be used to guide software monitoring and dynamic
optimizations for a deployed system.

This paper presents Mantis, a method for full-system power
modeling that is non-intrusive and provides a fast and accurate
prediction of power consumption in server systems. Mantis-
uses widely available low-overhead OS utilization metricsand
performance counters to predict power. It requires a one-
time, offline calibration phase to extract basic AC power
consumption characteristics and relate them to the system

performance metrics. The calibration phase is run only once
for each system. During application runs, Mantis estimates
total power consumption using a set of user-level system uti-
lization metrics. While Mantis cannot provide simulation-level
accuracy since it is derived from standard user-level metrics,
it is still fast, cost-effective, and accurate enough (within 10%
for most workloads) to be used for online management of
power consumption. It is also flexible and portable enough to
be used for power exploration of future system architectures.

The specific contributions of this work are:
• We present component-level power consumption mea-

surements for a blade system and observe trends impor-
tant to future power research and power modeling.

• We develop Mantis, a novel non-intrusive hybrid
hardware-software model for AC power prediction on
server systems based on high-level system utilization
metrics and hardware performance counters. Our model
provides rich functionality, as it can predict peak and
average power as well as temporal variation in power.

• We prototype Mantis on two drastically different server
systems to demonstrate its portability and validate its pre-
dictions using direct AC power measurements. We verify
that the model accurately predicts power consumption in
both platforms.

The rest of the paper is organized as follows. Section 2
describes our component-level measurements and observations
for the blade system. Section 3 presents the design of the
Mantis model, including the measurement and calibration
methodologies used. Section 4 presents the results of our
model validation experiments, while Section 5 presents poten-
tial applications of Mantis and provides suggestions for further
work. Section 6 presents related work and Section 7 concludes
the paper.

II. POWER MEASUREMENT AND ANALYSIS

We study the component-level power consumption of a
blade server in order to understand future power consumption
trends. The blade is ideal for such a study, since it already
incorporates several important power management techniques:
voltage and frequency scaling support for the processor, a
low-power disk, and a low-power power supply. Using our
measurements, we attempt to identify the next set of power
bottlenecks and challenges for power modeling.

A. Methodology

While the overall server power consumption can be obtained
simply by connecting a power meter between the system and
an AC outlet, the component-level power consumption requires
measuring the voltage and current drop across different com-
ponents in the system board.

Our approach leverages our access to the system board
schematics and uses board-level modifications to study the
power consumed in various portions of the server. Our blade
is organized into four power planes:

• A 12V plane whose power budget is dominated (more
than 90%) by the processor and memory,

• A 5V plane whose power budget is dominated by the
hard disk,

• A 5V auxiliary plane,
• A 3.3V plane that, with the 5V plane, accounts for the

power consumed in the network, peripherals, regulators,
supplies, and other miscellaneous components of the
system.

We developed a power measurement and data acquisition
board to measure and log the power consumed in these four
planes concurrently. Since the processor and memory are both
large components of the total power, we further cut into the
12V power plane (desoldered a component to add an extra
sense resistance) to isolate the processor power.

B. Results and Observations

In this section, we discuss some high-level trends common
in the results presented above and discuss potential pitfalls and
opportunities for future work.

Fig. 1. The component breakdown of the blade’s measured power consump-
tion.

Inaccuracies from nameplate ratings.Figure 1 provides in-
formation on the absolute power consumption and component-
level breakdown for the blade system. Comparison of these
numbers with the nameplate power ratings for these machines
show significant differences. For the blade system, the name-
plate power rating overestimates power by almost 50%, and
misestimates the importance of various components. This is
particularly important when considered with the fact that it
is currently common practice to use nameplate power when
provisioning and optimizing the system.
Memory power consumption. Conventional intuition about
the energy bottlenecks in the system has identified the pro-
cessor as the most important component of server power. Our
discussion from the previous section indicates that memory
power consumption is likely to be equally, if not more,
important in the future. Unlike processors that include support
for techniques such as voltage and frequency scaling, power
optimizations for memory are limited to transitions to lower-
power states. While there have been several good studies

evaluating the potential of this approach, it will be important to
develop other methods as well. This will be particularly useful
in cases when transitioning memory modules to lower-power
states can result in reduced bandwidth or increased latency.
The Power consumption in themisc component.One of
the interesting observations from our power characterization
is the large fraction of power spent on the non-processor-
and-memory components. For example, more than 30-40%
of the power is spent on the disk, the network, the I/O and
peripherals, the power supplies, the regulators, and the rest of
the glue circuitry in the server. Interestingly, only the disk
and the power supply are single large contributors to this
collection. At a component level, there are more than 30
other components that contribute to the remaining fractionof
power in this category. Approaches to address these therefore
will need to think of more holistic solutions to server design.
Just as the increasing miniaturization with the “server-on-a-
card” approach has led to corresponding consolidation in the
chipset and controller space, potential exists for solutions that
leverage greater consolidation to more finely-control power.
Furthermore, aggressive solutions to turn off components that
are not being used will also be beneficial.

III. T HE MANTIS MODEL

A. Overview

Mantis captures the power characteristics of a system by
correlating a few user-level utilization metrics or hardware
performance counters with power consumption during a cal-
ibration phase. The derived model parameters are then used
for predicting power consumption based on the same user-level
utilization metrics or hardware performance counters. Hence,
Mantis can calculate the overall average and instantaneous
power consumption of a system. The update frequency of the
utilization metrics and counters are what limit the frequency
of the instantaneous power estimates.

Fig. 2. The stages of Mantis model development and use.

Figure 2 illustrates the process of developing and applying
the Mantis model. The first stage is running the calibration

Fig. 3. The control and measurement system initializes the workload
execution. Then it records performance metrics for the system under test while
receiving power measurements from the AC power meter.

process on a system connected to an AC power meter. The
calibration process consists of benchmarks that individually
stress each major component of the system under test in order
to derive the basic correlation between its utilization andpower
consumption. The second stage is to formulate the model
based on the performance metrics and AC power data acquired
during the calibration scheme. A linear program is used to
fit the model parameters to the data, relating performance
metrics to AC power variation for the system. The calibration
and model derivation processes need to be runexactly once
for a specific system type, most likely by its vendor1.
Precedent exists for this type of additional vendor-supplied
power measurement [3]. In that case, end-users of Mantis will
proceed to the final stage, power prediction. During this stage,
we continuously monitor the utilization metrics through the
operating system or hardware counters while running the
workload of interest. Based on the metrics and the model
parameters, we can derive accurate predictions of overall and
component-level power consumption. The power estimates can
be fed directly to a scheduler or saved for offline analysis.
This final stage is repeated for every workload. It involves
no burden to the user such as using an AC power meter. The
workload of interest runs at full speed on the computer system
under test, with minor overheads associated with extracting
utilization metrics and calculating the gradients.

B. Measuring Power and Utilization

For the Mantis calibration stage, we measured the AC power
consumed by each server while running a specific workload.
Both OS performance metrics and hardware performance
counters were used to measure system activity. The OS metrics
used were CPU utilization and I/O request rates to the hard
disk and network. They were collected on both systems with
SAR [1]. Hardware performance counters were used to provide
finer-granularity data for the main memory (off-chip misses).
We collected performance counter numbers using modules
such asperfctl andperfmon [2].

1If a system ships in multiple configurations, the vendor can perform the
calibration phase for each likely component. Then the final model is derived
at the customer site where the exact configuration is known. Customers will
not have to measure AC power for calibration in most cases.

All power and utilization measurements were under the
control of the system in Figure 3 to ensure that data were
properly synchronized.

C. Calibration

The basic power characteristics of each major contributor
to system power consumption are extracted in the calibra-
tion phase. Workloads that isolate and stress the system
components in a controlled manner are run while utilization
measurements are recorded. The data is then run through a
linear program to derive the linear relations between power
consumption and component utilization.

Gamut [17] emulates applications with varying levels of
CPU, memory, hard disk, and network utilization. Accurately
modeling components requires that at least one phase of the
calibration scheme stresses each component individually.We
configure Gamut to isolate one component in each run and
vary the component utilization. To accurately model the power
consumption of the system when idle, one of the calibration
phases must be an idle run. The calibration phase of the
Mantis models presented in this paper consists of an idle run
and configurations of Gamut stressing the CPU, memory, hard
disk, and network.

The linear program relates utilization metrics to power
consumption while minimizing the absolute error of the model
across all calibration phases. The utilization measurements are
compiled into a matrixM with one column for each metric
and a row for each time sample. The power measurements are
compiled in a vector~pmeas. The matrixM is multiplied by
the vector of model parameters for each metric (the program
solution),~s, to produce~ppred containing the power prediction
for each time sample.

~ppred = M~s

The error of predicted power to measured power is defined as
~ǫ. The values of~ǫ are calculated as follows, wherei indexes
the vector elements:

ǫi =
ppred,i−pmeas,i

pmeas,i

~ǫ is split into n components, each containing the error
measurements for one of theN calibration phases. The
average error during each calibration phase is defined asǫ̂n.

Minimizing absolute error while retaining linearity requires
that the objective function of the linear program be defined as
the difference between the positive and negative errors of the
model. The variablest+ and t− are defined to separate the
positive and negative errors, with their difference (t+ − t−)
being the absolute error of the model. The objective function
of the linear program is the sum of the absolute average errors
of the model during theN calibration phases, described using,
t+n and t−n , wheren indicates the calibration phase:

min

N∑

n=1

(t+n − t−n)

s.t.

System Blade Server Itanium Server
CPU 2.2GHz AMD Turion 4x1.5GHz Itanium 2

Memory 512MB SDRAM 1GB DDR
Storage 40GB 2.5” Hard disk 36GB 3.5” Hard disk
Network 10/100MBit Ethernet 10/100MBit Ethernet

Fig. 4. The systems modeled by Mantis in this study.

t+n ≥ ǫ̂n

t−n ≤ ǫ̂n

The objective is minimized while the model parameters
(~s) are varied to derive the model parameters with minimum
prediction error.

D. Implementation

We implemented Mantis on two very different server sys-
tems. The first system is a highly integrated blade server that
includes an AMD Turion processor. The blade system has been
optimized for power consumption. The second system is a
high-end server that contains 4 Itanium2 chips. The Itanium
server is optimized for peak performance. For these specific
configurations we used, the memory, disk, and I/O systems of
the two servers are similar, although in general the Itanium
server has more room for additional memory and disks.

The model prediction granularity was limited by the speed at
which the utilization metrics would update. For both systems,
the prediction granularity was 1 second.

We should point out that Mantis would be implemented
and used similarly for any other system. Still, we present its
implementation with respect to the two systems studied in
order to make the discussion less abstract.

The utilization metrics used in these specific models were:

• ucpu: CPU utilization,
• umem: Off-chip memory access count,
• udisk: Hard disk I/O rate
• unet: Network I/O rate

The modeled power equations, containing parameters as
derived using the linear program, are as follows:

Pblade = 14.45 + 0.236 ∗ ucpu − (4.47E-
8) ∗ umem + 0.00281 ∗ udisk + (3.1E-8) ∗ unet

Pitanium = 635.62 + 0.1108 ∗ ucpu + (4.05E-
7) ∗ umem + 0.00405 ∗ udisk + 0 ∗ unet

The first term in both equations is a constant representing
the power consumption of the system when idle. In the follow-
ing section, we will evaluate how well the Mantis modeling
approach works in practice.

IV. EVALUATION

To validate the Mantis approach to power modeling, we
developed Mantis models for the blade and Itanium servers,

as described in the previous section. We used the mod-
els to estimate power consumption for each system run-
ning a diverse set of applications. Specifically, we used
the SPECcpu2000 integer and floating-point benchmarks,
SPECjbb2000, SPECweb2005, thestreams benchmark, and
matrix multiplication. Overall, this represents more than30
different individual benchmark applications covering different
computing domains (workstation, scientific, enterprise) and
stressing different subsets of system components. The diversity
in the applications used is critical to the validation of the
model. If all applications were from a single domain, the
model could be missing a critical parameter for a component
not exercised by the applications.

Fig. 5. The average error of the Mantis models during each of the
benchmarks.

Figure 5 presents the model prediction accuracy for both
systems. Overall, the errors range from 0% to 15%, with the
blade model achieving less than 5% errors for all cases.

Fig. 6. The 90th percentile error for the models of both systems.

Figure 6 presents the temporal accuracy of the models. At
each point in time, the absolute error is computed between

the prediction and the measurement, and the 90th percentileof
this error over all the samples is reported for each benchmark
for both the systems. As can be seen from the figures, the
errors are within 10% in all cases except for the Itanium
model with SPECcpu2000-int. This is mainly due to the
VLIW-esque EPIC architecture of the Itanium processor, for
which OS-reported CPU utilization does not factor in the
level of ILP of applications. These results indicate that not
only is Mantis accurate in predicting the total average power
across the benchmark, but it is also accurate in predicting the
instantaneous power consumption.

V. A PPLICATIONS OFMANTIS

Here, we discuss the applications of the Mantis power
model.

A. Intra-workload power variation

Workload-specific and server-specific power variation.
At an intra-workload level, our results indicate very little
power variation for many of the applications. Though there
are occasional power ”spikes,” there is very little phase-based
power behavior akin to what previous studies have shown
for performance. At an inter-workload level, more variation
exists. The blade server shows nearly a 50% variation between
the SPECcpu-fp and the SPECweb. Also of interest is the
power variation between the high-end and low-end system.
Most previous intution on power for servers has lumped all
servers into one category. Our analysis shows that, in addition
to the differences in the absolute power, there are fundamental
differences in the nature of the bottlenecks and variation in
power trends between different classes of servers. Again, this
motivates an online tool like Mantis that can accurately capture
the per-system power variation on a run-time basis.

B. Run-time provisioning and control for power and heat

Mantis’s real-time power consumption model can also be
used to plug into dynamic control algorithms for power
and heat management. Below, we qualitatively discuss some
examples.

Online power and heat management.The availability of
real-time component-level power breakdown can enable sev-
eral interesting power management optimizations. For exam-
ple, PowerShifting [12] attempts to limit the total power budget
by dynamically reprovisioning the power budget between the
processor and memory components. With a model like Mantis,
this approach can be made more accurate and extended to all
the other components of the system as well. Mantis can also
enable new optimizations. For example, current approaches
primarily focus on p-state transitions or voltage scaling to
reduce power. Often, changes in CPU utilization can yield
similar power savings without the penalties of transitioning
between different states, but these savings vary across different
systems (often in non-intuitive ways). Mantis can be used to
provide run-time calibration of the potential differencesin
power savings possible with reduced CPU utilization versus
changed power states.

Another interesting optimization enabled by Mantis is to
dynamically control the fan speed in response to the rest
of the system power consumption. Currently, the fan power
is constant and invariant across the execution of the total
workload. However, the component-level power consumption
insights from Mantis can be used to selectively turn on
individual fans to better direct cooling resources to areasthat
need them most. As seen from the Itanium server results, fan
power is a growing component of the total power, and an
optimization like this can enable significant total server power
savings.

TCO-aware resource provisioning in cluster and data
center environments. Mantis can be extended beyond a
single server to enable optimizations at a broader collection-
of-systems level. An interesting application of Mantis is in
predicting the ”thermal map” of a data center. The thermal
map identifies the temperatures at the inlets of the individual
servers in the room and is used to guide optimizations to
control the cooling costs at data center level. Current ap-
proaches to determining the thermal map involve expensive
deployment ofexternal sensors to capture the temperature.
However, an approach like Mantis that captures theheat
generated by the server, used in conjunction with on-board
per-server temperature sensors that are becoming a standard,
can now be used to provide a proxy for the external sensors. In
addition to reduced costs, this approach can also provide for
faster and synchronized responses to data center level thermal
optimizations such as those discussed in [19].

Another benefit of Mantis in enabling resource provisioning
at a data center level to reduce the total costs of ownership
(TCO). This is particularly important, given recent indications
that the electricity costs can outweigh hardware costs in a
data center [4]. Mantis can be used to efficiently provide
an estimation of electricity costs at per-server, per-rack, per-
solution levels. Compared to the conventional approach of
deploying an ammeter per rack or at the power-distribution
unit (PDU), this approach provides lower costs, as well as finer
granularity and better correlation with workload behavior.

Extending this further, as utility-computing environments
start provisioning resources based on both the performance
guarantees as well as the power and heat implications [19],
[18], models like Mantis can now be used to provide ”reverse
calculations” on the resources that can be used for a given
power budget, and how power-scheduling decisions can influ-
ence performance. This enables holistic TCO-aware resource
provisioning optimizations that are otherwise not possible.

VI. RELATED WORK

To the best of our knowledge, Mantis is unique in its
approach to providing on-the-fly full-system power charac-
terization as a function of OS-level resource utilization and
generic performance counter metrics. SimplePower [26], Soft-
Watt [14], and Mambo [23] provide full-system power esti-
mates but these studies use analytical models tied to low-level
architectural events in a simulation system with corresponding

drawbacks on speed and portability. These frameworks are
difficult to use for online applications of power management.

There has also been significant work on component level
power modeling. Wattch [7] is a widely used CPU power
model that tries to accurately model the energy consumed by
the array structures, wires, and clocking in a microprocessor.
There have been other similar models for memory [22],
disk [29], and networking [27]. While these models provided
a detailed prediction of the power of a single component, they
are typically off-line models used along with time-consuming
simulationn systems. Hence, they are difficult to use for on-line
power management or to analyze large commercial workloads
that take too long to simulate.

Using real-time system events can address some of these
drawbacks. Bellosa was one of the first to propose the notion
of event-driven energy accounting [5]. This work, and other
related studies [6], [28], explored the use of performance
counters to provide on-the-fly power characterization of real
systems. However, using performance monitoring counters
alone can be quite inaccurate, as most processors allow for the
measurement of only a limited number of concurrent counter
readings. Time-multiplexing [15], [16] can address this prob-
lem, but at the expense of some loss of coverage. Moreover,
processor counters provide no insight into the I/O system
(disk and networking). Cignetti et al [9] use system calls
that indicate state transitions for different hardware devices
to measure power. Our work leverages similar observations to
this body of work, but uses the intuition that in most real-world
applications, OS-level metrics onresource utilization can also
provide a good first-order proxy for power consumption, and
these, supplemented with a few selected performance counters
available on all current processor architectures, can provide
good accuracy.

VII. C ONCLUSION

As power consumption is a major limiting factor for current
and future computer systems, an increasing amount of research
focuses on power optimizations in schedulers or on the devel-
opment of power-aware system architectures. However, a lotof
this work hinges on accurate characterization or measurement
of the power consumed by the system at run-time as a function
of the workloads being run and the resources being used - an
area that has unfortunately not received as much attention.

In this paper, we address a key need in the community,
namely the lack of quantitative real-world measurement data
showing power breakdown and variation for real-world bench-
marks and systems. Leveraging an experimental setup that
allowed us to measure the power consumption of the individual
power planes, we study the total and component-level power
for a number of workloads.

In addition to documenting the power consumption behavior
of these benchmarks, our results illustrate several potential
pitfalls and opportunities for future work. Specifically, our
results show that indiscriminately using nameplate ratings and
power calculators can often lead to erroneous conclusions.
Our characterization of the variation in component power to

changes in higher-level software parameter indicates promise
for a higher-level modeling approach that can provide compo-
nent level power breakdown with complex hardware support.
Though our blade system was already quite well-optimized
for power, we show that there are still a lot of opportunities
to optimize the power of non-cpu components (e.g., memory).
Our data also show that optimizations that focus on improving
the efficiency of the average case are likely to achieve further
benefits.

We present Mantis - a non-intrusive method for modeling
full-system power consumption that can be easily and flexibly
used in power research. Mantis relies on component utilization
metrics collected through the operating system or standard
hardware counters. During an offline one-time calibration
phase, components are stressed individually through synthetic
workloads and models are created to correlate component
utilization metrics to the power measured. These models are
then incorporated into Mantis to predict average full-system
power consumption at normal use without any direct power
measurements.

We discuss the design of the Mantis model focusing on the
modeling approach for the main components of the system and
their instantiation for two different classes of servers – alow-
end blade system and a high-end compute server. To validate
the model, we measured the AC power consumption of these
systems and compared the results predicted by Mantis. Across
a suite of more than 30 benchmarks comprising SPECint,
SPECfp, SPECweb, SPECjbb, and other applications like
stream and matrix multiply, Mantis comes within 10% of
actual measured average power. Additionally, we have good
accuracies for fine-grained measurements. As power and heat
start becoming one of the key challenges in future system
designs, we belive that approaches like Mantis are likely tobe
a critical component of future power-aware solutions.

In the future, as the challenges with power management
in dense servers get harder and simple approaches to im-
proving the power efficiency of the system are exhausted, it
will become even more important to consider more radical
solutions - crossing hardware and software boundaries, system
and rack boundaries, power and cooling boundaries, etc.
Studies like this one provide the first step in helping us refine
our understanding of the problem, hopefully enabling such
solutions to address this emerging critical challenge.

REFERENCES

[1] Information about the Linux/UNIX sar command.
http://www.computerhope.com/unix/usar.htm.

[2] Perfmon project. http://www.hpl.hp.com/research/linux/perfmon/.
[3] ASHRAE Handbook. http://resourcecenter.ashrae.org/

store/ashrae/newstore.cgi?categoryid=146.
[4] L. Barroso. The price of performance.ACM Queue, 3(7), September

2005.
[5] F. Bellosa. The benefits of event-driven energy accounting in power-

sensitive systems. InProceedings of the 9th ACM SIGOPS European
Workshop, Kolding, Denmark, Sept. 17–20 2000.

[6] F. Bellosa. The case for event-driven energy accounting. Technical
Report TR-I4-01-07, University of Erlangen, Department ofComputer
Science, June 29 2001.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. InProceedings
of the 27th International Symposium on Computer Architecture (ISCA),
pages 83–94, June 2000.

[8] F. Chang, K. Farkas, and P. Ranganathan. Energy-driven statistical pro-
filing detecting software hotspots.Workshop on Power-Aware Computer
Systems, 2002.

[9] T. Cignetti, K. Komarov, and C. Ellis. Energy estimationtools for the
Palm. In Proceedings of the ACM Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM), Aug. 2000.

[10] G. Cole. Estimating drive reliability in desktop computers and con-
sumer electronics. Technology Paper TP-338.1, Seagate Technologies,
November 2000.

[11] G. Contreras and M. Martonosi. Power prediction for intel xscale®
processors using performance monitoring unit events. InISLPED
’05: Proceedings of the 2005 international symposium on Low power
electronics and design, pages 221–226, New York, NY, USA, 2005.
ACM Press.

[12] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A performance-
conserving approach for reducing peak power consumption inserver
systems. InProceedings of the 19th Annual International Conference
on Supercomputing (ICS), pages 293–302, 2005.

[13] J. Flinn and M. Satyanarayanan. PowerScope: A tool for profiling the
energy usage of mobile applications. InSecond IEEE Workshop on
Mobile Computing Systems and Applications, pages 2–10, Feb. 1999.

[14] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L. K. John. Using complete machine simulation
for software power estimation: The SoftWatt approach. InProceedings
of the 8th International Symposium on High-Performance Computer
Architecture (HPCA), page 141, Washington, DC, USA, 2002. IEEE
Computer Society.

[15] R. Joseph and M. Martonosi. Run-time power estimation in high-
performance microprocessors.International Symposium on Low-Power
Electronics and Design (ISLPED), pages 135–140, 2001.

[16] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykrishnan,M. J. Irwin,
and A. Sivasubramaniam. vEC: Virtual energy counters. InProceedings
of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE), pages 28–31, New York,
NY, USA, 2001. ACM Press.

[17] J. Moore. Gamut - Generic Application eMUlaTion, Dec. 2005.
http://issg.cs.duke.edu/cod/.

[18] J. Moore, J. Chase, and P. Ranganathan. Weatherman: Automated, on-
line, and predictive thermal mapping and management for data centers.
To appear in the Third IEEE Conference on Autonomic Computing,
June 2006.

[19] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling
”cool”: Temperature-aware resource assignment in data centers. In
Proceedings of the Usenix Annual Technical Conference, 2005.

[20] J. Mouton. Enabling the vision: Leading the architecture of the future.
Keynote speech, Server Blade Summit 2004.

[21] C. D. Patel, C. E. Bash, R. Sharma, and M. Beitelmal. Smart cooling
of data centers. InIPACK, July 2003.

[22] F. Rawson. MEMPOWER: A simple memory power analysis tool set,
Jan. 2004. IBM Austin Research Laboratory.

[23] H. Shafi, P. J. Bohrer, J. Phelan, C. A. Rusu, and J. L. Peterson. Design
and validation of a performance and power simulator for PowerPC
systems.IBM Journal of Research and Development, 47(5-6):641–651,
2003.

[24] R. Sullivan. Alternating hot and cold aisles provides more reliable
cooling for server farms, 2000. Uptime Institute.

[25] United States Environmental Protection Agency. EPA Con-
ference on Enterprise Servers and Data Centers, Jan. 2006.
http://www.sun.com/aboutsun/environment/epa.jsp.

[26] N. Vijaykrishnan, M. T. Kandemir, M. J. Irwin, H. S. Kim,and
W. Ye. Energy-driven integrated hardware-software optimizations using
SimplePower. InProceedings of the 27th International Symposium on
Computer Architecture ISCA, pages 95–106, 2000.

[27] H. Wang, X. Zhu, L. Peh, and S. Malik. Orion: A power-performance
simulator for interconnection networks. InProceedings of the 35th
Annual International Symposium on Microarchitecture (MICRO), pages
294–305, Nov. 2002.

[28] A. Weissel and F. Bellosa. Process cruise control: Event-driven clock
scaling for dynamic power management. InProceedings of the In-

ternational Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), October 2002.

[29] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and
R. Wang. Modeling hard-disk power consumption. InProceedings of
the 2nd Conference on File and Storage Technologies, San Francisco,
California, pages 217–230, Mar. 2003.

