
NapSAC: Design and Implementation of a
Power-Proportional Web Cluster

Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler, Randy Katz
Computer Science Division

University of California, Berkeley

{krioukov, prmohan, alspaugh, laurak, culler, randy}@cs.berkeley.edu

ABSTRACT

Energy consumption is a major and costly problem in data
centers. A large fraction of this energy goes to powering
idle machines that are not doing any useful work. We iden-
tify two causes of this inefficiency: low server utilization
and a lack of power-proportionality. To address this prob-
lem we present a design for an power-proportional cluster
consisting of a power-aware cluster manager and a set of
heterogeneous machines. Our design makes use of currently
available energy-efficient hardware, mechanisms for transi-
tioning in and out of low-power sleep states, and dynamic
provisioning and scheduling to continually adjust to work-
load and minimize power consumption. With our design we
are able to reduce energy consumption while maintaining
acceptable response times for a web service workload based
on Wikipedia. With our dynamic provisioning algorithms
we demonstrate via simulation a 63% savings in power us-
age in a typically provisioned datacenter where all machines
are left on and awake at all times. Our results show that
we are able to achieve close to 90% of the savings a the-
oretically optimal provisioning scheme would achieve. We
have also built a prototype cluster which runs Wikipedia to
demonstrate the use of our design in a real environment.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications

General Terms

Design, Experimentation

Keywords

Energy, Cluster, Web Server, Web Application, Power Pro-
portional, Power Management, Data Center, Heterogenous
Hardware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Green Networking 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0196-1/10/08 ...$10.00.

1. INTRODUCTION
With the rise of giant web services such as Google, Ama-

zon, Facebook and Wikipedia, energy consumption in data
centers has skyrocketed. The EPA estimates that U.S. data
centers consumed 61 billion kilowatt-hours in 2006 at a cost
of about $4.5 billion. Under current trends this number is
expected to double by 2011 [22]. Moreover, the cost of pow-
ering a server is approaching the cost of the server hardware
itself [2]. Current solutions focus on reducing data center
PUE, for example, by reducing the power used for cool-
ing [19] [20]. However, it is how to reduce the base—the
energy used by the servers—that is the fundamental ques-
tion.

The energy consumption of servers is a product of the
amount of work and the efficiency with which it is performed.
For web service workloads, the amount of work is primar-
ily determined by the rate of user requests, which can vary
drastically from peak to average. In a one-week request trace
that we obtained from Wikipedia, we observed a peak that
was 1.6 times the average rate, though peaks as large as 19
times the average have also been observed [21]. Web service
operators like Wikipedia must at the very least provision
for the observed peak, taking “...the busiest minute of the
busiest hour of the busiest day and build[ing] capacity on
that [16]”. However, most clusters provision for far more
than the observed peak in order to provide a safety margin
against flash crowds. As a rough rule of thumb for com-
parisons in this paper, we conservatively assume that the
service is provisioned for twice the observed one-week peak.

A consequence of the gap between peak and average re-
quests rates in workloads, amplified by overprovisioning, is
that much of the time many servers sit at very low levels of
utilization. In a study of over 5,000 of its servers, Google
found that the average CPU utilization for most servers is
between 10% and 50% of maximum utilization [3]. At low
levels of utilization a server is highly energy-inefficient be-
cause the power consumed, even when idle, is over 50% of
its peak power even for specially engineered platforms and
often over 80% for commodity products [10]. Thus, these
servers are not power-proportional, as the amount of power
used is proportional to the provisioned capacity, not the re-
quest rate. To make this service power-proportional, we
must harness the idleness for energy savings.

This problem can be tackled in two ways: by improv-
ing the energy efficiency of the entire server hardware plat-
form, or by managing server idleness in software. One hard-
ware technique supported by many CPUs is Dynamic Volt-
age/Frequency Scaling (DVFS). However, overall power sav-

ings achievable with DVFS are small because the power used
by the CPU is just a portion of overall server power usage [3].
In addition, if we want to solve this problem using today’s
hardware, we must use a software solution. Thus, this is the
approach we take.

We present our power-aware cluster manager - NapSAC
which performs Server Actuation and Control on a hetero-
geneous set of machines. Our design makes use of currently
available energy-efficient hardware, low-power sleep states
and the capability to drop into standby and Wake-On-LAN,
along with dynamic provisioning and scheduling to aggre-
gate idleness into coarse-grain blocks. With our design we
are able to reduce energy consumption while maintaining
acceptable response times for a web service workload based
on Wikipedia. We provide simulation results that show that
under the 2x provision rule we are able to achieve 90% of
the savings that a theoretical optimal scheme would achieve
by using the bare minimum number of machines needed to
serve the load. Even when compared to a system provi-
sioned only for the peak observed load, we are still able to
achieve 63% of what the optimal would achieve, while min-
imally impacting performance. In addition, we have built a
prototype cluster which runs Wikipedia to demonstrate the
use of our design in a real environment.

2. RELATED WORK
Many CPUs have support for Dynamic Voltage/Frequency

Scaling (DVFS) which can be used to dynamically reduce
CPU performance and save energy when load is low. Many
papers have explored policies for reducing CPU power with
DVFS [23, 12]. In [15], Lorch et al. use predictive models
to estimate future load and create a power schedule. Un-
fortunately, the CPU currently contributes less than 50%
to overall system power [3], thus we focus on whole system
power management.

Virtual machines can be used to dynamically add or re-
move machines in response to change in load. Several recent
papers have used machine learning to dynamically provi-
sion virtual machines while maintaining quality of service
goals [4, 14]. Virtual machines take minutes to boot or mi-
grate and introduce performance overheads. In contrast to
this work we operate at a granularity of seconds, giving us
more agility in dealing with sharp changes in request rate.

Several papers have proposed putting machines to sleep.
PowerNap [17] models how quickly servers would have to
transition in and out of sleep states to achieve energy pro-
portionality on web and other workloads. The authors find
that a transition time of under 10ms is required for signif-
icant power savings, unfortunately, sleep times on current
servers are two orders of magnitude larger. In contrast, we
build a power-proportional cluster with current hardware by
using predictive provisioning. Chase et. al [6] propose an
economic model for allocating resources in a hosting center
and putting unused servers into sleep states. A key differ-
ence is that our provisioning algorithm explicitly optimizes
for energy efficiency utilizing a heterogeneous cluster. We
find this heterogeneity essential for obtaining large energy
savings with acceptable performance. Gong et. al [7] also
trade off user experience with energy usage in the data cen-
ter. Their work specifically deals with long lived connections
as in instant messengers while we concentrate on short lived
request-response type of workloads. Pinheiro et. al [18] ap-
ply dynamic provisioning strategies to web clusters. How-

ever the use of a heterogeneous set of server types and power
states that have fast transition times allow us to handle load
spikes much better. Finally, we recreate a cluster against a
real production class application (Wikipedia) and also eval-
uate the tradeoffs between user experience and energy usage
on traces captured on the Wikipedia servers.

Recent work by Andersen et. al [1] has proposed using
embedded processors for reducing energy consumption in
I/O based workloads. We also believe that embedded and
mobile processors have a place in the data center, however,
we consider a broader class of workloads which cannot be
run exclusively on embedded systems. Chun et. al [8] make
the case for hybrid data centers with the observation that
some applications have significantly different performance
per watt on different platforms. We agree with this vision
and we measure a substantial energy savings when using a
heterogeneous cluster over a homogeneous one.

3. DESIGN

3.1 Hardware
An important part of constructing an energy efficient clus-

ter is choosing the proper building blocks. Unfortunately,
current systems are not efficient for a wide range of utiliza-
tion due to high idle power, hence, to attain efficiency at
all levels of utilization we must construct a heterogeneous
cluster.

We have two main objectives in selecting hardware. First,
we want efficiency at high utilization, and second, we require
low-power sleep states with fast transition times to and from
these states. The Advanced Configuration and Power In-
terface (ACPI) specification defines two types of low-power
states: idle states (C states) and sleep states (S states) [13].
Idle states reduce solely processor power consumption by
disabling the CPU clock, cache and other on-chip circuitry.
They are characterized by fast transition times and are gen-
erally handled automatically by Linux. The sleep states,
on the other hand, include such states as suspend to RAM
and hibernate. In these states most of the system is pow-
ered down except for the network card which remains ac-
tive to support Wake-on-LAN (WOL). The system state is
maintained either by keeping RAM active or by copying the
contents of RAM to persistent storage.

We explore three classes of machines: server, mobile and
embedded. To evaluate these machines we use a set of micro-
benchmarks. Specifically, we run the MediaWiki application
serving a copy of Wikipedia. We measure the response times
and power consumption of each system at varying request
rates. Table 1 shows the systems we evaluated and a sum-
mary of their characteristics. Figure 1 shows the response
times and power usage of our three platforms running Me-
diaWiki. We also show the efficiency of each system, which
we compute by dividing the request rate by power to yield
requests per Joule, in Figure 2.

In the server class, we choose to evaluate a high-end ma-
chine with two Intel Xeon X5550, Nehalem architecture,
quad-core CPUs. This server, like nearly all commercially
available servers, has high power consumption and no sup-
port for suspend to RAM, though it is efficient at high uti-
lization. At peak, it is able to sustain approximately 340
requests per second with a response time of under 500ms
and an efficiency of 1.67 requests per Joule. The mobile
class platform we use, based on the Intel Atom 330 CPU,

Specifications Low Power States Peak Power Idle Power Max Req
Rate

Peak
Efficiency

Nehalem
Server

2x Intel Xeon
X5550 Quad Core

Idle States, Off 248 W 149 W 340 req/s 1.67 req/J

Atom Mo-
bile

Intel Atom 330
Dual Core CPU

Idle States, Off,
Suspend to RAM

28 W 22 W 35 req/s 1.25 req/J

BeagleBoard
Embedded

TI OMAP3530
ARM Based CPU

Off 3.4 W 3.4 W 5 req/s 1.47 req/J

Table 1: Summary of systems from different classes and their power and performance characteristics.

0 100 200 300 400
0

50

100

150

200

250

300

350

Request Rate (reqs / s)

P
o
w

e
r

(W
a
tt
s
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

0

500

1000

1500

Power

Response Time

(a) Nehalem Server

0 10 20 30 40
0

5

10

15

20

25

30

Request Rate (reqs / s)

P
o
w

e
r

(W
a
tt
s
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

0

500

1000

1500

2000

2500

3000

(b) Atom Mobile

0 1 2 3 4 5 6 7
0

1

2

3

4

5

Request Rate (reqs / s)

P
o
w

e
r

(W
a
tt
s
)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

0

500

1000

1500

2000

(c) BeagleBoard Embedded

Figure 1: Power consumption and response times of the three systems as the request rate increases.

does support suspend to RAM and can be brought in and
out of sleep in 2.4 seconds. This system does not have the
highest efficiency at peak, but its low-power states and tran-
sition times make it agile and efficient at lower utilization.
Finally, our ARM processor-based embedded system, the
BeagleBoard[9] is very low powered, consuming only 3.4
Watts, but it does not have sufficient performance to run
MediaWiki at reasonable request rates. However, the Bea-
gleBoard is useful for serving static content, especially while
larger machines are brought up from sleep.

3.2 Architecture
Our system is designed for web service applications in a

standard three-tier architecture [5]. Figure 3 shows the sys-
tem architecture. At the front-end, a set of machines run a
high performance load balancer to distribute load among a
set of application servers. The application servers are state-
less and generate the requested content using data from the
storage layer. This architecture is generic and can support
different applications and storage systems. It also supports
caching at any level in the system.

The key addition of our system is the cluster manager
component which provisions for the current load while min-
imizing power consumption by dictating the sleep state of
each machine in the cluster. It interacts with the load bal-
ancer to monitor incoming request rates and redirect work
to machines in the AWAKE state. NapSAC will put ma-
chines to sleep when the incoming request rate is low. A
machine is transitioned to the TO-SLEEP state, the load
balancer is updated so that no new requests are forwarded
to that machine, current requests are allowed to drain, and

finally the machine is put into suspend to RAM and marked
as being in the SLEEPING state.

For the load balancer we use the low-level software-based
Linux Virtual Sever (LVS) [24]. LVS supports a direct rout-
ing mode where front-end machines forward packets at the
Ethernet layer. All application servers and the load bal-
ancer share an IP address. However, only the load balancer
responds to ARP requests for the IP address, ensuring that
all traffic destined for the system will pass through it. When
a new request arrives the load balancer chooses an applica-
tion server and forwards the request in an Ethernet frame
addressed to the chosen machine. Finally, the response is
sent directly from the application server to the requester.
This design supports a large number of connections and
is oblivious to packet contents. Persistent HTTP connec-
tions [11] are also supported.

3.3 Dynamic Provisioning
NapSAC dynamically provisions for the current workload

by determining the set of servers that should be awake at
any point in time. This is calculated with an approximate
measure of the number of requests in the current workload
that can be handled by each server while still maintaining
acceptable response time levels. We assume that the pro-
portions of static and dynamic requests in the workload are
more or less constant over time. The servers provide dy-
namic feedback to the manager about the resource usage on
each of the nodes. For our current implementation, we have
restricted ourselves to associating a fixed value to the num-
ber of requests that can be handled by each server. This
value was determined experimentally from the knee of the
throughput and response time curves in Figure 1. We at-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Utilization (% of max request rate)

E
ff
ic

ie
n
c
y
 (

re
q
s
 /
 J

o
u
le

)

Nehalem Sever

Atom Mobile

BeagleBoard

Figure 2: Efficiency of the three systems at varying

request rates. Obtained by dividing the request rate

by power.

Figure 3: System architecture

tempt to operate each server near but strictly below this
maximum request rate. In simulation, we label any requests
sent at a higher rate than the knee as “violations” because
on a real system they may have response times that violate
the desired maximum latency.

The cluster manager runs a greedy KnapSack algorithm
in order to provision a near optimal number of servers at
any given point in time. The optimal provisioning allows
each server to operate near but below the maximum request
rate with enough slack to absorb unexpected bursts of traf-
fic. This yields power proportionality while ensuring that re-
sponse time is not impacted even if bursts occur. The online
algorithm uses a configuration parameter to determine how
much slack to keep for absorbing bursts. In simulation, we
compare this to an oracle which, knowing the future work-
load, can keep the minimum slack necessary for handling all
requests.

The algorithm listed in Listing 1 is run every second to
determine the set of nodes that should be transitioned to
the AWAKE state. Our set of heterogeneous machines is
sorted by platform type in order of decreasing performance
per watt at peak utilization. The algorithm tries to use the
larger server nodes when possible because of their higher
performance, and use the mobile and embedded platforms
to handle spikes because of their agility. The shut-down
algorithm in Listing 2 also kicks in every second and transi-
tions nodes which are no longer needed into the SLEEPING
state, starting with those nodes that have the least efficiency.

Listing 1: Server startup algorithm

f o r s e r v e r type i n s e r v e r type s :
s t a r t t ime = se r v e r type . s tar tup t ime
Pred ic t and s t a r t s e r v e r s

pred = pr ed i c t l oad (now + s ta r t t ime)
c l u s t = make c lus te r (pred)

− c u r r e n t c l u s t e r
− nodes waking up i n time

s t a r t s e r v e r type s e r v e r s i n c l u s t

Listing 2: Server turn off algorithm

f o r s e r v e r type i n rev (s e r v e r type s) :
s t a r t t ime = se r v e r type . s tar tup t ime
max clust = empty c lus te r
f o r t i n range (1 , s t a r t t ime) :

pred = pr ed i c t l oad (now + t)
temp c lus t = make c lus te r (pred)
max clust = max(max clust ,

temp c lus t)
temp c lus t = c u r r e n t c l u s t e r − max clust
turn o f f s e r v e r s i n temp c lus t

The transition to and from sleep states is not instanta-
neous, so the manager predicts the request rate into the fu-
ture in order to have enough machines in the AWAKE state
to handle traffic spikes. The Atom nodes take 2.4 seconds to
move from the SLEEP to the AWAKE state. Since the Ne-
halem server does not support the sleep states we require,
we opt instead to power it down in place of putting it to
sleep. It takes about 60 seconds to power up. We evaluate
the following algorithms for predicting the request rate. A
discussion of the evaluation follows in Section 4.1.

Last Arrival (LA) predicts all future values to be the exact
same request rate as was last seen.

Moving Window Average (MWA) maintains the request
rates seen over the last ‘n’ seconds and averages the
values in the window for the prediction.

Exponentially Weighted Average (EWA) computes the
exponentially weighted average using an exponentia-
tion factor α:

pred = α last-req-rate + (1− α) prev-EWA-val

EWA Change Rate (EWA-CR) performs a weighted av-
erage on the rate of change of request rates and pre-
dicts that the rate of change will be maintained for the
prediction time.

3.4 Scheduler
For the current web service architecture we are using,

the role of the scheduler is straightforward once we have
a well-provisioned cluster. In more complex architectures,
for instance, those with distributed state or different types
of application servers, and with more complex workloads,
for instance, those with batch processing jobs, scheduling
becomes a much more challenging problem. In the current
system, however, the load balancer uses a weighted round
robin approach to distribute load, with the larger machines
weighted proportionally more than the less powerful nodes.
This policy allows us to maintain the utilization of those ma-
chines that are awake to be approximately the same, thus
maintaining similar response times.

0 0.2 0.4 0.6 0.8
35

40

45

50

55

60

65

70

Violations (% of requests)

E
n
e
rg

y
 S

a
v
in

g
s
 (

%
)

MWA

LA

EWA−CR

EWA

Figure 4: Comparison of different request rate pre-

diction algorithms

4. EVALUATION

4.1 Results
We use 7 days of HTTP traffic data from a trace consist-

ing of a 10% sample of the total Wikipedia.org traffic[21] as
our workload for comparison. We run the trace in a simu-
lation program, used to compare and evaluate provisioning
policies. For simulation, we assume a fixed response time
and a maximum request rate per system. These parame-
ters are set empirically by using microbenchmarks. We take
the maximum request rate with a response time of less than
300ms for the the Wikipedia workload on each system. We
also use power estimates based on the results in Figure 1.

We use a simulator to compare the different server provi-
sioning algorithms in Figure 4. The figure shows a tradeoff
between energy savings and the number of “violations.” As
seen in Figure 1, when the load on the cluster increases be-
yond the knee of the response time curve, the response times
increase dramatically, thus we attempt to always operate be-
low this point. We label all requests that come in at a rate
above the knee as“violations”to indicate that they may have
response times that are above the desired maximum.

The standard approach to capacity planning is to pro-
vision for twice the peak load, and the y-axis of Figure 4
denotes the savings over this baseline. We vary how aggres-
sive the cluster manager is in turning off machines along
the length of the curve. This yeilds a range of tradeoffs
between energy savings and the number of “violations.” At
the lower-left point of the curve the cluster manager is most
conservative with few violations but also lower energy sav-
ings; moving to the upper-right, it becomes more aggressive
with more violations and improved energy savings. We note
that the moving window average performs the best. When
compared to an oracle provisioning algorithm, which always
achieves maximal utilization by knowing future workload,
the moving window average performs within 10% of opti-
mal.

It achieves about 63% energy savings compared to a typ-

0 0.5 1 1.5
35

40

45

50

55

60

65

70

Violations (% of requests)

E
n
e
rg

y
 S

a
v
in

g
s
 (

%
)

Heterogeneous Cluster

Atom Cluster

Nehalem Cluster

Figure 5: Comparison of MWA on heterogeneous

and homogeneous clusters

ical cluster provisioned at twice its peak rate with less than
0.03% of requests potentially slowed down. The energy sav-
ings is still 27% when compared to a cluster provisioned
exactly for the peak usage.

A key feature of our cluster is the use of a heterogeneous
mix of hardware. By using multiple classes of hardware we
can use the best features of each system. As was noted ear-
lier, server class systems do not usually support sleep states,
requiring length shutdown and boot cycles for energy sav-
ings. On the other hand, the mobile class Atoms devices
support suspend-to-RAM and have wake up times of about
2.4 seconds. However, at peak utilization server systems are
typically more energy efficient than mobile systems. Thus,
we choose to use the Atom devices to handle sharp bursts
of traffic and the Nehalem servers for the base load. In
Figure 5, we compare the efficiency of the MWA algorithm
for different types of clusters; homogeneous clusters of only
Nehalems or Atoms and a mixture of both. We clearly see
that heterogeneous cluster outperforms either homogenous
option, allowing higher energy savings with fewer violations.
Although a homogeneous cluster of Atom machines performs
close to the heterogeneous mixture in terms of energy sav-
ings, it is not a valid proposition because of the physical
space it uses and its inapplicability in certain classes of ap-
plications such as large database servers.

While a custom Atom node design might allow for dense
packing of mobile nodes, our Atom node uses an off-the-
shelf development board, which still takes up a large amount
of space. Thus, we cannot take advantage of the Atoms’
lower power to attain the same power density of a server’s
by putting more nodes into a smaller space. Additionally,
more nodes equates to more required network infrastruc-
ture, which itself requires more power along with more com-
plicated wiring and management. We introduced Beagle-
Boards and looked at their efficiency and performance but
do not utilize them in these experiments because they suffer
the same density problems as the Atom cluster.

4.2 Experiment Setup

40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

220

R
a
te

 (
re

q
/s

)

Request Rate

40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

220

P
o
w

e
r

(W
a
tt
s
)

Time (s)

Power

Figure 6: Power-proportionality for a simple traffic

spike.

We use a real application, Wikipedia, to evaluate our en-
ergy efficient cluster. Wikipedia is based on MediaWiki
which has a tiered architecture; application servers running
PHP code and a backend database. We choose one Nehalem
server machine to host the backend database to be shared
by all application servers. This server runs MySQL 5.1.31
loaded with a copy of the Wikipedia article data. Next, we
setup 16 Atom machines to act as application servers. Each
system runs Linux 2.6.28 with a patch to disable ARP as
required for the load balancer and explained in Section 3.2.
We install the PHP 5.3.2 interpreter with opcode caching
and setup Lighttpd as the web server. Finally, an Intel Core
2 Duo based desktop is used as the load balancer and cluster
manager.

To evaluate our cluster manager we generate two traffic
spikes that stress the manager’s ability to scale up and down
in response to load. For each traffic pattern we select files
from the Wikipedia trace distribution. The first trace shown
in Figure 6 simply ramps the request rate up and down lin-
early. As expected, the cluster manager wakes up additional
systems when the rate increases and turns them back off as
the rate drops. 99.9% of the requests complete in 60 millisec-
onds. Overall, the system uses 29.4% of the energy needed
by cluster provisioned at twice its peak rate or 58.9% of the
energy used by a cluster provisioned exactly for peak.

For the second experiment we choose a more complex
workload consisting of a sinusoidal pattern with sharp noise
that is more representative of web traffic. Figure 7 shows
the power used by the cluster executing this workload. The
cluster manager is able to smoothly ramp up and down the
number of awake machines despite the noisy traffic pattern.
This is largely due to the smoothing effect of the rate predic-
tor. 99.9% of the requests complete within 78 milliseconds
and all requests complete within 200 milliseconds. Over-
all, the system uses 31.8% of the energy needed by cluster
provisioned at twice its peak rate.

20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

140

160

180

200

220

R
a
te

 (
re

q
/s

)

Request Rate

20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

140

160

180

200

220

P
o
w

e
r

(W
a
tt
s
)

Time (s)

Power

Figure 7: Power-proportionality for a noisy sinu-

soidal traffic pattern.

5. CONCLUSION
We have presented a design for a power-proportional clus-

ter using a power-aware cluster manager and a set of hetero-
geneous machines that harnesses idleness to achieve signifi-
cant energy savings. We have built a cluster as a three-tier
web service out of three different types of hardware, repre-
senting server-, mobile-, and embedded-class processors to
demonstrate the use of our design in a real environment.

We have compared via simulation several different provi-
sioning algorithms for determining the necessary set of ma-
chines to handle a Wikipedia-based workload. The great-
est power savings came from using a Moving Window Av-
erage scheme, which resulted in a 27% savings over the
power usage of a cluster provisioned to exactly meet it’s peak
demand. Note that even greater savings will be achieved
in workloads with higher peak-to-average request rate ra-
tios. Our scheduling algorithms are relatively simple yet
still manage to save a significant amount of energy. In the
future, we plan on looking at more sophisticated predictors
which will allow the scheduler to handle a greater variety
of workloads. Our results show that under the 2x provision
rule we are able to achieve 90% of the savings that a theo-
retical optimal scheme using an oracle scheduler with future
knowledge would achieve. In addition, these savings can
be achieved while minimally impacting performance. As a
large proportion of servers in the real world are idle for large
portions of the day, we expect our system design to enable
major energy savings when deployed at large scale.

Acknowledgements

We thank the anonymous reviewers for their insightful com-
ments. We also thank Albert Goto, Jeff Anderson Lee and
Ken Lutz for helping us set up the cluster and solve various
deployment hurdles. This work was supported in part by
NSF Grant #CPS-0932209, the FCRP MuSyC Center, and
Intel and Samsung Corporations. The opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the supporting institutions.

6. REFERENCES
[1] D. G. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. Fawn: A
fast array of wimpy nodes. SOSP ’09, October 2009.

[2] L. A. Barroso. The price of performance. ACM Queue,
3(7):48–53, 2005.

[3] L. A. Barroso and U. Hölzle. The case for
energy-proportional computing. Computer,
40(12):33–37, 2007.

[4] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan,
and D. Patterson. Statistical machine learning makes
automatic control practical for internet datacenters.
HotCloud’09, 2009.

[5] E. A. Brewer. Lessons from giant-scale services. IEEE
Internet Computing, 5(4):46–55, 2001.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat,
and R. P. Doyle. Managing energy and server resources
in hosting centres. In SOSP, pages 103–116, 2001.

[7] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao. Energy-aware server provisioning and
load dispatching for connection-intensive internet
services. In NSDI’08: Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, pages 337–350, Berkeley, CA, USA,
2008. USENIX Association.

[8] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz,
G. Lee, and L. Niccolini. An energy case for hybrid
datacenters. HotPower’09, 2009.

[9] G. Coley. Beagleboard system reference manual,
October 2009.

[10] S. Dawson-Haggerty, A. Krioukov, and D. E. Culler.
Power optimization - a reality check. Technical Report
UCB/EECS-2009-140, EECS Department, University
of California, Berkeley, Oct 2009.

[11] Fielding, et al. Hypertext transfer protocol - http/1.1.
Network Working Group, 1999.

[12] D. Grunwald, P. Levis, K. I. Farkas, C. B. M. III, and
M. Neufeld. Policies for dynamic clock scheduling. In
OSDI, pages 73–86, 2000.

[13] Hewlett-Packard Corporation, Intel Corporation,
Microsoft Corporation, Phoenix Technologies Ltd.,
and Toshiba Corporation. Advanced configuration and
power interface specification, June 2009.

[14] D. Kusic, J. O. Kephart, J. E. Hanson,
N. Kandasamy, and G. Jiang. Power and performance
management of virtualized computing environments
via lookahead control. In ICAC ’08:, 2008.

[15] J. R. Lorch and A. J. Smith. Improving dynamic
voltage scaling algorithms with pace. In
SIGMETRICS/Performance, pages 50–61, 2001.

[16] D. McCullagh. Turbotax e-filing woes draw customer
ire. 2007.

[17] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap:
eliminating server idle power. In ASPLOS ’09, 2009.

[18] E. Pinheiro, R. Bianchini, E. V. Carrera, and
T. Heath. Dynamic cluster reconfiguration for power
and performance. pages 75–93, 2003.

[19] N. Rasmussen. Electrical efficiency modeling of data
centers. Technical Report White Paper #113, APC,
2006.

[20] R. K. Sharma, C. E. Bash, C. D. Patel, R. J.
Friedrich, and J. S. Chase. Balance of power: Dynamic
thermal management for internet data centers. IEEE
Internet Computing, 9(1):42–49, 2005.

[21] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia
workload analysis for decentralized hosting. Elsevier
Computer Networks, 53(11):1830–1845, July 2009.

[22] U.S. Environmental Protection Agency. Epa report on
server and data center energy efficiency. ENERGY
STAR Program, 2007.

[23] M. Weiser, B. B. Welch, A. J. Demers, and
S. Shenker. Scheduling for reduced cpu energy. In
OSDI, pages 13–23, 1994.

[24] W. Zhang. Linux virtual server for scalable network
services. Ottawa Linux Symposium, 2000.

	Introduction
	Related Work
	Design
	Hardware
	Architecture
	Dynamic Provisioning
	Scheduler

	Evaluation
	Results
	Experiment Setup

	Conclusion
	References

