
Investigating WebRTC BBR as an alternative to
GCC for live video streaming
Rebecca Drucker

Stony Brook University, Furman University
rdrucker@cs.stonybrook.edu, rebecca.drucker@furman.edu

Aruna Balasubramanian, Anshul Gandhi
Stony Brook University

{arunab,anshul}@cs.stonybrook.edu

Abstract—Google Congestion Control (GCC) is the default
congestion control algorithm for WebRTC, a popular web ap-
plication used for live video streaming. BBR, also developed
at Google, is commonly used for streaming pre-recorded video
on services like YouTube. However, BBR has not been widely
deployed for real-time applications like live video streaming.
It was implemented for WebRTC in 2018, but it was later
deprecated due to poor performance. While GCC performs well
under most network conditions, it can be starved by a loss-
based TCP flow using the same bottleneck link. In this work,
we investigate the possibility of using BBR as an alternative to
GCC for WebRTC congestion control. We test it under a variety
of network conditions and find that it performs better than GCC
when competing with TCP, and it achieves bitrates comparable
to GCC’s in isolation, except when bandwidth is restricted and
the bottleneck buffer is deep. We find that this is because of
bandwidth overestimation, a problem which also exists in TCP
BBR. While modifying WebRTC BBR’s bandwidth estimation
fails to improve performance in our experiments, we do find
that disabling its recovery state, a unique loss response, improves
WebRTC BBR’s performance in underprovisioned networks.

I. INTRODUCTION

Live video streaming is a web application that is growing in
popularity. Twitch, a gaming-focused live streaming platform,
has seen its average number of concurrent viewers increase
from 102,000 to 2.42 million between 2012 and 2023 [1]. Es-
tablished social media platforms such as Facebook, Instagram,
and YouTube have added live streaming capabilities as well.

WebRTC is a popular choice for live video streaming
applications. Its default congestion control algorithm is Google
Congestion Control (GCC). Despite being designed specifi-
cally for this application, it can provide degraded video quality
when competing with loss-based TCP traffic because the TCP
flow starves the GCC flow [2], [3]. Therefore, an alternative
congestion control which can effectively share bandwidth with
TCP is needed.

TCP BBR has been used for video streaming by services
such as YouTube and Netflix. However, it has never been
deployed at a large scale for live video, so its effectiveness
for live video streaming is unknown.

WebRTC developers implemented BBR as an alternate
congestion control option to the default GCC, but they later
deprecated it due to poor performance [4]. Outside of We-
bRTC, BBR has been observed to overestimate the min RTT in
some cases [5], [6], which could impact latency-sensitive ap-
plications like live streaming. Developers observed an inflated
min RTT estimate when using BBR as the congestion control
for WebRTC [4], which resulted in poor video streaming

performance. However, our experiments suggest that WebRTC
BBR is able to achieve higher video quality than GCC when
sharing a bottleneck link with a TCP flow. Thus, if its
performance issues when run in isolation (without competing
flows) can be resolved, it may serve as a viable alternative to
GCC.

In this work, we compare the performance of BBR and
the default GCC for a live video streaming application under
a variety of network conditions. We find that, like TCP
BBR, WebRTC BBR underperforms in deep buffers due to
bandwidth overestimation. It performs especially poorly in
underprovisioned networks.

To address WebRTC BBR’s performance issues, we first
alter its RTT estimation behavior to mimic that of BBRv2,
which includes increased frequency of RTT probes and in-
creased cwnd during the probes to alleviate problems with low
throughput. Developers observed issues with RTT estimation
for WebRTC BBR as well [7]. However, this change fails
to improve BBR’s live video quality, suggesting that another
factor is responsible for the poor performance.

Next, we investigate WebRTC BBR’s bandwidth estimation,
since TCP BBR is known to underperform in deep buffers
due to inflated bandwidth estimates. We find a negative corre-
lation between BBR’s bandwidth estimate and video quality.
While both TCP BBR and WebRTC BBR expire bandwidth
estimates after a 10-RTT window, WebRTC BBR only keeps
three estimates at a time and replaces all three when a new
best (maximum) is achieved. This practice only amplifies
bandwidth overestimation when compared to TCP BBR.

We first replace all requests for the best bandwidth estimate
with requests for the third best, but this degrades performance.
We then alter the bandwidth estimation technique so that a new
best only replaces the current best, not all three estimates;
however, this also results in reduced video quality.

In an attempt to improve WebRTC BBR’s video quality
in bandwidth-restricted conditions, we observe that WebRTC
BBR has a loss response called a recovery state that is distinct
from the threshold-based loss response found in BBRv2.
Disabling this recovery state indeed improves BBR’s video
quality by 63%.

Finally, we confirm that, when modified to disable the re-
covery state, WebRTC BBR’s performance not only improves
when in isolation, but also outperforms GCC when competing
with a TCP flow on the same bottleneck link. These results
suggest that, with appropriate modifications, WebRTC BBR
may serve as a potential alternative to GCC, particularly for



users sharing bandwidth with TCP traffic.
The rest of this paper is organized as follows. In Section II,

we provide the necessary background on live video streaming
and the protocols and algorithms employed for live video
streaming. Section III discusses the related work on live
video streaming. We then describe our experimental setup
in Section IV, which we use to analyze the performance of
BBR and GCC for live video streaming in Sections V and
VI. Section VII details our attempts at improving the video
streaming performance of WebRTC BBR. Finally, we conclude
in Section VIII.

II. BACKGROUND

A. Live video streaming

In large-scale deployments, the broadcaster is unlikely to
stream video directly to each viewer. Instead, the broadcaster
will stream to a CDN server to which viewers will connect
and stream the video. The raw video is first uploaded to an
ingest server which transcodes it into multiple bitrates, which
are then transferred to CDN servers where clients can fetch
them.

In contrast to DASH video, live streamed video is sent to
the viewer as it is created. This means that low latency is the
main goal, and there is little time to run algorithms that choose
an appropriate bitrate for each video chunk.

B. WebRTC and RTP

While WebRTC is most commonly used for video confer-
encing, it is also used for low-latency live video streaming
because it:

1) often uses UDP, which has less overhead than TCP;
2) uses RTP, a protocol optimized for real-time data trans-

mission;
3) pushes video chunks to the client as they become avail-

able rather than having the client request each chunk [8];
and

4) supports adaptive bitrate streaming and is compatible
with many browsers and video players [9].

WebRTC is primarily able to achieve low latency by using
Real-Time Transmission Protocol (RTP) at the transport layer.
TCP is not well suited to real-time applications because it
guarantees complete and in-order delivery of all packets, but it
does not make any guarantees about latency. In contrast, UDP
makes no guarantees, but packets are never retransmitted, so
the client never waits for a packet. RTP offers a compromise
by providing sequence numbers and timestamps so that the
application can detect if a packet is missing and use data
contained in packets at the right time. RTP is used for data, and
its companion protocol RTCP is used to send QoS information
to all receivers and to keep track of participants in the session.
There are separate RTP sessions for video and audio, and
RTCP synchronizes them [10].

C. GCC

Google Congestion Control (GCC) [11] is the default con-
gestion control option for WebRTC. This algorithm, introduced
in a 2011 IETF draft [12], was designed specifically for
real-time applications. Unlike popular TCP congestion control
algorithms like Cubic, GCC uses a combination of loss and
delay signals to determine its sending rate, rather than relying
on loss alone.

GCC has been well-documented to underperform when
sharing a bottleneck link with TCP traffic [2], [3]. Because
GCC uses a combination of loss and delay signals to determine
an appropriate sending rate, in the presence of congestion, it
decreases its sending rate before loss-based TCP congestion
control algorithms. This results in bandwidth starvation for the
GCC flow in the presence of competing loss-based TCP flows.

D. BBR

BBR (Bottleneck Bandwidth and Round-trip propagation
time) is a congestion control algorithm introduced by Google
in 2016 to alleviate bufferbloat, a condition of inflated RTTs
caused by loss-based congestion control approaches such as
Reno and Cubic filling large buffers in the network. Since its
introduction, two updates to BBR, called BBRv2 and BBRv3,
have been released by Google. BBR and its variants have been
successfully deployed in Google’s networks and others’ for
applications like video streaming.

Rather than responding to loss, BBR relies on estimates of
the available bandwidth and the propagation delay (represented
by the maximum delivery rate within a 10-RTT window
and the measured RTT after draining the bottleneck buffer,
respectively) to set its sending rate, approximating the optimal
operating point of the network.

In 2018, a version of BBR was implemented for WebRTC
and introduced into its source code. It was deprecated soon
thereafter due to poor performance [4]. While TCP BBR and
WebRTC BBR operate similarly, WebRTC BBR contains some
features which do not exist in any TCP version of BBR. The
most notable of these is a unique loss response, which we
investigate in Section VII-B. WebRTC BBR also has a more
limited window for bandwidth and RTT samples than TCP
BBR, which we discuss in Section VII-A.

III. RELATED WORK

Many works investigate live streaming and protocols asso-
ciated with it. Jansen et al. conduct a performance evaluation
of WebRTC as a video conferencing tool and find cases where
it underperforms [13]. In their measurement study, Deng et al.
map out Twitch’s network infrastructure to understand how
they deliver live video to millions of users [14]. They find the
locations of servers and investigate Twitch’s strategy for allo-
cating broadcasts and viewers to the servers. Kim et al. present
LiveNAS, a system that uses machine learning to improve
live video QoE. Their video ingest server employs a deep
neural network that up-samples lower-resolution video frames
to improve visual quality without consuming the bandwidth
needed to transfer a higher-resolution chunk [15]. Salsify [16]



is a low-latency video system design that combines a com-
pressed video codec and UDP-based transport protocol with
a congestion control strategy similar to WebRTC’s GCC and
Sprout. It encodes video frames to maximize quality while
minimizing latency. Several works also focus on improving
BBR’s performance on real-time applications [17]–[19].

IV. EXPERIMENTAL SETUP

We now briefly describe our experimental setup. Figure 1
shows the WebRTC video streaming testbed used in our
experiments. One machine acts as a broadcaster, sending video
frames and audio, while the other acts as a viewer, sending
feedback to the broadcaster. The broadcaster and viewer are
connected via a Linksys WRT1900ACS router with OpenWRT
19.07.1 installed.

Large-scale live video streaming applications also use either
a STUN or TURN server to allow broadcasters inside private
networks to stream video to viewers inside their own private
networks. When a STUN server is unable to allow the broad-
caster and viewer to connect directly, a TURN server must be
used. All traffic between the broadcaster and the viewer must
be routed through this TURN server. In our experiments, we
use a STUN server.

We use the most recent version of WebRTC which includes
BBR as a congestion control option. This version was released
in 2018.

All experiments use a five-minute video. The maximum av-
erage bitrate achieved when streaming this video across all of
our experiments was approximately 1.3Mbps. All experimental
conditions were run at least ten times.

V. PERFORMANCE OF BBR AND GCC

We first compare the performance of BBR and GCC when
sharing a bottleneck link with a TCP flow to determine
whether BBR could be a suitable alternative to GCC. Then, we
compare the two congestion control options on their own under
a variety of network conditions. To the best of our knowledge,
no prior work has empirically compared the performance of
WebRTC BBR and GCC with and without TCP competition.

A. Performance under TCP competition

As early as 2013, GCC was known to perform poorly
when sharing a bottleneck link with a TCP flow [2], [3]. To
determine whether this problem still exists in more recent
versions of GCC, as well as whether WebRTC BBR has
the same issue under TCP competition, we streamed live
video using both GCC and BBR with a 100ms RTT, 5 Mbps
bandwidth, and a 1 MB buffer while running iPerf3 on the
same bottleneck link. The iPerf3 sender uses Linux default
Cubic for congestion control. Figure 2 shows the average
bitrate achieved by GCC and BBR when competing with the
TCP flow across all experiments. Each congestion control’s
achieved bitrate without TCP competition is also shown for
comparison.

While GCC and BBR perform similarly in isolation, GCC’s
bitrate decreases by 96% when sharing the bottleneck link

Fig. 1: Illustration of our experimental setup, showing the re-
lationships between broadcaster, viewer, and WebRTC-specific
servers in the testbed used in our experiments.

Fig. 2: Average achieved bitrate of GCC and BBR under 100
ms RTT, 5 Mbps bandwidth, and a 1 MB buffer, with and
without a competing TCP flow on the same link.

with a TCP flow. In contrast, BBR’s bitrate decreases by only
21% under competition. Note that some decrease in bitrate
may be necessary when sharing bandwidth with a competing
TCP flow. Furthermore, while both BBR and GCC have high
average RTTs in competition because the competing TCP flow
uses Cubic, a loss-based congestion control algorithm which
is known to fill deep buffers (resulting in inflated RTTs [20]),
we find that BBR maintains a slightly lower average RTT than
GCC (1.2 seconds for BBR vs. 1.5 seconds for GCC).

Since BBR achieves bitrates 95% higher than GCC and
maintains similar RTTs when streaming live video under



RTT Bandwidth
20 ms, 50 ms, 100 ms 500 kbps, 1 Mbps, 2 Mbps, 5 Mbps

TABLE I: Network conditions used in our experiments on each
congestion control algorithm in isolation.

competition from TCP, we posit that BBR may be a viable
alternative to GCC when a live video stream must share the
link with TCP flows. In the sections that follow, we subject
WebRTC BBR (as well as GCC, for comparison) to live video
streaming experiments under a variety of network conditions to
determine its suitability for live video streaming applications.

B. Performance in isolation

Next, we compare WebRTC BBR and GCC by studying
their performance in isolation across a variety of RTTs, band-
widths, and buffer sizes. Table I shows the network conditions
that were used in our experiments. For each combination of
the three RTTs and the four bandwidths, we chose two buffer
sizes: one which would be shallow in comparison to the BDP,
and one which would be deep.

Figure 3 shows the percentage difference in achieved bi-
trate between BBR and GCC under the network conditions
we tested. Positive values indicate that GCC achieved the
higher bitrate under a particular condition, while a negative
value indicates that BBR achieved the higher average bitrate.
Overall, GCC and BBR achieve similar bitrates across all of
our experiments, except under two sets of conditions: low
bandwidth/high BDP in the shallow buffer condition, and low
bandwidth in the deep buffer condition.

In our experiments, the maximum average bitrate achieved
in live video streams using either congestion control algorithm
we tested is approximately 1.3Mbps. Providing additional
bandwidth beyond this threshold does not increase the average
bitrate. Thus, the 500 kbps and 1 Mbps bandwidth conditions
represent an underprovisioned network, while the 2 Mbps and
5 Mbps bandwidth conditions represent an overprovisioned
network. It is only in the underprovisioned scenario that
WebRTC BBR consistently achieves lower video bitrates than
GCC.

Furthermore, under deep buffers, GCC achieves video bi-
trates up to 84% greater than those achieved by BBR for the
two lower-bandwidth conditions. Previous studies have found
that TCP BBR can underperform in deep buffers [20] due to
bandwidth overestimation associated with the max filter it uses
to choose its bandwidth estimate [21]; a similar effect may be
taking place in the deep buffer scenario for WebRTC BBR.

VI. EXPLAINING BBR’S LOW VIDEO QUALITY

We have now confirmed that while BBR outperforms GCC
when competing with TCP flows, it achieves much lower
bitrates than GCC when bandwidth is restricted, especially
when the bottleneck buffer is deep. To solve this problem, we
must first determine the root cause of BBR’s poor performance
under these conditions.

Since BBR relies on its bandwidth and RTT estimates to set
its sending rate, inaccurate estimates can lead to bandwidth

(a) Shallow buffer

(b) Deep buffer

Fig. 3: Percent difference between the average video bitrate
for GCC and BBR under (a) a shallow buffer and (b) a deep
buffer.

underutililization or excessive sending, either of which can
result in application performance degradation and a poor user
experience.

A. Inaccurate RTT and bandwidth estimation

We first investigate WebRTC BBR’s RTT estimation, which
was noted by its developers to be “inflated” for bidirectional
video streams [4]. While our tests only involve sending in one
direction (broadcaster to viewer), we suspect this problem may
exist in our experiments as well.

Since previous studies of TCP BBR have shown that it
overestimates bandwidth under deep buffers, it may be the
case that this problem also exists in the WebRTC version.

Figure 4 shows that, across all tested network conditions,
BBR’s estimated bandwidth and estimated min RTT are con-
siderably higher than GCC’s estimates of the same values
under the same conditions, suggesting that BBR is overes-
timating both values. However, as found in prior work on



(a) Estimated bandwidth and bitrate

(b) Estimated RTT

Fig. 4: (a) Average achieved bitrate and estimated bandwidth,
and (b) average estimated min RTT of GCC and BBR, across
all our experiments.

TCP BBR performance for pre-recorded video streaming, high
RTT estimates may be a symptom of the problem rather
than the root cause, which has been found to be bandwidth
overestimation [21]. The developers of WebRTC BBR also
observed “slight” bandwidth overestimation in their tests [4].
We will next determine whether the bandwidth overestimation
we observe above is responsible for the low achieved bitrates
of WebRTC BBR in Figure 3.

B. Relationship between bandwidth estimate and achieved
bitrate

Ideally, a higher bandwidth estimate should indicate that
network conditions are favorable, and a higher video bitrate
may be sent. This would be evident in a strong positive
correlation between the average bandwidth estimate and the
average video bitrate.

Table II shows the Pearson correlation between BBR and
GCC’s bandwidth estimates and their video bitrates across
all of our experiments. Overall, there is a strong positive
correlation between estimated bandwidth and bitrate for GCC,
and a weak negative correlation for BBR.

Goodput (Mbps) overall bitrate ≥ 700 kbps bitrate <700 kbps
GCC 0.87 0.94 -0.18
BBR -0.24 0.59 -0.59

TABLE II: Pearson correlations between the average estimated
bandwidth and the average bitrate for GCC and BBR, across
all runs, and separated by runs with better (≥700 kbps) and
worse (<700 kbps) average bitrates.

We also separate experiments with higher average bitrates
from those with lower average bitrates and recalculate the
correlations. For both GCC and BBR, the correlation between
estimated bandwidth and video bitrate is positive when bitrates
are high and negative when bitrates are low. However, the
positive correlation for higher-bitrate experiments is stronger
for GCC, and the negative correlation for lower-bitrate exper-
iments is stronger for BBR. This suggests that, statistically
speaking, even when BBR performs well, its bandwidth esti-
mates are less accurate than GCC’s. High bandwidth estimates
are also more strongly related to low bitrates for BBR than
for GCC, likely due to BBR’s reliance on accurate bandwidth
estimates to set its sending rate appropriately.

This result confirms that for BBR in particular, not only are
its bandwidth estimates frequently inaccurate (specifically, that
BBR is overestimating the available bandwidth), but that these
inaccurate estimates are associated with low video bitrates.

VII. IMPROVING BBR’S VIDEO QUALITY

In Section VI, we established that under restricted band-
width and deep buffer conditions, WebRTC BBR overestimates
both the available bandwidth and the min RTT.

In this section, we make three alterations to WebRTC BBR’s
RTT and bandwidth estimation techniques in an attempt to
improve its video quality when bandwidth is restricted and
the bottleneck buffer is deep. We also investigate its recovery
state, a response to packet loss which is not found in any TCP
variant of BBR.

A. Bandwidth and RTT estimation

We must first determine which changes to make to WebRTC
BBR’s bandwidth and RTT estimation techniques to improve
its performance. For TCP BBR, an updated version called
BBRv2 has been shown to perform nearly as well as BBRv1
while maintaining desirable fairness properties [22]. Thus, a
natural first step in improving WebRTC BBR’s performance
is to mimic the behavior of BBRv2. Since WebRTC BBR
was created prior to the introduction of BBRv2 in 2019, no
WebRTC version of BBRv2 exists. We instead aim to replicate
two of BBRv2’s most prominent features: a modified RTT
estimation technique and a response to packet loss.

WebRTC BBR already responds to loss, a feature which
we will investigate further in Section VII-B. We discuss
a modification to WebRTC BBR’s RTT estimation in this
subsection.

In BBRv2, the developers of BBR altered its RTT estimation
technique. BBRv1 entered the PROBE RTT state every 10



seconds and reduced its cwnd to 4 packets. This resulted in
undesirable variations in throughput [23].

Change #1. We implement a BBRv2-like RTT estimation
technique.

We make three changes to WebRTC BBR to make its RTT
estimation behave similarly to BBRv2: first, we allow it to
choose the number of packets in flight during RTT probes
to be based on the current estimated BDP; then, we set the
cwnd during RTT probes to half of the estimated BDP; and
finally, we expire RTT estimates after 5 seconds rather than
10 seconds.

WebRTC BBR’s RTT estimation also has a component not
found in any other version of BBR: it does not initiate an RTT
probe if the most recent RTT sample is within 12.5% of the
current min RTT estimate. Thus, it will reduce the sending
rate to measure the current min RTT less often than BBRv2.
We leave this behavior in place for all of our experiments.

This results in a version of WebRTC BBR that behaves
similarly to BBRv2, except that its loss response differs.

The next two changes relate to WebRTC BBR’s bandwidth
estimation.

Change #2. We use the third-best bandwidth sample to set the
sending rate.

Like TCP BBR, WebRTC BBR uses the maximum observed
delivery rate as its bandwidth estimate. This practice can lead
to bandwidth overestimation, as we observe in our experi-
ments. One proposed solution is to use a sample lower than
the maximum as the bandwidth estimate [21]. However, rather
than keeping a window of bandwidth samples that covers the
past 10 RTTs, WebRTC BBR keeps only the top three samples
at a time. To mitigate WebRTC BBR’s overestimation, we alter
WebRTC BBR to use the third-highest bandwidth sample as
its estimate rather than the highest bandwidth sample.

Change #3. We alter the sample filter to replace only the
highest bandwidth sample with the new maximum, rather than
replacing all three samples.

The default behavior of WebRTC BBR’s sample filter, when
a new sample arrives, is to replace all samples less than
or equal to that sample with the new sample. For example,
if a bandwidth sample arrives which is greater than the
current second-highest sample, but still less than the maximum
sample, the second-highest and third-highest samples will both
be replaced with the new sample. If the sample were to
exceed the current highest estimate, all three samples would be
replaced with the new sample. Thus, new samples are favored
by WebRTC BBR, and a large sample can quickly replace
all other samples in the window, potentially leading to long-
lasting bandwidth overestimation.

Change #3 alters this behavior. Instead of replacing all
samples less than or equal to a new sample, only one sample
is replaced. In our previous example, in which a sample
arrives which is greater than the second-highest sample but
less than the highest sample, the new sample will replace
the previous second-highest sample, and the previous second-
highest sample will replace the previous third-highest sample.

Fig. 5: Comparison of average bitrates achieved by altered
versions of BBR, as well as unmodified WebRTC BBR and
GCC, under a 50 ms RTT, 500 kbps bandwidth, and a (deep)
100 kb buffer.

Note that WebRTC BBR uses the same sample filter for its
bandwidth and RTT estimates. This means that any change to
the sample filter affects not only bandwidth samples, but also
RTT samples.

Figure 5 shows the results of these changes under a low-
bandwidth, deep-buffer network condition. We test each of the
changes in isolation, and we also combine changes #2 and #3,
which affect bandwidth estimation. Average bitrates for GCC
and unmodified BBR under the same network condition are
shown for comparison.

Only the version of WebRTC BBR with both of the
bandwidth estimation changes achieves a bitrate greater than
or equal to that of unmodified BBR. The other changes in
isolation achieve even lower bitrates. None of the changes
result in an improvement in WebRTC BBR’s performance in
an underprovisioned network with a deep bottleneck buffer.

B. Recovery state

Since all three changes to WebRTC BBR’s bandwidth and
RTT estimation failed to improve video bitrates in underpro-
visioned, deep buffer network conditions, we next investigate
a unique property of WebRTC BBR not found in any of its
TCP variants: the recovery state.

Like BBRv2 and BBRv3, WebRTC BBR responds to
packet loss. However, unlike those TCP BBR variants, it
does not use a threshold-based approach. WebRTC BBR’s
recovery state is a response to loss that begins on a single
packet loss. WebRTC BBR exits recovery if there are no
losses in a round. The recovery state consists of four sub-
states: CONSERVATION, MEDIUM GROWTH, GROWTH,



Fig. 6: Comparison of average bitrates achieved by the version
of BBR with the recovery state disabled, as well as unmodified
WebRTC BBR and GCC, under a 50 ms RTT, 500 kbps
bandwidth, and a 100 kb buffer.

and NOT IN RECOVERY. In the CONSERVATION state, the
cwnd is reduced by the number of bytes lost. In the GROWTH
state, cwnd increases by the number of bytes acked, and in
MEDIUM GROWTH, cwnd increases by half the number of
bytes acked.

We hypothesize that WebRTC BBR’s loss response is
especially harmful to performance in potentially high-loss
conditions such as the restricted bandwidth conditions in our
experiments. Suppose that all, or nearly all packets are lost
during a round trip. This would result in the cwnd immediately
being reduced to zero or near-zero. This possibility motivates
our next change to WebRTC BBR.

Our solution. We disable BBR’s recovery state. This is
achieved by ensuring that BBR’s recovery state is always set
to NOT IN RECOVERY.

Figure 6 compares the average bitrate achieved by GCC and
unmodified BBR with the average bitrate achieved by BBR
with the recovery state disabled (our solution). Our modified
version of BBR with the recovery state disabled outperforms
unmodified BBR. We also tested a version with the third best
bandwidth estimate used, the sample filter altered, and the
recovery state disabled (changes #2, #3, and our solution).
However, the version with changes #2 and #3 included does
not perform as well as the version with our solution alone,
suggesting that the alterations to the bandwidth estimation
essentially undo any benefits provided by the disabling of the
recovery state.

With the recovery state disabled, WebRTC BBR is able to
achieve an average video bitrate only 18% less than that of
GCC; this translates to a 63% higher average video bitrate
over the unmodified WebRTC BBR. If this version of WebRTC

(a) High bandwidth

(b) Low bandwidth

Fig. 7: Average achieved bitrate of GCC, BBR, and BBR
with recovery state disabled under (a) 100 ms RTT, 5 Mbps
bandwidth, and a 1 MB buffer, and (b) 50 ms RTT, 500 kbps
bandwidth, and a 100 kb buffer, with and without a competing
TCP flow on the same link.

BBR maintains its favorable properties under competition from
TCP, it may serve as a viable alternative to GCC.

C. Improved WebRTC BBR under TCP competition

Since we are investigating WebRTC BBR as a potential
alternative to GCC under TCP competition, we next test our
modified WebRTC BBR sharing the bottleneck link with a
TCP flow, as described in Section V-A. Figure 7 shows the
average video bitrate of WebRTC BBR with the recovery
state disabled, with and without TCP competition, under high
and low bandwidth network conditions. GCC and unmodified
WebRTC BBR results are shown for comparison. While our
modified WebRTC BBR does achieve lower average bitrates
under TCP competition than unmodified WebRTC BBR in the
high bandwidth condition, it vastly outperforms GCC under
the same conditions. Our modified WebRTC BBR does not
achieve an average bitrate as high as GCC in the low band-



width condition when TCP competition is absent; however, it
outperforms unmodified WebRTC BBR by 63%. Furthermore,
in the presence of a competing TCP flow, WebRTC BBR
continues to vastly outperform GCC under low bandwidth with
our modification.

Thus, we posit that, with the recovery state disabled, We-
bRTC BBR can perform well both under competition from
TCP flows and in restricted-bandwidth, deep buffer network
conditions.

VIII. CONCLUSION AND FUTURE WORK

This work presents a modified version of WebRTC BBR as a
potential alternative to the default GCC for live video stream-
ing applications. With the recovery state disabled, WebRTC
BBR achieves an average video bitrate 6.8× higher than GCC
under competition from TCP flows, and its performance in
low-bandwidth, deep-buffer network conditions improves by
63% when compared to unmodified WebRTC BBR. However,
since the root cause of WebRTC BBR’s poor performance
is its overestimation of bandwidth, more extensive changes
to its bandwidth estimation technique would be required for
it to serve as a viable alternative to GCC. Modifications to
the bandwidth estimation might include a larger window for
bandwidth samples, similar to that used by TCP versions of
BBR.

Other future work in this space could focus on developing
an appropriate response to loss, perhaps using a threshold-
based approach such as that used in TCP BBRv2 and BBRv3.
Further studies could also evaluate video QoE for WebRTC
BBR and GCC, rather than using QoS metrics like average
bitrate and RTT, as we did in this work. Furthermore, WebRTC
BBR and any modifications to it should be evaluated under 5G
network conditions to determine whether it would be suitable
for use in modern cellular networks.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive feedback. This
work was supported in part by NSF grant CNS-1909356.

REFERENCES

[1] “Twitch statistics and charts,” https://twitchtracker.com/statistics, Jan
2023.

[2] L. De Cicco, G. Carlucci, and S. Mascolo, “Experimental investigation
of the google congestion control for real-time flows,” in Proceedings
of the 2013 ACM SIGCOMM Workshop on Future Human-Centric
Multimedia Networking, ser. FhMN ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 21–26. [Online].
Available: https://doi.org/10.1145/2491172.2491182

[3] ——, “Understanding the dynamic behaviour of the google congestion
control for rtcweb,” in 2013 20th International Packet Video Workshop,
2013, pp. 1–8.

[4] “Question about applying bbr on video streaming,”
https://groups.google.com/g/bbr-dev/c/1EPG5UwBANo, Mar 2021.

[5] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of tcp bbr congestion
control,” in 2018 IFIP Networking Conference (IFIP Networking) and
Workshops, 2018, pp. 1–9.

[6] K. Miyazawa, K. Sasaki, N. Oda, and S. Yamaguchi, “Cycle and
divergence of performance on tcp bbr,” in 2018 IEEE 7th International
Conference on Cloud Networking (CloudNet), 2018, pp. 1–6.

[7] “Running webrtc with bbr,” https://groups.google.com/g/bbr-
dev/c/siLJCN9DlnM/m/dLwaJPBzFgAJ, Jan 2023.

[8] “6 ways webrtc solves ultra low latency streaming,”
https://www.red5pro.com/blog/6-ways-webrtc-solves-ultra-low-latency-
streaming/, Dec 2019.

[9] E. Krings, “Rtmp vs. hls vs. webrtc: Comparing the best proto-
cols for live streaming,” https://www.dacast.com/blog/rtmp-vs-hls-vs-
webrtc/, Jun 2022.

[10] A. Durresi and R. Jain, “Rtp, rtcp, and RTSP - internet protocols for
real-time multimedia communication,” in The Industrial Information
Technology Handbook, R. Zurawski, Ed. CRC Press, 2005, pp. 1–11.

[11] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis
and design of the google congestion control for web real-time
communication (webrtc),” in Proceedings of the 7th International
Conference on Multimedia Systems, ser. MMSys ’16. New York, NY,
USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2910017.2910605

[12] H. Lundin, S. Holmer, and H. T. Alvestrand, “A google congestion
control algorithm for real-time communication on the world wide web,”
Working Draft, IETF Secretariat, Internet-Draft draft-alvestrand-rtcweb-
congestion-01, October 2011.

[13] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman,
“Performance evaluation of webrtc-based video conferencing,”
SIGMETRICS Perform. Eval. Rev., vol. 45, no. 3, p. 56–68, mar 2018.
[Online]. Available: https://doi.org/10.1145/3199524.3199534

[14] J. Deng, G. Tyson, F. Cuadrado, and S. Uhlig, “Internet scale user-
generated live video streaming: The twitch case,” 02 2017, pp. 60–71.

[15] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced
live streaming: Improving live video ingest via online learning,” in
Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 107–125. [Online]. Available: https://doi.org/10.
1145/3387514.3405856

[16] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein,
“Salsify: Low-latency network video through tighter integration between
a video codec and a transport protocol,” in Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’18. USA: USENIX Association, 2018, p. 267–282.

[17] R. Kumar, A. Koutsaftis, F. Fund, G. Naik, P. Liu, Y. Liu, and S. Panwar,
“Tcp bbr for ultra-low latency networking: Challenges, analysis, and
solutions,” in 2019 IFIP Networking Conference (IFIP Networking),
2019, pp. 1–9.

[18] S. Najmuddin, M. Asim, K. Munir, T. Baker, Z. Guo, and R. Ranjan, “A
bbr-based congestion control for delay-sensitive real-time applications,”
Computing, pp. 1–23, 2020.

[19] F. Chiariotti, A. Zanella, S. Kucera, and H. Claussen, “Bbr-s: A low-
latency bbr modification for fast-varying connections,” IEEE Access,
vol. 9, pp. 76 364–76 378, 2021.

[20] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi,
“When to use and when not to use bbr: An empirical analysis
and evaluation study,” in Proceedings of the Internet Measurement
Conference, ser. IMC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 130–136. [Online]. Available:
https://doi.org/10.1145/3355369.3355579

[21] S. Vargas, R. Drucker, A. Renganathan, A. Balasubramanian, and
A. Gandhi, “Bbr bufferbloat in dash video,” in Proceedings of the Web
Conference 2021, ser. WWW ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 329–341. [Online]. Available:
https://doi.org/10.1145/3442381.3450061

[22] R. Drucker, G. Baraskar, A. Balasubramanian, and A. Gandhi, “Bbr
vs. bbrv2: A performance evaluation,” in 2024 16th International
Conference on COMmunication Systems & NETworkS (COMSNETS),
2024, pp. 379–387.

[23] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev,
P. Jha, Y. Seung, and M. M. V. Jacobson, BBR v2: A
Model-based Congestion Control, IETF-104 : iccrg, Mar 2019.
[Online]. Available: https://datatracker.ietf.org/meeting/104/materials/
slides-104-iccrg-an-update-on-bbr-00


