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ABSTRACT
Server replacement scheduling decisions can significantly
impact carbon emissions in data centers. However, com-
monly used periodic strategies are often sub-optimal in
terms of total carbon emissions. In this article, we formu-
late the carbon-aware server replacements problem math-
ematically and investigate the structure of the optimal re-
placement policy. Based on our theoretical analysis, we
then propose a simple adaptive online policy that yields
significantly lower carbon emissions than periodic strate-
gies and achieves near-optimal results across a variety of
simulated scenarios.

1 Introduction
Data centers employ numerous servers, and these servers
are often replaced periodically due to wear-and-tear, to
avoid ensuing failures, and also to exploit newer, better
technology [18, 12]. The newer technology is typically
more efficient, even in terms of carbon efficiency, includ-
ing both operational and embodied carbon. For example,
if we consider the configuration of a high-end PowerEdge
R760 server and consider different CPU microarchitecture
generations (e.g., Coffee Lake, Cascade Lake, Rocket Lake
released in 2017, 2019, and 2021, respectively), we get es-
timated embodied carbon costs of 996, 888.1, and 794.1
kgCO2e [3]. As such, replacing servers can impact the
carbon footprint of a data center.

However, server replacement as a tool for carbon effi-
ciency has not been well explored. Current practices are
to replace servers periodically [10, 4] or when they fail [14,
15, 13]. There is thus an opportunity here to reduce carbon
costs by scheduling replacements based, at least partially,
on trends in operational and embodied carbon.

We develop an initial model to assess the impact of
server replacement on total carbon cost of a server and
then theoretically analyze the carbon optimization prob-
lem. We obtain exact optimal results in some cases, which
we use to design an adaptive heuristic that can be eas-
ily applied for generic cases. Numerical evaluation results
show that our adaptive policy outperforms periodic poli-
cies substantially, and, importantly, is usually with 1% of
the offline optimal solution.

2 Server Replacement: Problem Setup &
Analysis

Consider a server that is purchased at time t0 = 0 and
is replaced at times t1 < t2 < ... < tn. Let the time
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horizon of analysis be T ; so, T > tn. For simplicity, we
consider time to be in units of years. We consider that
a server purchased at time t incurs a (one-time) embod-
ied carbon cost of E(t) and its operational carbon cost
is O(t) per year that it is in operation. In the R760 ex-
ample mentioned earlier, setting t = 0 for 2017, we get
E(0) = 996, E(2) = 888.1, E(4) = 794.1. The E() and O()
functions/curves can take any form (e.g., linear, exponen-
tial, etc.); we expect the costs to usually reduce over time
due to, for example, technological advances.

The key challenge is that the future E() and O() val-
ues are unknown , so the replacement decision at any
time t (whether to replace now or not) must be made us-
ing only the information (E() and O() values) available
until time t. The objective then is to find, in an on-
line manner, the replacement periods t1, t2, .., tn to
minimize the total carbon cost :

C =

n∑
i=0

{E(ti) +O(ti) · (ti+1 − ti)} , (1)

where t0 = 0 and tn+1 = T . The cost function, C, can be
extended as needed; for example, by multiplying O() with
the carbon intensity, we can covert C to the SCI (Software
Carbon Intensity) metric [7, 9, 8].

We acknowledge the above formulation is a starting point
for a carbon model on server replacements. While it cap-
tures the essential features of the problem and yields im-
portant insights into the structure of the carbon-optimal
server replacement schedule, it does not account for sev-
eral real-world complexities. These include, for example,
the finite lifetime and failure rates of servers, the presence
of multiple server options in the market with differing car-
bon profiles, and the possible degradation of operational
efficiency over a server’s lifetime (for instance, due to wear
or changing carbon intensity of energy sources). Addi-
tionally, performance requirements and constraints are not
explicitly modeled. Nevertheless, as we will show in the
following, the formulation provides a valuable analytical
foundation and yields heuristics that can inform the de-
sign of more practical replacement policies. There is also
potential to extend the framework to incorporate some of
these complexities in future work (see Section 4).

A general result: We first establish an interesting prop-
erty that must hold in an optimal replacement schedule
for any E() and O() curves. For this result, we assume
t is continuous as it allows us to use calculus, and the
continuous results can be shown to typically carry over to
the discrete setting. Consider any three successive replace-
ment times in an optimal schedule: tj−1, tj , tj+1. We fix
tj−1 and tj+1 and consider the change in total cost as we
vary tj . Collecting terms in Eq. (1) that depend only on
tj , the total carbon cost, in terms of tj , can be written as



C(tj) = O(tj−1).tj +E(tj) +O(tj).(tj+1 − tj) + constant.
Differentiating C(tj) and setting it to zero gives us, with
some rearrangement of terms:

tj+1 − tj =
O(tj−1)−O(tj) + E′(tj)

−O′(tj)
(2)

For specific E() and O() curves, the above result lets us
derive interesting relations between successive replacement
intervals in an optimal schedule. For example, if embod-
ied cost and operational costs are both decreasing linearly,
say E(t) = E0 − s · t and O(t) = O0 − k · t, then Eq. (2)
gives us (tj+1 − tj) = (tj − tj−1) − s

k
; so, successive re-

placement intervals in an optimal schedule must decrease
by a constant amount in this case.
The case of linear O() and constant E(): The above
analysis when applied to the case of linear O() and a con-
stant E() = E, tells us that optimal replacements must
happen periodically. Assume that the optimal replacement
interval is x. For ease of analysis, we set T = (n + 1) · x
(this can be made precise by a careful discrete analy-
sis). Then, from Eq. (1), we get the total cost as a func-
tion of x as C(x) =

∑n
i=0[E + (O0 − k · i · x) · x] =

E·T
x

+O0 · T − 1
2
· k · (T − x) · T . To minimize the cost, we

set C′(x) = 0, giving us:

replacement period (x) =
√

2 · E/k (3)

We note that similar results have been derived in unre-
lated settings in the Operations Research community [17,
11]. However, we have not come across results similar to
Eq. (2) or the above proof of optimality of the periodic so-
lution. Similarly, Bashroush et al. have provided a single-
decision-point analysis, based on energy consumption es-
timates, showing that appropriate server replacement can
reduce energy consumption for a realistic workload [1, 2].
However, the analysis in that work does not consider on-
line replacements over time, lacks a formal optimization
framework, and focuses on energy rather than carbon.
The case of arbitrary O() and E(): An exact anal-
ysis for the case where E() is not a constant but is also
decreasing linearly can be similarly carried out, though it
does not result in a closed-form expression. For more gen-
eral functional forms of E() and O(), even the expressions
for the total cost can get complicated.

As such, finding the optimal replacement periods in an
online manner for arbitrary carbon cost curves remains a
challenge.

Our proposed adaptive replacement policy: For an
arbitrary O() curve, at time t, its instantaneous slope can
be obtained from the functional form as O′(t) or by ap-
proximating it as O′(t) ≈ O(t) − O(t − 1). Then, using
Eq. (3) as the basis, we can determine the next replace-
ment period as:

adaptive replacement period =
√

2 · E(t)/|O′(t)| (4)

In effect, this policy locally approximates the O() curve
as linear and E() curve as a constant. While the pol-
icy need not be optimal for general O() and E() curves, it
provides a simple and practical heuristic to obtain replace-
ment schedules in an online and adaptive way, taking into
account changing E() and O() values. As we show next,
our easy-to-use policy performs surprisingly well.
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Figure 1: Percentage reduction in total carbon achieved
by our adaptive policy over 5-year periodic replacement
under linear (yearly) carbon cost curves.

3 Evaluation Results and Insights
We now present numerical results to evaluate the carbon
cost savings afforded by our adaptive policy. We analyze
for a T = 20 year horizon and consider E() and O() curves
that are linear or exponential. We compare the total car-
bon cost over 20 years incurred by our policy with that
incurred by (1) a periodic policy that replaces the server
every 5 years (unless stated otherwise), based on replace-
ment periods reported in prior work [10, 4]; and (2) the
impractical offline optimal policy, obtained via dynamic
programming, wherein the entire E() and O() curves are
known in advance.

Linear E() and O() curves: Figure 1 presents the car-
bon cost reduction afforded by our adaptive policy over the
5-year periodic replacement policy as a heatmap; darker
shades represent higher reductions, with the values in each
cell indicating the percentage reduction. On the x-axis,
we vary the ratio of initial embodied to operational costs
(E0/O0) from 0.01 (meaning embodied cost at t = 0 is
1% of the annual operation cost at t = 0) to 2.56, on a
log scale. The y-axis represents the slope of the linearly
decreasing O() curve, denoted as a percentage of the ini-
tial operational carbon cost, O0. That is, y-axis represents
k/O0 as a percentage, referring to the O(t) = O0 − k · t
linear model from Section 2. The slope of the linearly de-
creasing E curve (denoted as s in Section 2) is set to half
the slope of the O() curve; that is, s = 0.5 · k. We also ex-
perimented with s/k ranging from 0.1–0.9 but the results
were qualitatively similar. The ranges for x- and y-axis
values have been selected based on realistic E() and O()
estimates provided by vendors for their various server and
laptop models [16, 3]. We set O0 = 3, 000 kgCO2e based
on available numbers for servers [5, 6]; we find that the
cost reduction results for a given x- and y-axis value pair
are invariant to O0 (as they cancel out when comparing
policies).

The top-left region of Figure 1 corresponds to situations
where the embodied costs are low and the annual reduction
in operational costs (O(t)−O(t− 1)) is large. In such sit-
uations, replacements incur little embodied cost but pro-
vide substantial carbon savings; as such, waiting 5 years
between replacements is sub-optimal, and we see up to
19% improvement using our method. The bottom-right
region corresponds to the situation where the embodied
costs are high and the change in annual operational costs
is small. Replacements should thus be infrequent, and
the periodic policy incurs high costs (up to 30% higher
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(a) Compared to 5-year periodic replacements.
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(b) Compared to 3-year periodic replacements.

Figure 2: Percentage reduction in total carbon achieved by
our adaptive policy over (a) 5-year and (b) 3-year periodic
replacement under exponential carbon cost curves.

compared to our adaptive policy) performing multiple, un-
needed replacements.

Over the entire range of results shown in Figure 1, our
adaptive policy provides an average carbon cost reduction
of about 4.5% over the 5-year periodic policy. Importantly,
the carbon cost difference between our adaptive policy and
the offline optimal policy is within 0.6%, averaged over
all cases considered in Figure 1.

Exponential E() and O() curves: We now consider
exponentially decreasing carbon cost curves as E(t) =
E0 · e−s·t and O(t) = O0 · e−k·t. The results, illustrated in
Figure 2(a), show similar trends as Figure 1, but the im-
provements afforded by our policy are more pronounced.
Our policy outperforms the 5-year periodic policy by up to
96% in the top-left region (low embodied but high opera-
tional drop), and by up to 26% in the bottom-right region
(high embodied and low operational drop). Further, the
carbon cost of our policy is within 0.35% of that achieved
by the offline optimal when averaged over all cases shown
in Figure 2(a). These promising results are not limited
to comparing with a 5-year periodic policy. Figure 2(b)
shows our improvements compared to a 3-year periodic
policy. The 3-year periodic policy, by replacing more fre-
quently than the 5-year policy, does slightly better in the
top-left region but performs even worse in the bottom-
right region. Over the entire range of results shown in the
figures, the average improvement our policy provides over
the 5- and 3-year policies is 12% and 21.6%, respectively.

We see that our adaptive policy provides greater im-
provements in the exponential case. This is because, under
the exponential cost curves, it is better to replace more fre-
quently initially (when the costs are dropping rapidly) and
replace infrequently later on (when costs have plateaued).
While our adaptive policy indeed follows this pattern, the

static periodic policy is unable to do so.

4 Conclusions and Future Work
We proposed a mathematical model to analyze the total
carbon cost of server replacements and explored structural
properties of the carbon-optimal server replacement pol-
icy. A general result was established, and through the
analysis of a special case, we derived closed-form expres-
sions that informed the design of a simple, adaptive heuris-
tic. This heuristic was shown to perform well in example
settings—achieving results close to the offline optimal and,
in certain scenarios, substantially outperforming periodic
replacement policies.

Looking ahead, future work can extend the analysis along
several dimensions. A deeper investigation of the model
may yield additional structural insights or more refined
heuristics. In particular, it would be valuable to examine
more complex carbon cost trajectories—including those
with abrupt shifts. Incorporating more realistic system-
level considerations, such as finite server lifetimes, per-
formance constraints, degradation in efficiency over time,
and the availability of multiple server options at each de-
cision point, would enhance the practical relevance of the
model and the policies it informs. Moreover, realistic re-
placement decisions often involve objectives beyond car-
bon, such as dollar costs. These typically also exhibit a
one-time fixed component (such as purchase cost) and a
running cost (such as maintenance costs), and can be nat-
urally incorporated into our formulation by appropriately
combining them with the embodied and operational cost
curves.
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