
Energy-efficient GPU SM allocation

Bing-Shiun Han, Kunaal Parekh, Wan-Chu Lin, Tathagata Paul, Anshul Gandhi, Zhenhua Liu
Stony Brook University, Stony Brook, New York, USA

{bing-shiun.han,kunaal.parekh,wanchu.lin,tathagata.paul,anshul.gandhi,zhenhua.liu}@stonybrook.edu

ABSTRACT
GPU sharing between workloads is an effective approach to
increase GPU utilization and reduce idle power waste. To
minimize resource contention under GPU sharing, current
architectures allow users to allocate core GPU compute re-
sources exclusively to workloads. However, identifying the
most efficient GPU compute resource allocation for colo-
cated workloads is challenging, as it requires balancing po-
tential performance degradation and power savings.

This paper presents a framework for finding the most
energy-efficient compute allocation for colocated workload
pairs under NVIDIA MPS using lightweight prediction mod-
els. Experimental results, using a range of training, infer-
ence, and general CUDA workloads, demonstrate that our
solution outperforms the equal sharing strategy by 35%, on
average, and is within 1.5% of the offline optimal strategy.

1 Introduction
The growing workload demand for power-hungry GPUs has
significantly strained data centers [7]. With newer, often
larger, AI models requiring even more computational re-
sources, there is now even greater reliance on energy-intensive
GPUs. It is thus important to fully utilize available GPUs.

A common approach to improve the efficiency of GPUs
is to colocate multiple workloads together on a GPU to
improve utilization [11, 13, 20]; this is particularly useful
for workloads that do not fully saturate the GPU’s com-
pute capacity. The performance interference between the
workloads can then be regulated by partitioning the re-
sources between them. For example, the widely employed
NVIDIA MPS (Multi-Process Service) [2] enables partition-
ing of GPU resources between colocated workloads. In par-
ticular, MPS is a CUDA API implementation that allows
each workload to exclusively occupy a Streaming Multipro-
cessor (SM), which is the compute unit of a GPU. By con-
figuring the CUDA MPS ACTIVE THREAD PERCENTAGE parame-
ter, MPS prevents process interference within a single SM
by limiting the percentage of available threads a workload
can use. Using this parameter, for example, we can reserve
50% of SMs for one workload and the remaining 50% for
another colocated workload; we refer to this as the “equal
partitioning” strategy.

One key problem in using MPS is to find the optimal
SM partition configuration for energy efficiency . This
problem is non-trivial and workload-dependent. For instance,
when colocating an ALBERT training workload with the
more compute-intensive FastWalshTransform CUDA work-
load [23], we can reduce GPU energy consumption by 36%
and improve system throughput by 8% by allocating 10%
of the SMs to ALBERT and 90% to FastWalshTransform,

compared to an equal partitioning approach (50% SMs to
each workload). Likewise, when colocating ALBERT with
the lightweight RESNET workload, we can reduce GPU en-
ergy usage by 10% (while providing the same throughput),
but this time by allocating 60% of the SMs to ALBERT
and 40% to RESNET, compared to the equal partitioning
approach. Thus, while significant benefits can be achieved
with optimal SM partitioning, finding this optimal partition
configuration can be challenging.

In light of the above discussion, we pose our problem
statement as: “Given a pair of GPU workloads, how
can the optimal SM partition be determined?” In this
work, we limit our scope to a workload pair; we will consider
colocation of more than two workloads in future work.

This workshop paper presents a lightweight, application-
level framework that predicts the optimal SM partition con-
figuration. We employ the throughput-per-watt metric, which
has been used in prior optimization works [8, 12] as it rep-
resents a single metric that balances energy efficiency and
performance. We predict colocated power consumption and
throughput using machine learning (ML) approaches, then
leverage these predictions at runtime to determine the opti-
mal SM partition that maximizes throughput per watt.

Through our experimental analysis, we find that a simple
Extra Trees model, with minimal training time, can accu-
rately predict the optimal SM partitioning ratio for a given
workload pair. Our solution involves a one-time, offline run
of individual (not colocated) workloads to extract meaning-
ful metrics. We find that employing NVIDIA DCGM [17]
metrics as features to our ML model provides valuable in-
sights for SM partitioning while incurring low profiling over-
head.

We implement our solution framework in Python and eval-
uate its performance against other baselines using several
deep learning (DL) and compute-intensive CUDA Sample
workloads [23]. We find that our solution is able to ac-
curately predict colocated throughput and colocated GPU
power (5%–10% prediction error) using limited training data.
Our experimental results on an NVIDIA V100 GPU with
MPS support show that the throughput per watt achieved
by our predictive solution is within 1.5% of that achieved
by an offline optimal strategy. Further, our solution outper-
forms the equal partitioning strategy by 35%, on average,
across all workloads we tested.

2 Background and Related Work
MIG [1] and MPS [2] are spatial sharing frameworks pro-
vided by NVIDIA that support GPU resource partitioning.
While MIG offers hardware-level isolation with both com-
pute and memory partitioning, it is only available on a few
of the latest high-end GPU architectures and supports less



than 20 fixed partition configurations, limiting its general
applicability. Additionally, reconfiguring MIG partitions in-
curs significant time and restarting overheads [13]. In con-
trast, MPS is supported on most NVIDIA GPUs and al-
lows user-defined SM compute partitioning across concur-
rent processes with low reconfiguration overheads, offering
greater flexibility and adaptability. In this workshop paper,
we adopt MPS for SM allocation and partitioning.

We now discuss related works that leverage GPU parti-
tioning to improve energy efficiency. Vamja et al. [21] use
power models to predict the power consumption of MIG. Es-
penshade et al. [6] scale deep learning (DL) training work-
loads to fit various MIG partition sizes while maintaining
energy efficiency. MISO [13] predicts optimal MIG parti-
tions by running actual colocated runs (requiring significant
training effort) under different MPS partition ratios. How-
ever, as discussed above, MIG is available only on a limited
set of high-end GPUs.

Weaver et al. [22] predicts interference and rearranges
scheduling workflows to identify the optimal number of con-
current MPS clients to launch; However, they do not search
for the optimal SM partition for each colocated workload.
KRISP [5] reduces energy usage for ML inference workloads
by resizing a model’s spatial partitions at GPU kernel level
with AMD Compute Unit (CU) masking; however, its im-
plementation is limited to environments with AMD ROCm
runtime. EaCO [10] predicts the placement of DL training
tasks under spatial sharing to reduce GPU provisioning and
idle power waste. However, it does not incorporate parti-
tioning techniques and may result in workload interference.
µ-Serve [18] is a DL inference serving framework that com-
bines model multiplexing with DVFS to achieve power sav-
ings while minimizing SLO violations. Part of its design
relies on output-token length predictions and DL operator
profiling, limiting its applicability to autoregressive models
and DL inference workloads. Lastly, research on dynamic
voltage and frequency scaling (DVFS) lies outside this pa-
per’s scope but could be incorporated as a future extension
to our solution [14].

Based on the above discussion, we believe that there is a
gap in the literature on identifying the most efficient
SM partition when colocating workloads using MPS .
This is the gap we aim to bridge in this work.

3 System Design
This section describes the system design of our solution.
The key components of our solution are (1) offline perfor-
mance metric profiling, (2) offline model training, and (3)
online SM partition prediction. The system operates as fol-
lows: when a new (unseen) workload pair arrives, we profile
the individual workload’s metrics offline (Section 3.1) and
use the pretrained throughput and power prediction models
(Section 3.2) to predict the optimal SM partition for colo-
cation (Section 3.3). The prediction models do not need to
be retrained for each new workload.

3.1 Performance metric profiling (offline)
A natural approach to determining the optimal SM par-
tition configuration for a given workload pair is to exper-
iment with various SM partition configurations and then
find the best among them. This approach has two signif-
icant problems: (i) the obvious problem is the high profil-
ing/experimentation overhead of actually trying out various

partitions; and (ii) the less obvious, but still critical prob-
lem of having to repeat this profiling and experimentation
for every new workload pair encountered.

To overcome these problems, we design a predictive ap-
proach. We start by profiling GPU metrics offline for indi-
vidual workloads, i.e., without colocation, under 9 different
SM allocations (10%, 20%, ..., 90%). These metrics are col-
lected one-time only. This approach crucially avoids the
costly profiling required for all possible colocated pairs.

To profile individual workloads offline with minimal over-
head, we leverage multiple NVIDIA GPU monitoring tools,
including nvidia-smi [15] and NVIDIA DCGM [17], to collect
overall system metrics such as compute and memory utiliza-
tion. We incorporate DCGM metrics because nvidia-smi

can be inaccurate in SM measurements [20]. In contrast,
DCGM offers more detailed insights, including SM warp ac-
tivities, SM occupancy, and floating point pipeline usage.
Some previous works have collected performance metrics
through fine-grained kernel profiling [11]. However, kernel
profiling an entire workload could take several hours, which
becomes impractical, especially when multiple SM alloca-
tions must be evaluated. By contrast, DCGM metrics can
be gathered with real-time monitoring at 1-second intervals,
significantly reducing profiling time.

To initiate the profiling process, we perform a single of-
fline profiling run for each workload, as both nvidia-smi

and DCGM can be collected simultaneously. Each DL work-
load is executed for 100 steps (averaging about one minute),
while the entire runtime of each scientific CUDA sample
workload is profiled, since we cannot guarantee periodic ex-
ecution as we can with DL workloads. However, all profiling
is performed offline and completes in minutes, ensuring it is
not on the critical path.

The metrics collected for power and throughput modeling
differ slightly. For power-related modeling, we collect only
the essential GPU performance metrics. For the more chal-
lenging and workload-dependent task of throughput predic-
tion, we additionally include the throughput of each individ-
ual workload (obtained from an exclusive run without colo-
cation) as a feature, since it serves as a strong performance
indicator. We also compute throughput sensitivity for each
workload, defined as the slope of a linear fit of individual
throughput across different SM partitions; this sensitivity
feature guides our SM allocation by suggesting which work-
loads can make better use (in terms of additional throughput
achieved) of additional SMs.

The final set of metrics we employ is: SM warp activ-
ity rate, SM occupancy rate, FP32 engine activity rate,
memory bandwidth utilization, memory busy rate, individ-
ual workload sensitivity, throughput of individual workload
without colocation, PCIe transmission bytes, and PCIe re-
ceiving bytes.

3.2 Model training (offline)
To train (and test) the colocated throughput and colocated
GPU power models for predicting the throughput per watt
of colocated workloads, we conduct experiments where pairs
of workloads are colocated with different SM allocation par-
titions. To inspect the impact of interference, we focus on
evaluating the interval when both workloads are executing.
We show in Section 5 that a small training set size suffices
for accurate model predictions.

For the training dataset, we combine the features of colo-



Workload Compute Memory
FWT samples [23] 95.6% (H) 80.4% (H)
Reduction samples [23] 93.2% (H) 74.4% (H)
Transpose samples [23] 84.3% (H) 68.0% (H)
Sorting samples [23] 83.4% (H) 62.5% (H)
Gemm samples [23] 98.5% (H) 12.8% (L)
ALBERT-train 88.7% (H) 31.8% (L)
BERT-inf 87.4% (H) 24.1% (L)
ViT-train 87.2% (H) 37.3% (L)
Whisper-inf [19] 87.1% (H) 23.8% (L)
BERT-train 85.5% (H) 34.4% (L)
Wav2Vec2-inf 80.2% (H) 25.2% (L)
ViT-inf 33.1% (L) 4.9% (L)
ResNet50-train 15.1% (L) 7.1% (L)
ResNet50-inf 10.2% (L) 2.7% (L)
Mobile-train 4.1% (L) 0.9% (L)
Mobile-inf 3.3% (L) 1.2% (L)

Table 1: Workloads employed, categorized by com-
pute and memory bandwidth usage: (H)igh, (L)ow.

cated workloads. Specifically, we sum the raw metrics (e.g.,
PCIe transmission bytes) and average the metrics reported
as percentages (e.g., SM occupancy). Finally, all features are
normalized using a min-max scaling method before training.
We evaluate three different ML prediction techniques for our
solution; see Section 5.1.

3.3 Optimal SM partition prediction (online)
At runtime, when a workload pair is encountered for exe-
cution, we use the trained throughput and power models
to predict (without actually executing) the throughput sum
and GPU power for the given pair under different SM par-
tition configurations; we limit our configuration space to
(10%,90%), (20%,80%), ..., (90%,10%). Based on our pre-
dictions, we choose the partition that maximizes the ratio of
predicted throughput sum to predicted power (see Section 4
for more details). The workload pair is then executed by
setting the CUDA MPS ACTIVE THREAD PERCENTAGE parameter
in MPS to the chosen SM partition.

4 Methodology
We conduct our evaluation on a server in the Chameleon
Cloud equipped with 2 Intel Xeon Gold 6230 CPUs, 128GB
RAM, and a 32GB NVIDIA V100 GPU. We use PyTorch
1.13 and CUDA12.3 for our experiments.

For evaluation, we use a total of 16 workloads, consisting
of 11 deep learning training and inference models (with a
batch size of 2) and 5 compute-intensive NVIDIA CUDA
CODE Samples [16] representing common scientific compu-
tations. Detailed workload characteristics, including com-
pute and memory utilization, are provided in Table 1. By
considering all workload pairs that fit within GPU mem-
ory, we generate 121 valid colocation pairs. For each pair,
we evaluate 9 SM partitions: (10%,90%), (20%,80%), ...,
(90%,10%). Each partition is treated as a separate data
point, with its corresponding performance metrics recorded.
In this workshop paper, we only consider pairs of workloads
colocated together. With some effort, our approach can be
extended to more than two workloads. However, as the size
of GPU models continues to increase, we do not expect that
too many colocated workloads will be needed to saturate a
GPU while maintaining performance efficiency [4].

Our evaluation metric is throughput per watt, a com-
monly employed metric for system optimization [3, 8, 12]

as it captures the trade-off between power consumption and
performance. In our colocated setting, we specifically de-
fine throughput per watt as (X1+X2)/(GPU Power), where
X1 and X2 denote the throughput of each workload when
colocated. To estimate this metric under different SM par-
titions, we use the throughput and power prediction models
presented in Section 3 to predict (X1 +X2)pred/Powerpred.
We predict the throughput per watt for all 9 SM partition
configurations and employ, for execution, the partition that
maximizes the predicted throughput per watt.

For comparison, we consider the equal partition strategy
that employs the (50%,50%) SM partition for the colocated
pair workloads. We also consider the impractical and of-
fline Oracle strategy which picks the best (throughput per
watt maximizing) SM partition (after the fact) among the
9 partitions we experiment with for each pair.

5 Evaluation
This section presents our experimental results. We first dis-
cuss our throughput and power prediction results under dif-
ferent ML models and training set sizes. Then we present
our workload colocation results with throughput per Watt,
highlighting the efficiency achieved by our solution com-
pared to the equal partition and (offline) Oracle strategies.

5.1 Throughput and power predictions
To assess the accuracy of our predicted throughput sum
((X1 +X2)pred) and our predicted GPU power (Powerpred),
we evaluate across all 9 SM partition configurations that we
experiment with for all valid (121) colocated workload pairs.
For the predictions, we consider three different ML mod-
els: (i) H2O Automatic Machine Learning (AutoML) [9];
(ii) Random Forest (RF ); and (iii) Extra Trees Regressor
(ET ). AutoML is an automated ML framework that selects
the best model from a set including Distributed RF, Gradi-
ent Boosting, Deep Learning, and ensemble models within
a user-defined time constraint. We allocate 3 minutes for
AutoML to select its optimal model.

To evaluate ML model predictions, we test on different
training set sizes. The full dataset (121 pairs, each under
all 9 partition configurations) is split into 10 subsets. For
each training dataset size (e.g., 70%), we randomly sample 7
subsets for training and 3 for testing, repeating this process
10 times to report averaged accuracy.

Colocated throughput sum predictions. Figure 1(a)
shows (on top) the Mean Absolute Percentage Error (MAPE)
of throughput sum predictions and (on bottom) the corre-
sponding training time across different dataset sizes. Among
the three models, Extra Trees (ET) consistently achieves the
lowest MAPE, especially for smaller training sizes, while
Random Forest (RF) performs the worst. ET outperforms
RF due to reduced overfitting, as it selects split points ran-
domly rather than optimizing them, making it more robust
to limited training data. In contrast, both RF and AutoML
are more prone to overfitting due to their complexity. Au-
toML also struggles with training set sizes under 40%, as its
ensemble methods require more training data. Notably, ET
is not part of the AutoML framework, yet maintains MAPE
below 10% for training sizes above 50%. ET also has the
smallest training time requirement, since it avoids exhaus-
tive optimization of split points. AutoML understandably
has high training time as it involves hyperparameter tuning
and model selection overhead.



(a) Throughput sum prediction: (X1 +X2)pred (b) GPU Power prediction: Powerpred

Figure 1: MAPE and training time for colocated throughput sum predictions (left) and colocated GPU power
predictions (right) for different ML models as a function of training dataset size.

Figure 2: Normalized throughput per watt achieved
by our solution using different ML models.

Colocated GPU power predictions. Figure 1(b) shows
our GPU power prediction results. All models achieve better
accuracy for power than for throughput, since GPU power
is naturally correlated with GPU-level metrics that we use
as features (e.g., SM activity, memory usage). ET again
achieves the lowest MAPE, although the difference between
the models is much smaller compared to the throughput
prediction results. In terms of training time, ET remains
the quickest, while AutoML is the slowest; RF incurs high
training time due to grid search.

Based on its low prediction errors and small training time
for both colocated throughput sum and GPU power, we con-
clude that, for our experiments, Extra Trees offers the best
trade-off between accuracy and training efficiency.

5.2 Workload colocation results
We now evaluate our solution in terms of achieved through-
put per watt. For our solution, we used the methodology
described in Section 4 to combine the predicted through-
put sum and predicted GPU power to obtain the predicted
throughput per watt, and then set the SM partition config-
uration that maximizes the predicted throughput per watt.

Throughput per watt under different ML models.
Figure 2 shows the throughput per watt, normalized by
that under Oracle (maximum throughput per watt across
all 9 partition configurations), achieved by our solution as a
function of training dataset size for different ML models. As
expected, the normalized throughput per watt increases as

the training size increases, reflecting improved model accu-
racy with more data. Interestingly, for all ML models, the
achieved values are close and impressive—within 4% of the
Oracle—even though the prediction accuracy results (from
Figure 1) varied noticeably. This suggests that the profiled
features used for training are sufficient for accurately es-
timating throughput per watt, even without the need for
complex ML techniques. ET regressor typically obtains the
best results, with the estimated throughput per watt consis-
tently within 2% of that of the Oracle. Since ET provides the
most accurate predictions at all training set sizes and incurs
the lowest training overhead, we select ET as the prediction
model for our solution.

Evaluating throughput per watt results. We now com-
pare the throughput per watt obtained by our predictive
solution (using ET as the ML model) with that obtained
by (i) the equal partition strategy, which uses a (50%,50%)
allocation to split the SMs between the pair of colocated
workloads; and (ii) the offline Oracle strategy.

Our evaluation in Figure 3 shows the normalized (by Ora-
cle) throughput per watt achieved by our solution and equal
partitioning for all test set workload colocations. The ‘ bx’
notation in the workload name indicates the batch size (x)
and the ‘-train’/‘-inf’/‘-samples’ refers to the workload type
(training, inference, and CUDA CODE Samples [16], respec-
tively). Each bar group represents the results averaged over
all test set workload pairs of the form (w, ∗), where work-
load w is unseen in the training set. This “unseen workload”
scenario is more challenging than the randomized training
split used in Figure 1 and 2, as we explicitly ensure that the
training data does not include any colocated pair involving
w. Unseen workloads can occur in practice either when a
new workload is encountered at runtime (without any pro-
filed data) or when the training set is limited in size. Finally,
the bar groups are arranged in descending order of SM warp
activity rate of workload w. All values are normalized with
that under Oracle, similar to Figure 2.

We see that our solution outperforms equal parti-
tioning in all cases, with a maximum relative gain of
60.6% and an average gain of 35% . We find that our
solution almost always selects the best configuration (the
Oracle configuration), with only a 1.5% lower through-



Figure 3: Normalized throughput per watt (normalized by that of Oracle) of our solution and equal parti-
tioning (50%-50%) for all test cases, sorted by compute requirements. Relative gain is shown in text boxes.

Figure 4: Throughput per watt results grouped by
different workload resource categories.

put per watt on average compared to the offline Ora-
cle. In general, our solution outperforms equal partitioning
the most in throughput per watt for high-compute work-
loads (left of Figure 3), with the improvement decreasing
for low-compute workloads (right of Figure 3). This is be-
cause high-compute workloads benefit from more dominant
resource allocation (e.g., 90% SMs allocated), which signifi-
cantly accelerates its throughput. The (static) equal parti-
tion strategy of 50%-50% cannot realize such opportunities.

Some workloads, however, do not follow the above dis-
cussed pattern. For instance, FWT samples (FastWalsh-
Transform) has the second-heaviest compute SM activity
but only achieves a 14.7% improvement under our solution
compared to equal partitioning. This is because FWT’s per-
formance does not improve significantly even with more SM
allocated. As a result, the Oracle configuration is closer to
equal partitioning, where allocating more SMs to the other
workload in the pair is optimal. We find that 45% of the
Oracle partitions for test workload pairs that include FWT
as one workload are not 90%-10%, which results in our so-
lution (which performs similarly to Oracle) being closer to
equal partitioning. A similar argument holds for the Sort-
ing samples workload pairs (10th bar group). Nonetheless,
these cases show a 14%–20% improvement in throughput
per watt, suggesting that our solution can outperform equal
partitioning even in cases where the Oracle partition is non-
trivial.

Further analysis of results based on workload re-
source requirements. Figure 4 analyzes how our solution
performs for workload pairs cateogrized by their resource re-
quirements. We categorize our 16 workloads into four groups
based on their SM activity and memory bandwidth utiliza-
tion: (high compute, high memory); (high compute, low

memory); and (low compute, low memory). The categories
are defined using a 50% threshold for high (hi) and low (lo)
compute and memory requirements, listed in Table 1. We
then organize all colocated results from Figure 3 into these
categories, as shown in Figure 4.

Our solution performs differently across workload resource
categories, with a high relative gain in throughput per watt of
65.7% (compared to equal partitioning) for the most resource-
intensive pairs (Group 1) and a negligible 0.8% gain for pairs
with both low compute and low memory requirements (Group
5). Group 1 has larger gain because the (high compute, high
memory) category consists of high-throughput CUDA sam-
ple workloads, where optimal configurations consistently al-
locate 90% of SMs to those workloads to maximize overall
throughput, making 50%–50% equal partition sub-optimal.
In contrast, Group 5 shows very little gain as both colocated
workloads are similarly light, and so allocating additional re-
sources (beyond 50% SMs) to one of these light workloads
at the expense of the other does not significantly improve
throughput sum. So, equal partitioning works well here.

To isolate the impact of resource requirements of colo-
cated workload pairs, we compare Groups 2 and 5, where the
colocated workloads share the same resource category. The
results show a substantial difference: our results for Group
2 (pair of high compute, low memory) outperform the base-
line by 38%, with 82% of the Oracle configurations favoring
a 90%–10% SM partition. In contrast, our results for Group
5 (pair of low compute, low memory) show minimal improve-
ment, suggesting that a 50%–50% SM allocation partition
suffices for this group. This suggests that workloads with
higher compute demands should be carefully allocated SMs
per their sensitivity.

Group 4 presents a non-trivial case: compared to other
groups that include (low compute, low memory) workloads
(i.e., Groups 3 and 5), our solution performs significantly
better for group 4. This discrepancy occurs because Group 4
includes (high compute, low memory) workloads—primarily
DL training workloads, whose throughput does not improve
as significantly from greater SM allocation as the through-
put of its colocated (low compute, low memory) light DL
inference workloads. As a result, 92% of the Oracle configu-
rations for this group are 10%–90%, prioritizing the lighter
inference workloads. This observation highlights the im-
portance of workload characteristics in determining energy
efficiency. Combined with our earlier comparison of Groups
2 and 5, we conclude that energy efficiency gains depend
not only on compute and memory demands, but also on the
nature of the colocated workloads.



6 Conclusion and Future Work
This paper presents a prediction-based approach to identify
the most efficient SM partition configuration for a workload
pair when using MPS. Using a limited set of offline GPU
system metrics profiled for training, our solution achieves a
12%–60% increase in throughput per watt, with an average
improvement of 35%, compared to the equal partitioning
baseline; further, our solution’s performance is within 1.5%
of that of the offline optimal strategy. As part of future
work, we will expand our approach to multiple colocated
workloads and extend our solution to multi-GPU setups.

Acknowledgment
This work was supported by NSF grants CCF-2324859, CNS-
2214980, CNS-2106434, CNS-1750109, CNS-2106027, CNS-
2146909, and CCF-2046444.

7 References
[1] Nvidia multi-instance gpu v560, 2024. Official

Documentation.

[2] Nvidia multi-process service v570, 2025. Official
Documentation.

[3] Tahmid Abtahi, Colin Shea, Amey Kulkarni, and
Tinoosh Mohsenin. Accelerating convolutional neural
network with fft on embedded hardware. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 26(9):1737–1749, 2018.

[4] Wenyan Chen, Zizhao Mo, Huanle Xu, Kejiang Ye,
and Chengzhong Xu. Interference-aware Multiplexing
for Deep Learning in GPU Clusters: A Middleware
Approach. In Proceedings of the International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’23, Denver,
CO, USA, 2023.

[5] Marcus Chow, Ali Jahanshahi, and Daniel Wong.
Krisp: Enabling kernel-wise right-sizing for spatial
partitioned gpu inference servers. In 2023 IEEE
International Symposium on High-Performance
Computer Architecture (HPCA), pages 624–637, 2023.

[6] Connor Espenshade, Rachel Peng, Eumin Hong, Max
Calman, Yue Zhu, Pritish Parida, Eun Kyung Lee,
and Martha A. Kim. Characterizing training
performance and energy for foundation models and
image classifiers on multi-instance gpus. In Proceedings
of the 4th Workshop on Machine Learning and
Systems, EuroMLSys ’24, page 47–55, New York, NY,
USA, 2024. Association for Computing Machinery.

[7] Hugging Face. The llama 3 models were trained on 15
trillion tokens with 24,000 gpus, 2023. Accessed:
2024-07-03.

[8] Brett Foster, Shubbhi Taneja, Joseph Manzano, and
Kevin Barker. Evaluating energy efficiency of gpus
using machine learning benchmarks. In 2023 IEEE
International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 42–50, 2023.

[9] H2O.ai. H2O.ai AutoML Documentation, 2024.
https://docs.h2o.ai/h2o/latest-stable/

h2o-docs/index.html.

[10] Kawsar Haghshenas and Mona Hashemi. Eaco:
Resource sharing dynamics and its impact on energy
efficiency for dnn training, 2024.

[11] Bing-Shiun Han, Tathagata Paul, Zhenhua Liu, and

Anshul Gandhi. Kace: Kernel-aware colocation for
efficient gpu spatial sharing. In Proceedings of the
2024 ACM Symposium on Cloud Computing, SoCC
’24, page 460–469, New York, NY, USA, 2024.
Association for Computing Machinery.

[12] Xin He, Jiawen Liu, Zhen Xie, Hao Chen, Guoyang
Chen, Weifeng Zhang, and Dong Li. Enabling
energy-efficient DNN training on hybrid GPU-FPGA
accelerators. In Proceedings of the 35th ACM
International Conference on Supercomputing, ICS ’21,
pages 227–241, Virtual Event, 2021.

[13] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay
Gadepally, and Devesh Tiwari. MISO: exploiting
multi-instance GPU capability on multi-tenant GPU
clusters. In Proceedings of the 13th Symposium on
Cloud Computing, SoCC ’22, page 173–189, San
Francisco, CA, USA, 2022.

[14] Xinyi Li, Ti Zhou, Haoyu Wang, and Man Lin.
Energy-efficient computation with dvfs using deep
reinforcement learning for multi-task systems in edge
computing, 2024.

[15] NVIDIA Corporation. NVIDIA System Management
Interface, August 2016. Version 367.38.

[16] NVIDIA Corporation. Cuda toolkit 12.8 samples.
CUDA Toolkit Samples Repository, 2024. Accessed:
March 24, 2025.

[17] NVIDIA Corporation. Nvidia data center gpu manager
(dcgm). Online, 2025. Accessed: March 24, 2025.

[18] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun
Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew Kalbarczyk, Tamer Başar, and
Ravishankar K. Iyer. Power-aware deep learning
model serving with µ-Serve. In 2024 USENIX Annual
Technical Conference (USENIX ATC 24), pages
75–93, Santa Clara, CA, USA, 2024.

[19] Alec Radford, Jong Wook Kim, Tao Xu, Greg
Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak
supervision, 2022.

[20] Foteini Strati, Xianzhe Ma, and Ana Klimovic. Orion:
Interference-aware, Fine-grained GPU Sharing for ML
Applications. In Proceedings of the Nineteenth
European Conference on Computer Systems, EuroSys
’24, page 1075–1092, Athens, Greece, 2024.

[21] Tirth Vamja, Kaustabha Ray, Felix George, and
UmaMaheswari C Devi. On the partitioning of gpu
power among multi-instances, 2025.

[22] Alex Weaver, Krishna Kavi, Dejan Milojicic, Rolando
Pablo Hong Enriquez, Ninad Hogade, Alok Mishra,
and Gayatri Mehta. Granularity-and
interference-aware gpu sharing with mps. In
Proceedings of the SC ’24 Workshops of the
International Conference on High Performance
Computing, Network, Storage, and Analysis, SC-W
’24, page 1630–1637. IEEE Press, 2025.

[23] Yijia Zhang, Qiang Wang, Zhe Lin, Pengxiang Xu,
and Bingqiang Wang. Improving gpu energy efficiency
through an application-transparent frequency scaling
policy with performance assurance. In Proceedings of
the Nineteenth European Conference on Computer
Systems, EuroSys ’24, page 769–785, New York, NY,
USA, 2024. Association for Computing Machinery.


