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Abstract—The microservice architecture is an architectural style for
designing applications that supports a collection of fine-grained and
loosely-coupled services, called microservices, enabling independent
development and deployment. An undesirable complexity that results
from this style is the large state space of possibly inter-dependent
configuration parameters (of the constituent microservices) which
have to be tuned to improve application performance.

This paper investigates optimization algorithms to address the
problem of configuration tuning of microservices applications. To
address the critical issue of large state space, practical dimensionality
reduction strategies are developed based on available system
characteristics. The evaluation of the optimization algorithms
and dimensionality reduction techniques across three popular
benchmarking applications highlights the importance of configuration
tuning to reduce tail latency (by as much as 46%). A detailed analysis
of the efficacy of different dimensionality reduction techniques in
capturing the most important parameters is performed using ANOVA
techniques. Results show that the right combination of optimization
algorithms and dimensionality reduction can provide substantial
latency improvements by identifying the right subset of parameters
to tune, reducing the search space by as much as 83%.

Index Terms—ML for systems, microservices, configuration tuning,
optimization, dimensionality reduction, tail latency

I. INTRODUCTION

The emerging microservice architecture allows applications to
be decomposed into different, interacting modules, each of which
can then be independently managed for agility, scalability, and
fault isolation [1], [2]. Each module or microservice typically
implements a single business capability with inter-microservice
communication enabled via Application Programming Interfaces
(APIs). Applications deployed using the microservice architecture
thus enable flexible software development.

The microservice architecture is especially well suited for
designing online, customer-facing applications where performance
and availability are paramount [3], [4]. For example, an online
application can be deployed as front-end microservices (e.g., Nginx),
a set of microservices that implement the logic of the application
each of which can have their own database (e.g., MongoDB)
and caching (e.g., Memcached) microservices. Consequently, an
application can have numerous microservices. Given the benefits
of the modular architecture, microservices architecture is widely
replacing existing deployments implemented using monolithic or
multi-tier architectures at Amazon, Netflix, and Twitter [1].

Despite the benefits of the microservice architecture, a specific
challenge that this distributed deployment poses is that of tuning
the configuration parameters of the constituent microservices.
A change in configuration parameters can substantially impact
application performance, motivating our investigation of
configuration tuning. For example, sweeping over the valid range

of values for the worker process parameter of the nginx [5]
microservice in the social networking application [1] (while
keeping the rest of the parameters at default) can provide up to 13%
improvement in latency over the default configuration. However,
joint optimization of all the application parameters can provide
46% latency improvement over the default configuration (see
Section IV). On the other hand, setting a sub-optimal (but still valid)
value for the worker process parameter of the nginx while setting
the rest of the parameters to the optimal values can deteriorate the
performance by up to 100× compared to the default configuration.
Tuning the parameters of monolithic or N-tier applications for
maximizing performance is already a difficult task [2], [6]–[10] (see
Section II). With microservice applications, configuration tuning
is especially complicated owing to the following challenges:

• Very large configuration space. Microservices applications have
hundreds to thousands of interacting microservices that each
have several parameters that can be configured [11]. Frameworks
that aid microservices development, such as Apache Thrift [12]
and gRPC [13], introduce additional parameters that impact
application performance. These parameters can take values that
are discrete, continuous, or categorical, complicating attempts
to optimize their values.

• Inter-dependent parameters. The parameter setting of a microser-
vice can influence the optimal value of a different parameter of
the same microservice. As a result, the numerous parameters of a
given microservice cannot be independently optimized (see Sec-
tion IV). For example, for MongoDB, a low value of the cache size
parameter can amplify the number of concurrent read transactions,
making it difficult to independently tune the latter parameter [14].

• Dependency between parameters of different microservices. The
dependency between parameter values extends beyond a single mi-
croservice; parameters of upstream services are often dependent
on the parameter settings of downstream services [8]. For example,
the thread pool size of a microservice may dictate how many
concurrent requests are sent to the downstream microservice.

• Interference among colocated microservices. Microservices,
typically deployed as containers, can be colocated on the same
physical host. Due to potential resource contention, the resource
configuration of a microservice can impact the performance of
other colocated microservices. For example, the cache size of two
colocated caching microservices should not be set independently
as they share the host’s memory resources.

• Non-linear relationship between microservices parameters
and performance. Application performance need not be
monotonically or linearly dependent on parameter values, making
it difficult to determine optimal configuration parameter settings.



Fig. 1: Comparison of 95th percentile of latency for the social
networking application [1] under (i) default configuration values
(Default), (ii) the configuration used by DeathStarBench benchmark
developers [15] (DC), and the configuration found by the best opti-
mization technique among those we explored (iii) with dimensional-
ity reduction (considering only a subset of microservices for tuning)
and (iv) without any reduction (tuning all microservices). The right
y-axis shows the number of microservices tuned for (iii) and (iv).

The thread pool size parameter is a classic example whereby a low
value results in under-utilization of the CPU and a very high value
results in contention for network sockets or CPU resources [2].

There is little prior work on the specific problem of configuration
tuning of microservices, and that work relies on empirically
exploring the configuration setting of only specific parameters of
just stateless microservices [2] . There are, however, prior works that
focus on optimizing the configuration of individual services [9], [16],
but as explained above, the dependencies between the parameters
of microservices makes it infeasible to optimize them in isolation.

This paper explores the problem of configuration tuning of mi-
croservices applications. To address the problem of inter-dependent
parameters, we consider joint optimization of the parameter space.
We conduct an extensive experimental investigation of six black-box
optimization algorithms with the goal of minimizing the tail latency
of a given microservice application deployment. As shown in
Figure 1, the best optimization algorithm can significantly improve
application tail latency (95th percentile), by as much 46% and 43%,
compared to the default configuration setting and the suggested
configuration in prior work [1], respectively. We also find that
combining different algorithms can result in efficient solutions that
quickly (with few exploration points) explore the state space and
provide significant latency improvements.

To address the key challenge of a large configuration space when
jointly tuning microservices applications, we investigate various
dimensionality reduction approaches to identify a subset of microser-
vices that are most likely to impact end-to-end application latency.
As illustrated by the two rightmost bars in Figure 1, by employing
dimensionality reduction, we can achieve significant improvement in
tail latency while only having to tune about 18% of all microservices.
In fact, within a given budget on the number of iterations of the
optimization algorithm, optimizing with dimensionality reduction
can further improve tail latency (by about 6.5%) compared to when
optimizing without any dimensionality reduction since the search
space is reduced, thereby aiding the optimization.

Our investigation of different algorithms reveals that the optimal
choice is application-dependent. While the hybrid algorithm we
devise performs best for the social networking and the train ticket
applications, Bayesian optimization performs best for media
microservices application, in terms of tail latency reduction. In
terms of time taken to run the algorithm, dynamically dimensioned
search (DDS) performs the best.
This paper makes the following contributions:
• We formulate configuration tuning of microservices application as

a joint optimization problem, making it amenable to optimization
algorithms. Contrary to serial tuning, this provides an opportunity
for the optimization algorithms to learn the dependencies among
parameters of the same microservices and across microservices.

• We implement a framework [17] to experimentally explore and
evaluate the configuration space of parameters for microservices.
The framework is fully automated and can be integrated with any
optimization technique.

• We implement six different representative optimization algorithms
using open-sourced libraries and compare their efficacy in choos-
ing the best configuration with respect to minimizing the applica-
tion tail latency. To assess the optimization algorithms’ applicabil-
ity in practice, we also analyze their convergence and overhead.

• Based on our analysis of different algorithms, we design and eval-
uate an efficient hybrid algorithm that combines the strengths of
different algorithms. In particular, the algorithm quickly explores
the state space using heuristic-based search and then uses the
results of this search to initialize a model-based search algorithm.

• For scalability, we investigate different approaches, including
critical path and variability tracking, to reduce the overhead
of optimization by limiting the set of microservices whose
parameters will be configured. We analyze the ability of these
different techniques to capture the most important parameters
that impact application tail latency.

• We use functional analysis of variance (fANOVA) [18] to find
the most important parameters and analyze the values assigned to
them by different optimization algorithms. We also examine the
change in service time of individual microservices to assess the
impact of optimization on different request types in the workload.

II. BACKGROUND AND PRIOR WORK

Microservice architecture is a style of architecture where the
application is implemented as a set of loosely coupled services,
called microservices. This shift in design of distributed applications
requires revisiting some of the problems that have been addressed for
monolithic and N-tier architectures. Resource management [19] and
bottleneck mitigation [20] for microservices applications are some
of the problems that have garnered significant attention from the
research and development community. We take a different approach
to improving the performance of distributed applications imple-
mented using a microservices architecture. In particular, we tackle
the problem of tuning the parameters of microservices to improve
the performance metric of interest (e.g., tail latency or throughput).

The general problem of tuning parameters of computer systems
has gained significant attention [9], [10], [16]. However, these works
do not focus on the specific problem of microservices configuration
where several, inter-dependent parameter configurations have to



be tuned. The one extensive prior work on configuration tuning
of microservices that we are aware of is by Sriraman et al. [2].
In this work, the authors explore the tuning of a small subset of
microservices parameters, limited to thread pool size and threading
model. However, the state space of configuration parameters for
microservices is very large, as discussed in Section I, and hence
a more comprehensive investigation of parameters is required for
performance optimization of microservices applications.

A naive approach to address the large state space of configurations
for microservices applications is to tune one microservice at a
time. While this approach significantly reduces the state space
dimensionality for configuration tuning, it does proportionally
increase the tuning effort. Further, this serial tuning approach cannot
capture the complex relationship between different parameters and
the cascading effects between different microservices [20], [21].

Based on the above discussion, we argue that there is a need
to investigate joint optimization of the microservices’ parameters.
The joint optimization is needed in order to capture the impact of
multiple parameters of one microservice on its performance as well
as the impact of a microservice’s parameters on the performance
of other microservices. Further, mechanisms are needed to reduce
the configuration state space, given the numerous parameters and
microservices employed by modern applications.

We now briefly discuss prior works related to the general
problem of configuration tuning in systems before we formalize
our specific problem in Section III-A.

Application configuration tuning. There has been considerable
research in parameter tuning for individual applications, such as
Apache web server [8], Memcached [22], database [9] and storage
systems [16], [23], etc. While the above works can be used to tune
individual microservices in isolation, the dependencies between
microservices necessitates global optimization across microservices.

SmartConf [7] is a control-theoretic framework that automatically
sets and dynamically adjusts parameters of software systems to op-
timize performance metrics while meeting the operating constraints
set by the user. However, SmartConf is only applicable to parameters
that have a linear relationship with performance; this is not necessar-
ily the case for parameters of microservices [2]. BestConfig [6] uses
sampling and search-based methods to tune parameters of software
systems. However, the sampling effort required increases exponen-
tially with the number of parameters, suggesting that BestConfig is
infeasible for microservices applications with a large configuration
space. Fekry et al. [24] concentrate on dynamically tuning config-
urations of data analytics frameworks for varying workloads and
environments. While online tuning is an interesting research direc-
tion, it significantly limits the number of parameters available for
(online) tuning. Alabed et al. [25] tune 10 parameters of RocksDB by
optimizing multiple objectives using Bayesian optimization. How-
ever, finding the low-level metrics and reducing the dimensionality
of each optimization task requires expert knowledge of the system
being tuned which is not feasible for microservices architecture due
to the variety of microservices that are part of each application.

Resource allocation tuning. Bilal et al. [26] perform an exhaustive
comparison of existing black-box techniques for the problem of
finding the best cloud configuration that minimizes the execution

time or cost. Vanir [21] optimizes the cloud configuration for
analytics clusters using Mondrian forest-based performance model
and transfer learning. OPTIMUSCLOUD [10] jointly optimizes
VM configurations and database configurations for cloud-deployed
database systems by training a performance prediction model.
CherryPick [27] uses Bayesian Optimization (BO) to build a
performance model for Big Data systems, which is then used to
find the best cloud configuration for these systems.

While some of the optimization algorithms explored in our
evaluation are similar to the ones employed by the above works,
we note that our focus is on tuning the parameters of the numerous
microservices that make up an application, as opposed to only
focusing on a handful of resource allocation parameters, such as
number of CPUs, memory capacity, etc.
Reducing the configuration space. Kanellis et al. [28] employ
learning-based techniques to find the most important parameters
of database systems that impact performance. Carver [29] employs
Latin Hypercube Sampling to explore the effect of different
parameters on storage system performance and uses the variance
in performance caused by a parameter as an indicator of the
parameter’s importance. As discussed in Section IV, focusing on
microservices on the critical path is a more effective approach.

III. PROBLEM FORMULATION AND SYSTEM DESIGN

In this section, we formulate the microservices configuration
setting problem as an optimization problem. We then describe
our system design for the automated framework (which we have
made publicly available [17]) that aids our experimental evaluation
(presented in Section IV).

A. Microservices configuration setting problem

Let f(c) denote the objective function (or performance metric)
for the microservices application under the configuration c; here, c
is the (potentially large) vector of parameter settings for all tunable
parameters of all microservices. Note that a parameter refers to
a configurable option and a configuration is a combination of
parameter values. Let C denote the set of all configurations, i.e.,
all feasible values that vector c can take. Finally, let copt∈C denote
the configuration that minimizes the performance metric, f(). Thus,
copt=argminc∈Cf(c). We could consider metrics that need to be
maximized by minimizing the negative of the objective function. Our
problem statement is to find copt or a near-optimal configuration.
We focus on the realistic case where no assumptions can be made
on the structure of f() or on the availability of offline training data.
We further assert, for practical purposes, that the (near-)optimal
configuration should be determined in a reasonable amount of time.

While f() can represent any metric of interest, including
combinations of metrics, we consider the 95th percentile of
end-to-end application latency to be our metric, f(). We note that
customer-facing applications often employ such tail latency metrics
to assess application performance [3], [4].

Given the dependencies between parameters and the possible
non-linear relationship between performance and parameter values
(as described in Section I), it is unlikely that f() can be determined
or inferred accurately. Thus, classic convex optimization techniques
cannot be readily applied to determine copt. However, for a given
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Fig. 2: Illustration of our solution framework. f() is the objective
function or performance metric of interest and c(i) is the config-
uration setting for iteration i. The optimizer takes in the observed
objective function value for a configuration, f(c(i)), and outputs
the next configuration to employ, c(i + 1). The dimensionality
reduction module trims the configuration vector size to speed up the
optimization process. The controller interfaces with the application
and invokes the execution based on the required configuration.

c, the value of f(c) can be observed or measured by setting
the parameter values in c for the microservices and running an
experiment. This suggests that black-box optimization techniques,
that iteratively observe the value of f() at a given c and determine
the next configuration value c′ to explore, can be applied to find
copt or near-optimal c values.

B. Automated framework to aid optimization

Unlike prior works [16], [26] that run optimization algorithms
over readily available datasets, we evaluate the value of the objective
function, f(), by running an experiment. To streamline the iterative
exploration of configurations (for determining copt), we thus require
a robust framework that can automatically: (i) configure the param-
eters of the microservices selected by the dimensionality reduction
technique and run the application with these parameter settings, (ii)
collect the required metrics, and (iii) run the optimization algorithm
to obtain the next configuration to experiment with.

Figure 2 illustrates the design of our automated framework that
we use to conduct our experiments. The application deployment file
has information necessary to create the docker-compose files, viz.,
the list of microservices, their images, the host details, environment
variables, etc. The parameters file contains the list of parameters
being tuned and their range. The size of this list depends on the
dimensionality reduction method being employed. The controller
passes the value of the measured objective function, f(c(i)), of
the current iteration, i, and queries the optimizer for the next
configuration setting, c(i+1).

The optimizer, in its first iteration, queries the dimensionality
reduction module to obtain a subset of the microservices parameters
that will be subject to optimization. The dimensionality reduction
module uses the application deployment file, parameters file,
and the request traces to pass a reduced list of parameters to the
optimizer. The dimensionality reduction techniques are discussed in
Section IV-B2. The optimizer then generates, via the optimization
algorithm, the next configuration setting, c(i+1), for the reduced
list of parameters.

Using the details in the application deployment file and the
c(i + 1) configuration passed by the optimizer, the controller
generates docker-compose files on the fly with the necessary network
settings and mounts. The application is then deployed on the servers
using these docker-compose files and the client sends the workload
to the application. The request traces are collected by a tracing
framework and the latency metrics are calculated by the client.
These metrics are passed to the controller which then calculates the
objective function, f(c(i+1)), and repeats the process iteratively
until a good enough configuration is found or until an exploration
time limit is reached. Our framework supports any combination
of average, median, or tail latency for the objective function.

The framework currently supports automatic configuration
management for the most widely used microservices [30]:
Memcached, Redis, MongoDB, MySQL, Nginx, and microservices
implemented using the thrift framework. The parameters of some
of these microservices can be modified by creating a configuration
file (e.g., for Nginx) whereas others expect them as command line
arguments with varying syntax. The user can be agnostic to these
intricacies and treat all parameters similarly. The framework can
be employed for any microservices application consisting of the
supported microservices by including the application deployment
file for that application. Optimization algorithms can be added by
inheriting the Optimizer class and implementing its methods.

IV. EVALUATION

In this section, we first discuss our experimental setup and
methodology, and then present our experimental results. Our
evaluation goal is to (i) investigate the efficacy of various
optimization algorithms with respect to their running time and
their ability to improve tail latency by configuration tuning; and
(ii) investigate dimensionality reduction techniques that can speed
up the optimization algorithms in practice.

A. Experimental setup

We use a cluster with four servers, each with 24 (hyper)cores,
40 GB of memory, and 250GB of disk space. We deploy the
microservices of the application on these servers based on their
functionality: one hosts back-end microservices as is the practice in
industry [11], one server hosts front-end microservices, one hosts the
microservices that implement the logic, and one server is dedicated
for monitoring the microservices and the application performance.
We restrict monitoring services, Jaeger [31] with Elasticsearch [32]
back-end, to a different server to avoid interference with the
application. docker-compose is used to deploy the application and
overlay network connects the microservices across the servers.

Applications. We employ the social networking and media
microservices applications from the DeathStarBench benchmark
suite [1] and train ticket [33] application to evaluate the efficacy
of different black-box optimization algorithms.

The social networking application has 28 microservices that
together implement several features of real-world social networking
applications. The constituent microservices are Nginx, Memcached,
MongoDB, Redis, as well as microservices that implement the
logic of the application. The application workload consists of 10%



requests that create a post, 30% requests that read the timeline of
other users, and 60% requests that read the user’s own timeline.

The media microservices application implements a movie
review system and consists of 31 microservices. The constituent
microservices are similar to the ones in the social networking
application. The workload consists of 25% requests that add a
movie review, 70% requests that read a movie review, and 5%
requests that read the plot of the movie.

The train ticket application is a train ticket booking system
implemented using 41 microservices. In addition to the
microservices that are part of the social networking application,
this application also uses MySQL microservice. The application
workload consists of 50% of requests that search for a train between
two stations, and 50% of requests that reserve a train ticket.

We change the type of server for social networking and media mi-
croservices applications to TNonblockingServer. The Apache Thrift
C++ TNonblockingServer provides better performance and exposes
numerous settings for the developer to customize the server [12]. We
also make modifications to change the thread pool size dynamically
based on the value suggested by the optimizer for each iteration.

B. Evaluation methodology

For evaluation, we consider the 95th percentile of latency as
the performance metric; other latency metrics can be readily used
as well. For each microservice, we select at most five parameters
to tune; we refer to product documentation [5], [12], [34]–[36] to
identify the performance-impacting parameters. Our framework
supports parameters that can take continuous (e.g., factor parameter
of memcached), discrete (e.g., number of processes in Nginx), or
categorical values (e.g., maxmemory-policy in Redis). The range
of allowed values for each parameter is decided based on product
documentation (e.g., internal cache size of mongoDB) or the limits
of the hardware (e.g., number of threads in memcached).

We report results averaged across multiple experimental runs and
provide error bars where appropriate. Each run lasts for 20 minutes,
with the first few minutes (5 minutes for social networking and
media microservices and 10 minutes for train ticket) considered
as warm up until the cache hit rate stabilizes. Performance metrics
are collected after the warm up period.

1) Black-box optimization algorithms: We consider six existing
representative optimization algorithms in our evaluation, and
then propose a seventh hybrid algorithm based on our analysis
of the existing six algorithms. The first 2 are representative of
heuristic-based probabilistic algorithms, the next 2 are evolutionary
algorithms inspired by population-based biological evolution, and
the next 2 are sequential model-based optimization algorithms
that approximate the objective function with a cheaper, surrogate
function [37] to aid optimization. We use skopt [38], Hyperopt [39],
and Nevergrad [40] libraries to implement the algorithms. We also
compare the results of these algorithms with the best configuration
obtained by performing a random search of the configuration space.
Note that we also tried tuning one microservice at a time (as opposed
to a joint tuning), but the results are inferior and are so omitted.
Simulated Annealing (SA) [41] exploits the neighbourhood points
based on the value of the objective function at these points, with the
degree of exploration determined by a time-varying parameter that

decreases with each iteration (annealing). Since SA is known to be
better at global optimization than the hill climbing algorithm [41],
we do not evaluate the latter.
Dynamically Dimensioned Search (DDS) starts with an initial
configuration and perturbs the values of the parameters of the
configuration based on a perturbation factor [42]. With each
iteration, the probability of each parameter being included in the
optimization reduces uniformly, thereby reducing the search space.
Particle Swarm Optimization (PSO) [41] works by moving a
population (called swarm) of candidate solutions (called particles)
around the search space depending on the particle’s best-known
position and the global best position.
Genetic Algorithms (GA) [41] mimic natural selection by first
selecting a subset of candidate solutions based on the objective
function value and then randomly changing the configurations of
some parameters (mutation) and combining configurations of the
candidates (crossover) to generate new candidates.
Bayesian Optimization (BO) starts with a prior distribution of
the search space guided by the surrogate; we experiment with the
popular Gaussian Process (GP) [37], Gradient Boosted Regression
Trees (GBRT) [26], and Random Forests (RF) [26] surrogate
models. The posterior distribution is updated at each step of
exploration using Bayesian method.
Tree-structured Parzen Estimator (TPE) is similar to BO, but
models the likelihood and prior instead of the posterior [37].
Hybrid algorithm is a new algorithm that we construct by combining
the strengths of BO and DDS. BO models the relationship between
performance and the parameters to efficiently search for the optimal
configuration with a convergence rate that is dependent on the initial
samples [25]. On the other hand, DDS is a computationally efficient
heuristic-based search algorithm that performs well (See Section IV).
Since DDS is not model-based, it makes no attempt to learn about
the parameter space. With hybrid, we combine the light-weight
searching feature of DDS with the model-based searching feature
of BO. Specifically, the DDS algorithm is run for a fixed number of
iterations and the resulting best configurations are used as initial sam-
ples for the Bayesian algorithm with the popular Gaussian Process as
the surrogate model [21], [27]. By contrast, when not using hybrid,
the initial samples for Bayesian are (by default) randomly generated.

2) Dimensionality reduction strategies: If an application has m
microservices each with pi parameters (for i=1,2,...,m), then the
number of dimensions in a configuration vector c is n=

∑m
i=1pi.

For the purpose of illustration, if each parameter can take v different
values, then the number of possible configurations is |C| = vn.
Clearly, the search space of configurations grows exponentially with
the number of microservices. To reduce the search space, we thus
consider strategies that allow us to focus our configuration tuning
effort on only a subset of the microservices. Another advantage of
dimensionality reduction is that several optimization algorithms,
such as Bayesian Optimization (BO), do not work well in high
dimensions (number of tunable parameters, in our case) [43]. We
note that our dimensionality reduction strategies have a different goal
than those used in the machine learning community since our focus
is on using system characteristics to reduce dimensions in a practical
manner. For example, Principal Component Analysis (PCA) [44]



can reduce the configuration space dimensions but would make it
difficult to reconstruct the configuration value after optimization.
1) Critical path. In the call graph of a request, the critical path is

the path formed by microservices that determine the latency of
the request. Tuning the parameters of the microservices that fall
on the critical path of a request is important as any performance
improvements in these microservices will reduce the end-to-end
latency of the request. Algorithm 1 provides an overview of our
critical path determination algorithm. The algorithm takes the
request traces as input T and outputs a list of microservices that
form the critical path of each trace. In summary, the algorithm
traverses the call graph of a request to find all the microservices
on the critical path that have non-negligible latency (at least 1ms).
We rely on the service time (or span) measurements provided
by Jaeger for each microservice to determine the critical path.
Using our algorithm, we identify microservices present on the
critical path of most of the request types for all applications.

Algorithm 1 Find microservices along the Critical Path.

1: Input: Request traces, T .
2: Output: List of microservices along the Critical Path.
3: criticalPathAll←∅
4: for t∈T do
5: currentCriticalPath← getCriticalPath(t.root)
6: append(criticalPathAll,currentCriticalPath)
7: procedure GETCRITICALPATH(node)
8: criticalPath←∅
9: if node.children is NULL then

10: lastChild = nextChild(node)
11: getCriticalPath(lastChild)
12: node.duration = updateDuration(node)
13: if node.duration>1ms then
14: append(criticalPath, node)

2) Bottlenecks. FIRM [19] uses a Support Vector Machine (SVM)
to detect microservices that could be potential bottlenecks for an
application. We train an SVM model using the publicly available
tracing data [45] for the social networking, media microservices,
and the train ticket applications. We use this model to predict
potential bottlenecks in all applications and tune only these.

3) Performance variance. Reducing the source of performance
variance can improve the system performance [3], [46].
Accordingly, we consider configuration tuning only for
microservices that have a high service time coefficient of
variation (above 0.5 in our experiments).

4) Performance variance along the critical path. To combine the
strengths of different dimensionality reduction techniques, we
consider the approach of first determining the critical path (via
Algorithm 1) and then selecting the top five microservices on
the critical path that have the highest variance in service time.

C. Experimental results

In practice, the optimization algorithms cannot be run indefinitely.
Unless otherwise specified, we limit the number of configurations
to be explored for each optimization algorithm to 15. We note that

running each iteration of the algorithm involves bringing up the
application, applying the configuration, and running the workload,
which together takes about half an hour. By contrast, the time taken
by an optimization algorithm to suggest a new configuration is
typically in the order of seconds. Thus, a budget on the optimization
time as a stopping criteria is not as practical as the number of
iterations of the algorithm. For initialization, the optimization
algorithms, except Hybrid, start with a random configuration. For
the evaluation to be fair, we initialize all the algorithms with the same
random samples. Note that (re)setting the configuration parameters
between iterations does incur some overhead and may require
restarting some microservices; during this time, the application may
be momentarily offline. We acknowledge that this can be concerning
for production deployments where application downtime is not
tolerated. However, in a production deployment, the reconfiguration
step can be carried out during planned maintenance or upgrade
windows to avoid additional disruption to the application [47]. We
defer online configuration tuning of microservices to future work.

1) Efficacy of dimensionality reduction strategies: Figure 3
shows the percentage improvement in tail (95th percentile)
latency of all applications under different dimensionality reduction
techniques, compared to the tail latency when using the default
configuration for all parameters. For ease of illustration, we
show results for three specific optimization algorithms. Note that
comparison across optimization algorithms will be discussed in the
next subsection and is not the focus here. Error bars in the figures
indicate the standard deviation around the reported mean results.

In Figure 3a, we see that tuning all 28 microservices of the social
networking application provides about 39–43% improvement in tail
latency. Tuning all the microservices on the critical path provides
similar improvements. However, tuning only the microservices
on the critical path that show high variability (5 microservices)
provides 40–46% improvement. Note that this improvement is
greater than that obtained by tuning all 28 microservices. This
is because dimensionality reduction reduces the configuration
search space, enabling a more efficient tuning within the budget
of 15 configurations to explore. Tuning the known bottlenecks
provides around 42% improvements, suggesting that the critical
path approach correctly identifies the microservices that have
the most impact. Finally, by focusing on the variability causing
microservices, the latency improvement is about 39–44%.

In Figure 3b, we observe that tuning all the 31 microservices
of the media microservices application produces about 25–29%
improvements. We observe that tuning only the microservices on
the critical path that show high variability (5 microservices) again
provides superior performance with up to 31.2% improvement, high-
lighting the impact of dimensionality reduction. The performance
improvements for the critical path, the bottleneck, and the variability
techniques are 28–30%, 27–28%, and 28–30%, respectively

In Figure 3c, we see that tuning the 26 microservices of train
ticket application results in 39–43% improvement. Tuning only the
microservices on the critical path provides up to 46% improvement
in tail latency. Since the train ticket application has the most param-
eters, the benefits of dimensionality reduction are more pronounced.
The performance improvements are around 44%, 42%, and 43% for
bottleneck, variability, and critical path+variability, respectively.



(a) Social networking application. (b) Media microservices application. (c) Train ticket application.

Fig. 3: Evaluation of different dimensionality reduction techniques with respect to improvement in latency over the default configuration un-
der different optimization algorithms. Error bars indicate the standard deviation around the reported mean over 3 runs. The total optimization
time is the time taken by the algorithm across the 15 iterations (excluding the time to run the application with the required configurations).

Fig. 4: Number of microservices to be tuned under different
dimensionality reduction strategies for social networking (SN),
media microservices (MM), and train ticket (TT).

Figure 4 shows the number of microservices tuned under
different dimensionality reduction techniques, compared to no
reduction, for all the three applications. While all techniques reduce
the number of microservices to be tuned by at least 50%, the
“Critical path + variability” approach (Performance variance along
the critical path) allows us to customize and aggressively reduce the
number to just 5. Despite this substantial reduction in the number of
microservices to be tuned, the “Critical path + variability” approach
provides significant tail latency reduction for the applications we
consider, as highlighted in Figure 3.

To further contrast the four different dimensionality reduction
techniques, we consider the overlap in subsets of microservices
chosen by the techniques. For the social networking application,
we find that only two microservices are common among all the
subsets: (i) post-storage-memcached is an important microservice
as it caches posts that are read by requests that constitute 90% of
the workload; and (ii) compose-post-service is critical in the call
graph of the request that writes posts as it is called multiple times
per request. This shows that, despite differences in the subsets,
all techniques have the ability to identify some of the important,
performance-impacting microservices.

A potential drawback of reducing the dimensions by omitting
microservices for optimization is that a dimensionality reduction
technique could miss out on important parameters. To evaluate
this hypothesis, we find the 20 most important parameters using
the offline and expensive fANOVA [18] approach and determine
how many of these 20 parameters are captured by different

Fig. 5: Illustration of coverage of the top 20 parameters captured
by different dimensionality reduction techniques.

dimensionality reduction techniques in Figure 5. We find that while
the different dimensionality reduction techniques do not capture
all 20 important parameters, they do capture 3–4 parameters out
of the top 5. We note that fANOVA parameter importance analysis
can be used to reduce the number of dimensions, but the amount of
training data and effort required makes this approach impractical.

2) Comparing different optimization algorithms: Figures 6a, 6b,
and 6c show the (sorted) percentage improvement (on left y-axis) in
tail latency over the default configuration afforded by different opti-
mization algorithms with no dimensionality reduction for the social
networking, media microservices, and the train ticket applications,
respectively. For comparison, we show (as DC) the improvement
afforded by the configuration employed by the developers of the
DeathStarBench [15] and the train ticket application [33].

For the social networking application in Figure 6a, we see that
Hybrid algorithm provides the best improvement of around 43%, fol-
lowed closely by BO GBRT (42%) and BO GP (41.8%). Using the
configuration chosen by the developers provides a modest improve-
ment of 6% over the default configuration. To evaluate the overhead
of different optimization algorithms, we plot (as red triangles with
right y-axis) the time taken by the optimization across all iterations in
Figure 6. We find that DDS requires the least amount of time (10ms),
followed by SA (0.8s) and BO TPE (1.4s). Hybrid is also relatively
quick, requiring about 1.7s. GA and PSO incur a high overhead; this
is expected as evolutionary algorithms are computationally intensive.

For the media microservices application, as seen in Figure 6b,
the BO TPE algorithm provides the best configuration with an
improvement of around 32%. DDS again takes the least amount



(a) Social networking application. (b) Media microservices application. (c) Train ticket application.

Fig. 6: Improvement in latency compared to default configuration (left y-axis) and the time incurred by the optimization (right y-axis)
for all algorithms when tuning the microservices of the applications with no dimensionality reduction.

Fig. 7: Efficiency of various algorithms over 15 iterations when
tuning on the critical path of social networking application.

of time, about 9ms. The Hybrid algorithm also performs well, with
an improvement of around 29% and requiring about 3s of time.
Using the configuration provided by the developers only provides
a nominal 2% improvement over the default configuration.

For the train ticket application, the Hybrid algorithm again
performs the best with 43% improvement over the default
configuration, closely followed by BO GBRT (42.84%) and BO
RF (42.72%). The developer’s configuration performs worse than
the default configuration because of which it is excluded from
Figure 6c. It is interesting to note the impressive performance
of random search (36% improvement) considering the negligible
run time (∼ 1ms). The existence of multiple optimal regions,
as discussed in Section IV-C, is one likely reason for its good
performance. Further, randomized configuration settings have been
shown to perform well when tuning databases [16], [25].

Based on the above results, we conclude that, for our evaluation,
Hybrid is the best performing algorithm for the social networking
and train ticket applications whereas Tree-structured Parzen
Estimator (TPE) provides a good tradeoff between latency
improvement and optimization runtime for media microservices.

3) Convergence analysis of algorithms: The results shown thus
far are based on the best configuration picked by the algorithms
from among 15 iterations. To analyze the significance of number
of iterations and variance across different sequences (runs), we
plot the best improvement afforded until different iterations for BO
GP and Hybrid, across 3 different sequences of these algorithms,
in Figure 7 for the social networking application. Although the
different sequences vary during the initial iterations, they eventually
converge well within 15 iterations. This suggests that the variability
between runs is low, explaining the narrow error bars in our results.

We also analyzed the results for 100 iterations and found that the

additional performance benefit afforded over 15 iterations is only
about 1–2% compared to the best solution in Figure 6, suggesting
that the optimization algorithms converge quickly. This is useful
in practice given that each additional iteration imposes certain
overhead and application downtime.

4) Significance of initial configuration: The optimization algo-
rithms typically start with a randomly sampled configuration. To
assess the significance of this initial configuration on performance
improvement and convergence, we specifically set the initial
configuration of the social networking application to one that we
know performs poorly to check how the optimization recovers; we
use BO GP for this evaluation. For example, we limit the number of
processes for the Nginx microservice to 1, set the Memcached cache
size to 16MB, etc. We find that, despite the poor initial configuration,
the algorithm does provide significant improvement over the default
configuration, with only a 3.4% relative drop in performance
compared to the randomly chosen initial configuration case.

5) Analysis of configurations set by algorithms: To better
understand the optimal configurations, we now analyze the specific
parameter configuration values determined by different algorithms.
Without loss of generality, we consider the social networking
application and analyze the values selected by each algorithm
for the top 5 important parameters. To identify the important
parameters, we employ fANOVA [18], which uses an empirical
performance model based on random forests to analyze how much
of the observed performance variation in the configuration space is
explained by a single parameter or combinations of few parameters.
To obtain the data for fANOVA, we sample the configuration space
by running up to 1000 experiments for various configurations and
collecting the corresponding 95th percentile latency.

For the social networking application, the top 5 parameters
(along with the associated microservice), in the order of importance,
and the values assigned to them by each algorithm, are given in
Table I. The top parameter is the worker processes parameter of
the frontend microservice (NGINX). While the default value of this
parameter is 1, for a fair comparison, we override the default value
to the number of cores in the server (24) as suggested in product
documentation [5]. We set the allowable range for this parameter
to be 1–48. As seen in Table I, the values set by different algorithms
are close to 24. Since the worker processes for the social networking
application do not perform any I/O, a high value for worker process
would lead to contention and a low value would lead to decreased
processor utilization. This shows that all algorithms judiciously
choose the worker process value.



Parameter (associated microservice) Range Default Optimization algorithms
| BO GP | BO GBRT | TPE | DDS | PSO | SA | hybrid | GA | BO RF

worker processes (frontend-nginx) 1-48 24 24 21 23 19 20 26 23 19 20
zset-max-ziplist-entries (social-graph-redis) 64-512 128 64 108 77 68 92 238 109 120 89
io threadpool size (social-graph-service) 1-48 13 33 36 43 34 33 46 29 33 30
memory limit (MB) (post-storage-memc) 32-20k 64 4k 6.8k 5.8k 7k 8k 9.1k 8.8k 13k 6.4k

hz (user-timeline-redis) 1-100 10 43 64 60 57 41 61 52 71 39

TABLE I: Top-5 important parameters (as identified by fANOVA analysis) for the social networking application.

The second most important parameter is the zset-max-ziplist-
entries of the social-graph-redis microservice. This parameter sets a
limit on the number of entries allowed in a ZSET (sorted sets) for it
to be encoded as a ziplist. The memory savings due to ziplist come
at the cost of CPU usage—CPU cycles are spent on decoding every
read, partially re-encoding every write, and may require moving
data in memory. As seen from the table, the value of this parameter
is always set below the default, except for the one generated by SA,
signifying the benefits of prioritizing CPU over memory savings.

The next important parameter is the io threadpool size of the
social-graph-service, which dictates the size of the I/O thread pool
for TNonblockingServer [12]. We see that the io threadpool size
value selected by different algorithms is consistently higher than
the default value (13), suggesting that the default configuration was
under-utilizing the resources.

The next important parameter is the memory limit value for post-
storage-memcached micorservice, which is set at 64MB by default.
Table I shows that the various optimization algorithms have a mem-
ory limit value of at least 4GB for this microservice. This is a critical
microservice that is along the critical path of 90% of the requests,
substantiating the extra memory allocation to improve performance.

Finally, the hz parameter sets the frequency of invocations of
background tasks to remove expired keys in Redis [35]. For the
user-timeline-redis microservice, the value selected for hz is much
higher than the default of 10, indicating that the additional use of
CPU by this microservice (at the expense of other microservices)
is worth the improvement in performance.

Table I highlights the similarities (e.g., for worker processes)
and differences (e.g., for zset-max-ziplist-entries) in the parameter
values chosen by the optimization algorithms. The differences
suggest that the algorithms do converge to different locally optimal
configurations (as opposed to a single globally optimal one);
despite the different configurations, the resulting latency benefits
are comparable (as seen in Figures 6a, 6b, and 6c). The similarities
suggest that minor differences in values (within a range) of some
parameters may not significantly impact performance; a valuable
future direction is to discretize some of the parameter ranges to
reduce the configuration space.

6) Microservice-level analysis of latency reduction afforded by
the best configuration: The workloads used in our experiments
consist of a mixture of different request types (see Section IV-A).
The 95th percentile latency depends heavily on the request type that
takes the longest time. To analyze the ability of optimizations in
prioritizing microservices that serve the long-tailed request types, we
compare the service time (95th percentile) of all microservices along
the call graph of different request types for the best configuration
across all experiments (i.e., across all algorithms and all

dimensionality reduction strategies) with the default configuration.
For the social networking workload, based on the experiment

logs, we find that read-user-timeline requests influence the 95th

percentile of the workload latency the most, followed by read-
home-timeline. post-storage-memcached and post-storage-mongo
microservices, which are along the critical path of both these
request types, can thus have a significant impact on workload
latency. In case of the read-user-timeline request type, the best
configuration results in 65% and 28% reduction in service time of
post-storage-memcached and post-storage-mongo microservices,
respectively. The user-timeline-redis, which is on the critical path
of read-user-timeline, sees a 56% reduction in its service time. On
the other hand, the microservices along the call graph of light-tailed
compose-post request type experience a nominal increase in service
time, notably user-timeline-mongo (7% increase), where the user’s
post IDs are written as part of the compose-post request type. For
the user-timeline-mongo microservice, the best configuration across
all experiments chooses zlib as the compression algorithm which
uses more CPU than the default (snappy) [34]. Likewise, the best
configuration sets wiredTigerConcurrentWriteTransactions to 74
(lower than the default of 128), limiting the maximum concurrent
writes, and increasing the service time of user-timeline-mongo.

We find similar patterns (of prioritizing parameters of
microservices that serve heavy-tailed request types) for other
applications as well. For example, for media microservices,
compose-movie-review request type influences the workload’s 95th

percentile latency the most. compose-review-service microservice,
which is along the critical path of the compose-movie-review
requests, sees a 35% reduction in 95th percentile of the service time
when the best configuration across all experiments is applied. The
key takeaway here is that despite the optimization algorithms being
oblivious to the workload mix, they sample the search space well
enough to find configurations that are near-optimal for the workload.

V. CONCLUSION

Despite the recent shift in application design to microservices
architecture, the fundamental problem of setting the configuration of
individual microservices to improve performance has received very
little attention, with practitioners instead settling for sub-optimal
performance via default or ad-hoc configuration settings. This paper
makes the case for configuration tuning of microservices.

Our investigation of different joint optimization techniques shows
that significant improvements in tail latency, up to 46%, can be real-
ized via configuration tuning. While most algorithms perform well,
the optimal algorithm is application-dependent; further, combining
different algorithms can provide superior performance for some
applications. Our analysis reveals that the optimal configuration



of a microservice (e.g., MongoDB) need not be the same across
applications or even across instances within the same application.

We also investigate techniques to reduce the tuning effort across
algorithms. We consider different approaches to dimensionality re-
duction and find that focusing on tuning the microservices on the crit-
ical path that have the highest service time variability is an effective
dimensionality reduction technique. We conclude that dimensional-
ity reduction based on system characteristics is an effective approach
to the otherwise intractable problem of optimizing a large state space.
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