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Abstract—An imminent challenge in the serverless computing
landscape is the escalating cost of infrastructure needed to
handle the growing traffic at scale. This work presents ENSURE,
a function-level scheduler and autonomous resource manager
designed to minimize provider resource costs while meeting cus-
tomer performance requirements. ENSURE works by classifying
incoming function requests at runtime and carefully regulating
the resource usage of colocated functions on each invoker. Beyond
a single invoker, ENSURE elastically scales capacity, using con-
cepts from operations research, in response to varying workload
traffic to prevent cold starts. Finally, ENSURE schedules requests
by concentrating load on an adequate number of invokers to
encourage reuse of active hosts (thus further avoiding cold starts)
and allow unneeded capacity to provably and gracefully time out.
We implement ENSURE on Apache OpenWhisk and show that,
across several serverless applications and compared to existing
baselines, ENSURE significantly improves resource efficiency, by
as much as 52%, while providing acceptable application latency.

I. INTRODUCTION

Serverless computing is an emerging paradigm for running
user-specified functions on provider resources with virtually
unlimited scalability [2]]. In serverless computing, the user is
responsible for writing the code and packaging it, and the
cloud provider is responsible for provisioning and maintaining
the infrastructure, including host servers, needed to execute the
user code/program [12]]. The pay-per-use pricing for functions,
currently at about 20 cents per million invocations (per AWS
Lambda [2]]), makes serverless a lucrative choice for end-users.
There is consensus in the computing community that several
classes of applications, including MapReduce frameworks,
will eventually run seamlessly on serverless platforms [12].

An imminent challenge in this computing landscape is
the escalating cost of resources (or infrastructure) needed
to handle the growing serverless traffic, as alluded to by
the recent study from RISELab [12]. The specific problem
we consider in this paper is how should user functions be
scheduled and resource managed on bare-metal servers to
minimize the provider’s expenses at scale while providing
acceptable latencies? Addressing this problem requires both
(i) efficient placement of the incoming workload on hosts
to minimize the provider’s capital expenses, and (ii) elastic
scaling of the serverless platform capacity to minimize the
provider’s operating expenses in the presence of dynamic
workload traffic. In serverless environments, the provider is
responsible for making both these decisions.

There are several issues that make it difficult to achieve high
resource efficiency in serverless environments:

o Diverse applications: Serverless computing has attracted
interest from different application communities, including
high-performance computing [20]. Consequently, server-
less applications can differ substantially in their resource
consumption patterns, ranging from short-lived scripts to
embarrassingly parallel services [8], [12], [2]. This diversity
necessitates application-specific scheduling and colocation
to minimize resource contention across application classes.

o Cold start latency: Serverless functions are typically hosted
on containers, which help in packaging the application
and ease the function invocation process. When processing
requests from a new application on a host, the following
steps are involved: (i) launching a new container, (ii) setting
up the runtime environments, and (iii) application-specific
initialization; the latency for these steps is collectively
termed as cold start latency [25], [12]. In our experiments,
the cold start latency typically ranges from 3 to 6 seconds;
by contrast, function execution can take as little as 0.5
seconds [25]]. While recent advances, such as AWS Fire-
cracker [2], reduce the latency of launching a new container
(or microVM), the application and runtime initialization
latencies still remain, and can be substantial [12], [[14].

e Resource efficiency at scale: Serverless computing plat-
forms, such as AWS, typically tout their ability to seamlessly
handle any scale of workload requests [2]. To maintain
high resource efficiency, however, the platform capacity
(containers and hosts) must scale out and scale in elastically
with the workload demand, including bursts of function
requests [14]]. Unfortunately, this can lead to frequent cold
starts. Further, typical load balancing solutions, such as
Round Robin or Least Connections, are designed to spread
the load among available hosts, and so naturally tend to use
all available hosts, resulting in potential under-utilization.

Existing approaches, such as schedulers designed for VM
placement or web load balancers, are not well suited for
serverless scheduling. The former requires specification of the
resource request (e.g., number of cores), which is not an input
that a serverless user needs to provide. The latter assumes
that any server can execute an incoming request, whereas in
serverless computing, specific servers that are already “warm”
(have an active container of that application) are preferred
to prevent cold starts. While container schedulers, such as
Borg, may appear to be well suited for serverless workloads,
they are not necessarily designed for short-lived functions, and
can have task placement latencies as high as 25s [23]; by



contrast, serverless functions typically have latencies ranging
from milliseconds to few seconds [12].

We present ENSURE, an EfficieNt SchedUling and au-
tonomous REsource management framework for serverless
computing designed to minimize provider expenses while pro-
viding acceptable request latencies. The design of ENSURE is
guided by the need to achieve high resource efficiency within
and across containers. Within a container, ENSURE takes into
account the diverse resource consumption and lifetime patterns
of serverless functions by classifying them into categories.
ENSURE then scalably determines function placement based
on the inferred class of the incoming function. To provide
acceptable latencies, ENSURE mitigates the resource con-
tention between colocated, and possibly diverse, functions by
dynamically regulating their cpu-shares at runtime.

To achieve resource efficiency beyond a single container,
ENSURE relies on two key components: (i) FnScale, our
autoscaling component that dynamically scales the number
of containers and hosts in response to changes in workload
traffic, and (ii) FnSched, our scheduling component that care-
fully distributes function requests across hosts to minimize
SLO violations. FnScale works by proactively maintaining
a few additional containers and hosts that can seamlessly
handle workload variations while preventing cold starts. Using
concepts from operations research, we carefully choose the
amount of additional capacity to (theoretically) ensure low
request latency and high resource efficiency.

FnSched concentrates load on adequate number of hosts by
greedily “packing” requests on a host before moving on to
another host. To avoid latency violations, FnSched maintains
a moving window of observed latencies to determine how
aggressively each host can be packed. A key advantage of this
greedy packing approach is that requests are often scheduled
on non-idle hosts, thereby preventing cold starts. Another
advantage of the packing approach, which we formally prove
via queueing theoretic arguments, is that it allows unneeded
hosts to “time out”, thus naturally scaling in resources.

We implement a prototype of ENSURE on Apache Open-
Whisk [3] and evaluate its performance on a 34-VM serverless
cluster in AWS. Our experimental results show that ENSURE
provides acceptable latencies across a diverse set of server-
less applications, unlike the existing resource managers in
OpenWhisk and Kubernetes. Our multi-host evaluation, using
time-varying (trace-driven) traffic, highlights the efficiency of
ENSURE; compared to existing scheduling policies, ENSURE
handles the incoming traffic with 18%-52% fewer hosts and
with about 60% fewer cold starts.

II. BACKGROUND AND MOTIVATION
In a serverless computing platform, the user writes a cloud
function in a high-level language and creates the trigger
(events from the back-end, http end-points) to run the func-
tion [2]. The serverless provider is then responsible for the

infrastructure that will execute the user function.
Figure [I] illustrates a typical serverless platform environ-
ment. The incoming user function is sent to the scheduler via
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Fig. 1. Illustration of a typical serverless platform.

an HTTP front-end; we use the terms function, application
request, and workload interchangeably. The scheduler then
chooses an invoker on which the function can run; the invoker,
or host, is typically a server or VM. Depending on the
application, a function may use additional back-end services,
such as a database, object store, etc. Typically, the serverless
platform uses containers or other sandboxing approaches to
host and execute the function on an invoker [25]]; we assume
the use of containers, similar to Google Cloud Run [10] and
Apache OpenWhisk [3]]. Thus, an invoker is a VM or server
which hosts the containers of serverless functions.

A key concern in the serverless environment is the ability
to maintain acceptable latency for function requests. Prior
work has shown that cold starts can significantly contribute to
application latency, by as much 500ms—10s [12]], [25]], which is
on the order of runtime of typical serverless applications [25],
[14]. Our experiments on AWS Lambda (see Section for
experimental setup) show that user applications can experience
20-120 cold starts per hour at moderate loads. Thus, to
maintain acceptable performance, providers must carefully
schedule user requests among invokers to minimize cold starts.

A competing objective for providers is the need to maintain
resource efficiency as serverless workload scales. Unlike in
VM cloud provisioning, users in the serverless environment
are not required to fully specify their resource requirements;
this complicates the provider’s job of efficiently provisioning
resources. For example, in AWS Lambda and Google Cloud
Functions [25]], the user can only specify a memory require-
ment (and not CPU requirement), which the provider internally
uses to also allocate CPU resources proportionally. To obtain
superior performance, users may resort to overprovisioning
memory. As user workload demand scales, this behavior can
result in severe underutilization of provider resources. Thus, to
maintain resource and cost efficiency, providers must carefully
manage the CPU and memory allocation of applications.

Complicating the above requirements is the fact that server-
less workload demand can be quite variable. A recent Mi-
crosoft Azure study [14] found that the inter-arrival time
distribution of serverless applications can be quite variable,
necessitating a dynamic and elastic autoscaling solution.

ITII. DESIGN OF ENSURE
The design of ENSURE, and its key benefits, are rooted in
the core principle of resource efficiency. ENSURE efficiently
manages resources, both within containers and across contain-
ers, by more effectively “packing” function requests at each
invoker; the key challenge here is to schedule requests without



Application Class || Runtime | Average CPU | Peak CPU | Mem usage | N/W usage
T | Image Resizing (IR) ET 0.66 s 8.6% 10.3% 24.4 MB 0.8 MB/s
f: Streaming Analytics (SA) ET 0.73 s 12.4% 14.2% 21.5 MB 0.1 MB/s
1 | Nearest Neighbor (NN) MP 82s 68.5% 100% 126.4 MB 3.3 MB/s
N| Comp. Fluid Dynamics (CFD) | MP 20.1 s 88.3% 100% 201.7 MB 2.2 MB/s

Email Gen (EG) ET 0.64 s 19% 31% 45 MB 0.15 MB/s
T| Stock Analysis (ST) ET 0.78 s 14% 26% 30 MB 0.75 MB/s
E| File Encrypt (FE) ET 0.71 s 18% 33% 50 MB 1.3 MB/s
S| Sentiment Review (SR) ET 1.03 s 18% 35% 91 MB 0.8 MB/s
T| Sorting (SO) MP 449 s 90% 100% 318 MB 1.5 MB/s

Matrix Multiply (MM) MP 19.85 s 85% 100% 60 MB 0.65 MB/s

TABLE I

CHARACTERIZATION OF THE (TRAINING AND TEST SET) SERVERLESS APPLICATIONS USED IN OUR EXPERIMENTS.

significantly impacting function latency. We specifically design
ENSURE to avoid cold starts (thus maintaining acceptable
latency) and allow for more agile resource provisioning (to
achieve high resource efficiency). We first describe how EN-
SURE achieves high resource efficiency at the container level,
and then describe how ENSURE autoscales the number of
containers and invokers to achieve resource efficiency at scale.

We consider a serverless environment as illustrated in
Figure [I] with a tier of homogeneous invoker nodes. We
consider multiple applications, possibly belonging to different
users, that issue function requests; thus, functions can be
heterogeneous in nature. As is typically the case (e.g., for AWS
Lambda [2] and OpenWhisk [3]]), we assume that the (peak)
memory requirements of the function are provided as input by
the user. Each invoker hosts application-specific containers,
that in turn serve incoming functions for their application.

In serverless platforms, the user expects a certain level of
acceptable service from the provider, in terms of the latency
of executing the user function. We capture this requirement as
a Service Level Objective (SLO) which dictates the allowable
latency degradation for a user function, latencyThd. Specifi-
cally, if the latency of function execution when run in isolation
on a dedicated host is isoLatency, then the SLO dictates that
the latency in the serverless environment should be no more
than (isoLatency - latencyThd).

A. Resource management within a container
Since the peak memory requirements of a container are known
a priori, we only launch a container on an invoker that has
enough spare memory to accommodate the container. By
contrast, the CPU availability for a container may change
abruptly over time (as colocated functions complete and new
ones arrive), necessitating a more dynamic CPU resource
management approach; in our experiments with serverless
functions, we find that CPU is often the source of contention.

To regulate the CPU usage of containers colocated on
the same processor core, ENSURE leverages cpu-shares [6],
which specifies the relative share of CPU time available to the
container; cpu-shares is a soft limit enforced only when CPU
cycles are constrained. We allow multiple containers to share
the same processor core to improve resource efficiency.

In general, the CPU requirements of a function depend
on the underlying application. An embarrassingly parallel

application will require many more CPU cycles compared to a
short-lived function. Consequently, a long-running application
may be able to tolerate a few milliseconds of CPU contention
without much impact on latency, unlike a short-lived, CPU-
intensive application. Thus, ENSURE takes into account the
nature of the application when regulating its cpu-shares.

Classifying serverless applications. We classify applications
into two categories — Edge Triggered (ET), and Massively
Parallel (MP) — based on their runtime and resource usage.
ET applications are typically short-lived and/or triggered based
on events, e.g., streaming analytics and IoT back-end [2]. MP
applications are resource intensive and are typically embar-
rassingly parallel, e.g., data mining [S] and MapReduce [18]].

Table[l|shows the runtime and resource usage characteristics
of the (training and test set) applications we experiment with in
this paper; we describe these applications later in Section [IV-B]
The values are obtained by averaging the results over 3 runs
of 5 minutes each. We see that different applications can
have very different runtimes and resource usages. For several
applications, the average, and even peak, cpu usage is often
much below 100%, motivating the need to colocate containers
on the same processor core to improve cpu utilization.

We find that applications can be easily classified into the
MP category by using simple threshold rules on their runtime
and/or average or peak CPU usage. For example, based on the
training set applications, we can classify an application as MP
or ET depending on whether or not it satisfies the condition
runtime > 5s && avg CPU > 50%. Such a rule would
result in perfect classification accuracy for the test set as well.
We note that decision tree classifiers can be used to more
formally classify applications into ET and MP.

In practice, when requests from a new application are first
encountered, ENSURE executes them on containers that are
not colocated with other applications. The resulting request
latency should be close to the application’s isoLatency,
which, along with its observed resource usage characteristics,
is used to classify the application. We note that, for a given
application, the input data sizes may be different, resulting in
arange of ¢soLatency values; we address this issue by further
classifying applications, as discussed in Section [[V-E]
Regulating cpu-shares. Since different classes of applications
have very different resource usage and runtime characteristics,



it is important to regulate the cpu-shares of application-specific
containers colocated on the same core to mitigate resource
contention. Commonly employed approaches to set cpu-shares
either set the shares to a fixed value (e.g., the default Linux
policy sets cpu-shares for every container to 1024) or set
the shares proportional to a container’s memory requirements,
such as the cpu-shares policy used by AWS Lambda [13]],
[25] and OpenWhisk [3]. In fact, AWS’s proportional policy
encourages users to overprovision memory to accelerate their
function, leading to memory under-utilization. Clearly, such
static and ad-hoc approaches are not well suited for serverless
applications since they exhibit a diverse range of resource us-
age; further, as new requests arrive and existing ones complete,
the cpu-shares values must be dynamically updated.

ENSURE’s dynamic and application-aware cpu-shares regu-
lation policy works as follows. At runtime, ENSURE monitors
the average latency of applications over a moving-window
(10 requests, in our case). If the latency for an applica-
tion starts to approach the SLO (i¢soLatnecy - latencyT hd),
ENSURE increases its cpu-shares. In particular, ENSURE
increases an application’s cpu-shares if its moving-average
latency exceeds isoLatnecy - updateLatencyThd, where
updateLatencyT hd < latencyT hd; the update LatencyT hd
acts as an early warning sign to prevent SLO viola-
tions. For example, in our experimental evaluation, we set
latencyThd = 1.15 (meaning no more than 15% degradation)
and set update LatencyThd = 1.10. The exact SLO threshold
is a parameter and can be tuned per the service provider’s
objectives; ENSURE’s design is not specific to a given SLO
threshold, and the SLOs can be application-dependent.

ENSURE increments cpu-shares of all containers of the
application in steps of cpuSharesStep, to ensure that the
cpu allocation of containers is increased gradually. If the
increase in cpu-shares will exceed the total cpu-shares of
the invoker (1024 cpu-shares per core), ENSURE rebalances
the shares from the other application containers. After in-
creasing cpu-shares for an application, ENSURE waits for
numUpdatesThd iterations (or requests) before evaluating
the application’s latency again, to ensure that the newly set
cpu-shares value has taken effect. We perform a sensitivity
analysis of the various algorithm parameters in Section

B. Resource management across containers and invokers

To avoid violating performance SLOs in the presence of
dynamic workload demand, ENSURE elastically scales the
serverless platform capacity (number of invokers and con-
tainers). Simultaneously, in the presence of multiple invok-
ers, ENSURE carefully schedules incoming function requests
across invokers to facilitate elastic scaling while regulating the
number of requests sent to an invoker.

The solution architecture of ENSURE is illustrated in Fig-
ure 2] The two core components that handle resource manage-
ment across invokers are ENSURE’s scheduling component,
FnSched, and ENSURE’s elastic scaling component, FnScale.
At a high-level, incoming function requests are received by
FnSched, which determines which invoker will serve each re-

quest. At the chosen invoker, an application-specific container
is launched, if it is not already present, to execute the incoming
request. The resource management at the container is handled
via the cpu-shares regulation policy discussed in the previous
subsection. To gracefully scale in capacity, FnScale employs
a simple timeout-based approach. In parallel, the FnScale
component periodically determines how many containers and
invokers are required to maintain acceptable function latency,
and scales out the required additional capacity, as needed.
We now discuss the FnSched and FnScale components.

1) Scheduling requests across invokers via FnSched
FnSched aims to pack (or concentrate) load on just the ade-
quate number of invokers, allowing the additional unneeded
invokers to idle (and eventually be turned off). The key
challenge with this packing approach is to prevent overloading
of the invokers to avoid SLO violations.

Operating zones for an invoker: To avoid SLO violations,
FnSched tracks the load at each invoker, classifying them
into different operating zones based on the moving average
latency of application-specific requests over a window; in
our implementation, the window spans the last 30 requests
received at the invoker. When taking the moving average,
we ignore the latency of cold start requests as this increased
latency is not due to resource contention at the invoker but
due to lack of warm containers. Note that the operating zones
are defined for each application, and so the latency tracking
is done per application as well.

Ideally, request latency should be between isoLatency (the
latency of request when run in isolation) and ¢soLatency -
latencyT hd (upper bound on allowable latency, beyond which
an SLO violation occurs); in our implementation, we set
latencyThd = 1.15, meaning that we allow at most 15%
latency degradation beyond isoLatency. Avoiding SLO vi-
olations in a timely manner requires us to closely track
the increase in application latency. To obtain an actionable
signal which highlights this increase in latency, we divide
the allowable latency range, latencyRng = isoLatency x
(latencyThd — 1), into four quarters. If the moving average
latency for an invoker is in the first quarter of the allowable
range (tsoLatency to isoLatency + 0.25 - latencyRng), we
consider the invoker to be in Safe zone. Likewise, if the
moving average latency is in the second, third, and fourth
quarter of the allowable range, we consider the invoker to be
in Prewarning, Warning, and Unsafe zones, respectively. The
division of zones allows FnSched to efficiently decide on how
many more requests can be sent to each invoker.

FnSched scheduling: FnSched starts by statically indexing all
invokers from 1 to, say, numlInvokers. To pack requests on
invokers, FnSched attempts to schedule an incoming request
at the lowest indexed invoker that is not in Unsafe zone, and
has sufficient memory to host a new container, if needed. For
example, if invoker 1 and invoker 2 are in Unsafe zone, and
invoker 3 is in Prewarning zone, the next incoming request
will be scheduled at invoker 3.

To maintain acceptable latencies, FnSched limits the num-
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ber of simultaneous requests of an application that can be
handled by any invoker; we refer to this limit as capacity.
Since the operating zone of an invoker is representative
of its current load level, capacity is zone-dependent. For
Safe and Prewarning zone invokers, we set capacity for
an application to be the number of containers of that ap-
plication; however, to limit cpu contention, the capacity
value is not allowed to exceed the number of cores on the
invoker. Thus, for any invoker and application, capacity =
min(number of application containers, number of cores).

For a Warning zone invoker, we set capacity = 1 to allow
only one more request to be scheduled to this invoker. In our
previous example, if invoker 2 had instead just entered the
Warning zone, the next incoming request would be scheduled
at invoker 2, but a subsequent request would be scheduled at
invoker 3. An advantage of this capacity = 1 setting is that
it allows us to track the latency at such Warning invokers by
gradually advancing the moving window by 1. For an Unsafe
invoker, we set capacity = 0; after a backoff period (of 2s,
in our implementation), we move the Unsafe invoker to the
Warning zone and reset its moving window latency average
(so that the appropriate operating zone can be inferred).

In summary, FnSched schedules the next incoming request
at the lowest indexed non-Unsafe invoker that has fewer than
capacity inflight requests on it. A key advantage of FnSched’s
lowest-indexed-based packing scheduling is that by preferring
lower numbered invokers, ENSURE tends to reuse previously
used invokers, thus avoiding cold starts. If all invokers are
either in Unsafe zone or already have capacity requests, then
the incoming request is scheduled at the least loaded (in terms
of number of inflight requests) invoker, potentially overriding
the capacity at that invoker. Note that if a request is scheduled
at invoker ¢, the next incoming request may get scheduled at
invoker j < ¢ if invoker 5 moves into the Safe or Prewarning
zone in the inter-arrival time between the requests.

Once scheduled, the chosen invoker executes the request
on an existing idle container of the incoming application, if
it exists, else it launches (or wakes up) such a container and
executes the request. Note that, for FnSched, the Safe and
Prewarning zones have the same role. However, for the elastic
scaling component, which we discuss next, the differentiation
between Safe and Prewarning zones is important.

2) Elastically scaling serverless capacity via FnScale
The second core component of ENSURE is its elastic capacity
manager, FnScale, which helps achieve resource efficiency at

scale. Intuitively, while scaling out, FnScale aims to maintain
some additional capacity to handle bursts of workload demand.
While scaling in, FnScale deactivates (or turns off) unneeded
capacity if it has been idle for some time.

Scaling out container capacity: To minimize SLO violations,
FnScale scales out container capacity via the ‘“square-root
staffing” policy, which ensures that the probability of an in-
coming request not finding an available container is arbitrarily
small. For reference, we state the corresponding theoretical
result from the queueing theory literature below.

Theorem 1 (Square-Root Staffing Rule). [/Il Theorem 15.2]
Given an M/M/k with arrival rate \ and server speed . and
R = \/u, where R is large, let k], denote the least number
of servers needed to ensure that the probability of queueing,
Po < oa. Then k}, ~ R+ cV/'R, where c is the solution to the
equation 29 — L=a where ®(-) denotes the c.df. of the

standard Normal and o(+) denotes its p.d.f.

Theoretically (under the M/M/k modeling assumptions), the
square-root staffing policy [11, Theorem 15.2] ensures that the
probability of an incoming request not finding an available
container (or “server”, as in the Theorem) is arbitrarily small,
thus providing low request latency. Despite the theoretical
setting, the square-root staffing rule has been shown to work
well in realistic settings, for example, in prior data center
capacity provisioning research [9]], [4].

In practice, we find that ¢ = 1 works well for our exper-
iments, and so FnScale maintains, at all times, an additional
[VR] containers. For a well-provisioned system, R is the
average number of active servers/containers. In our imple-
mentation, we use the number of containers being actively
employed as a proxy for R; we mark a container as active
if it served at least one request in the past 5 seconds. Note
that the R value is tracked for each application, allowing us to
transparently scale capacity for all applications. The additional
[\/E] containers are launched, in first-fit manner, on the
lowest indexed invokers (as these are likely to handle much
of the load because of our packing-based scheduling). We
periodically send a heartbeat request to these newly launched
containers to keep them warm. Note that this is different from
prewarm containers that OpenWhisk maintains at all times
which are generic language runtimes (currently only node.js
containers are spawned) and would require application specific
libraries to be loaded before they can service function requests.

The additional [v/R] containers maintained by FnScale
serve as a buffer of warm containers in case of an abrupt load
spike. There could, of course, be cases where the load spike
is so severe that additional containers will have be launched,
as directed by FnSched when it looks to schedule incoming
requests on available containers. However, as we discuss at
the end of this subsection, the number of containers eventually
does return to (almost) R+ [v/R]. In our implementation, we
check for container scale-out periodically once every Ssecs.

Scaling out invoker capacity: If the required number of
containers (say, R + [\/E]) cannot be accommodated on



the existing number of invokers, then we add the required
number of invokers. Note that, in our design, an invoker can
accommodate at most capacity requests, and thus at most
capacity containers. For example, if capacity = 4, and we
currently have only one invoker (with index 1) with R = 3
active containers, then, by the square-root staffing policy, we
need to launch [v/R] = 2 additional containers. Since the one
invoker will only support capacity = 4 containers, we scale-
out to a second invoker (assigning it the index 2) and launch
the 5th container on that invoker.

Launching (or turning on) a new invoker may involve some
startup delay, which could impact ENSURE’s ability to handle
bursts of requests. In fact, the additional containers launched
on the new invoker will first experience a cold-start, further
limiting ENSURE’s ability to quickly scale out. To prevent
such delays and cold starts, we proactively launch a new
invoker (if sufficient invokers are not available) and the re-
quired additional containers on it every time an invoker enters
the Prewarning zone. This proactive approach significantly
reduces the cold-starts experienced by application requests.

Scaling in capacity: Finally, to scale-in unneeded capacity,
e.g., when load decreases, we use a simple timeout approach
and deactivate (or turn off) idle containers and invokers after
a timeout period (60s, in our implementation). For containers,
the timeout policy does not impact the R + [v/R] required
containers since we keep the [/R] containers warm (non-idle)
by sending periodic heartbeat messages. The timeout-based
policy is decentralized and easy to implement, yet provides
useful theoretical performance guarantees when combined
with our packing-based scheduling, as we show below.

Result 1. For an M/M /oo system with load R, under the
timeout policy with appropriately chosen timeout value, when
using the packing-based scheduling algorithm, the number of
containers (or invokers) converges to R + VR.

Proof. For an M /M /oo with load R, the number of requests
in system (and hence the number of active containers) follows
a Poisson distribution with mean R [11, Ch. 15.2.1]. Under the
packing-based scheduling algorithm, let I(7) denote the idle
time (time between requests) for the container (or invoker)
indexed 4. Based on the underlying M /M /oo Markov chain,
with arrival rate A and service rate p (so R = \/u) we have:

UG+ D=5+, Ai/:ﬂ.
= E[I(i+1)] =§ (1+ip E[I(3))

Since E[I(1)] = 1/A, we have:
E[I<i+1>1:§(1+;+Z'“R;”+...+;t)

Since E[I(i)] is monotonically increasing, if we set the
timeout value to E[I(R++/R)]+e¢, the (R++/R)th container
(or invoker) will remain on, but the (R + VR + 1)th one can
time out, resulting in R + V'R containers (or invokers). [

(BU@)] + E[(i+1)])

(D

2)

Result 1] theoretically ensures (under the stated model as-

sumptions) that even if the capacity does temporarily increase
beyond R + V'R (for example, in response to an increase
in workload), the capacity will eventually converge back to
R+ +V/R. Together with Theorem |1, we thus have the property
that ENSURE will maintain adequate capacity to ensure low
request latency. Since vR << R for high loads, ENSURE
can provide low request latency without requiring too much
additional capacity, thus achieving good resource efficiency.
In practice, of course, we do not have an M /M /oo or even
an M /M /k system. However, as we show in our evaluation,
the timeout-based scale-in policy together with the packing-
based scheduling does result in ENSURE achieving good re-
source efficiency while providing acceptable function latency.

IV. EVALUATION RESULTS
We now present our evaluation of ENSURE. We start by
detailing our prototype implementation of ENSURE, and then
describe our experimental setup and evaluation methodology.
Finally, we present our experimental evaluation results for
ENSURE under the single-invoker and multi-invoker settings.

A. Implementation of ENSURE

We implement ENSURE on top of Apache OpenWhisk [3],
an open-source serverless cloud platform. OpenWhisk has a
REST interface to accept requests and provide a response to
them. The Controller component is responsible for processing
the HTTP method and executing the function on the invoker,
which in turn creates the Docker container. We implement
our cpu-shares algorithm from Section at each invoker,
and implement the FnSched scheduler and the FnScale elastic
scaler at the Controller. In total, we add about 2,000 lines of
Scala code to implement ENSURE (publicly available [17]]).

B. Experimental Setup

We host our OpenWhisk cluster in AWS with 34 m5a.2xlarge
VMs, each with 4 cores (hyper-threading disabled) and 32GB
of memory. The HTTP front-end and Apache Kafka messaging
service run on a dedicated VM and the remaining OpenWhisk
components, including the Controller, run on a different VM.
The remaining 32 VMs serve as invokers. The applications
hosted on these invokers are deployed on Docker containers,
with the inactivity timeout for the containers set to 1 minute.
To support the applications we employ, we use the follow-
ing distributed back-end services: Redis database (3 VMs),
Apache Kafka (1 VM), and AWS S3 for object storage. These
back-end services are adequately provisioned so as not to be
the performance bottleneck.

Applications. We employ ten serverless applications in our
experiments, all of which we implement in Python 3.5. Their
runtime and resource usage characteristics are listed in Table I}
Six of these, Image Resizing (IR), Streaming Analytics (SA),
Email Gen (EG), Stock Analysis (ST), File Encrypt (FE), and
Sentiment Review (SR), are classified as edge triggered (ET).
The remaining four, Nearest Neighbor (NN), Computational
Fluid Dynamics (CFD), Sorting (SO), and Matrix Multiply
(MM), are classified as massively parallel (MP). We divide the
applications into training and test sets, as denoted in Table [I]
for sensitivity analysis and parameter tuning.



The application names are representative of their functional-
ity. For example, Image Resizing (IR) accepts an input image,
which is read from a distributed file system, resizes it into three
different image sizes, and stores them back into the distributed
file system. Likewise, Nearest Neighbor (NN), whose MPI
implementation we port from Rodinia [5]], finds the k-nearest
neighbors for an unstructured data set. All ET applications are
modeled from the Lambda reference architecture examples [2].
Where applicable, the applications use Object Store (AWS
S3), to read and store the data, and Apache Kafka and Redis
database (self-hosted on VMs), respectively, to read and store
streaming data. All applications use 256 MB of reserved
memory, expect CFD and Sorting, which use 512 MB memory.

C. Evaluation Methodology

Metrics. We use two key metrics to evaluate the performance
of different scheduling policies. All reported evaluation met-
rics are averaged across 5 runs of each experiment.

1) Latency degradation: this is the average percentage latency
degradation of an application compared to its standalone
latency, isoLatency. We set the SLO to be 15% over the
isoLatency; thus, latencyThd = 1.15 (see Section [III)).
Invokers used: this is the time-average number of invokers
used by a scheduler over the duration of the experiment,
and acts as a proxy for the provider’s expenses. An invoker
is considered to be “in use” if it has at least one live
container. Since all invokers are homogeneous in our setup,
invoker count serves as a proxy for the cost metric.

2)

Workload and traces. We define a base load of 1x for each
application as the maximum request rate (with deterministic
inter-arrival time) for which the average latency does not
exceed isoLatency, when that application is run in isolation.
For single invoker evaluation (Section [[V-D), the experiments
have a warm up phase wherein we spawn a container per core
per application, followed by 5 minutes of constant load (1.5—
2x for ET applications and 1x for MP application). For multi-
invoker evaluation, we use synthetic and real-world traces to
drive the time-varying load, as detailed in Section

D. Evaluating Single Invoker Scheduling

We start by evaluating ENSURE under a single invoker. Recall
from Section that the key challenge for single invoker
scheduling is the resource (cpu) contention among functions.
In each experiment, we compare ENSURE with the following:

1) OpenWhisk default: OpenWhisk sets cpu-shares for each
container proportional to its requested memory capac-
ity [3]]. Specifically, if m is the memory requested by a
container, and M and C are respectively the total memory
and cpu-shares capacity of the invoker, the container is pro-
vided C'- m/M cpu-shares. This policy will maximize the
number of containers that can be spawned in a host, since
both memory and cpu are being proportionally allocated.

2) Linux default: Linux’s cpu-shares policy allocates every
container with one CPU core (1024) worth of cpu-shares.

Sensitivity analysis. ENSURE’s cpu-shares algorithm (Sec-
tion [[II-Al) has three tunable parameters — numU pdatesT hd,
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Fig. 3. Latency degradation when colocating applications on a single invoker.

cpuSharesStep, and maxrCpuShares. Based on an em-
pirically conducted sensitivity analysis (see our preliminary
work [22]]), we choose the following values for these pa-
rameters: maxCpuShares of 768 for ET and 256 for MP;
numUpdatesThd of 5 for ET and 3 for MP; cpuSharesStep
of 128 for ET and 64 for MP.

Colocation results. Figure [3[ shows our results when colocat-
ing EG with MM, SO, and MM+SO. In all cases, ENSURE
easily satisfies the 15% latency degradation SLO (denoted by
the horizontal line). By contrast, the SLO is severely violated
for EG under both comparison baselines, and by as much as
95% under the OpenWhisk baseline.

Under ENSURE, the two applications quickly stabilize at
their respective maximum cpu-shares. Subsequently, when
there is contention, EG gets higher preference (since it has
a maxCpuShares value of 768 compared to 256 for the
MP application) and so its latency degradation is minimized.
Under the Linux baseline, all applications are allocated the
same cpu-shares value, making the short-lived EG application
vulnerable to resource pressure from the longer-running, cpu-
intensive MP applications. Under OpenWhisk, which allocates
cpu-shares proportional to the memory requirements of the
application, EG gets equal preference when colocated with
MM, but gets lower preference when colocated with SO (since
SO uses 512MB of memory compared to the 256MB used by
EG and MM). EG is thus unable to avoid cpu contention with
the MP application, resulting in severe latency degradation.

Finally, Figure [3(c)| shows our results when EG is colocated
with both, SO (on 2 cores) and MM (on the remaining 2 cores).
Again, ENSURE consistently meets the SLO requirements of
all applications. By contrast, the latency degradation of EG is
much higher under the Linux and OpenWhisk baselines.

We also experimented with other potential colocation com-
binations using other test set applications; results are qualita-
tively similar, and are thus omitted in the interest of space.

E. Evaluating Multi-Invoker Scheduling

We now evaluate the performance of ENSURE in the more
challenging and practical multi-invoker scenarios. The objec-
tive for multi-invoker scheduling is to achieve high resource
efficiency by minimizing the average number of invokers
employed while ensuring acceptable application latencies.

To evaluate the benefits of ENSURE, we compare its perfor-
mance with three baseline schedulers:

1) Round Robin (RR) aims to distribute the load by sending
successive requests to different invokers in a cyclic manner.
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Fig. 4. Performance evaluation of different schedulers under various workload scenarios.

2) Least Connections (LC) sends the incoming request
to the least loaded (fewest in-flight requests) invoker.
Archipelago’s scheduling policy [21] closely resembles LC.
Knative (KN) [1]] does container placement by filtering the
invokers which can accommodate the container, scoring
them (based on resource availability), and picking the
highest scored invoker (breaking ties randomly). Knative
scales capacity to maintain an upper bound on the moving
average (over 60s) number of in-flight requests at each
container, with the caveat that if the load doubles in a
shorter panic-window (of 6s), then additional containers
are added to handle the burst. We use the default set-
tings of Knative in our experiments with the exception
of the container-concurrency-target parameter,
which we set to 1 to improve application latency by
disallowing simultaneous requests at a container.

3)

For ENSURE and all baselines (except Knative, which em-
ploys Linux’s default cpu-shares policy), we employ the cpu-
shares algorithm from Section [[II-A] with the parameters
identified by our sensitivity analysis.

Results. We employ synthetic and real-world traces to evaluate

our multi-invoker scheduling. Our synthetic traces start from

1x load, gradually increase to a peak load, and then gradually

decrease to 1x load (resembling an inverted V shape). Using

synthetic traces, we consider four workload scenarios:

1) Set-A employs all four test set ET applications (EG, ST,
FE, and SR) and drives the load using synthetic traces with
a peak load of 16x for each application.

2) Set-B is the same as Ser-A but with an additional MP
application (SO) which also has a peak load of 16x.

3) Set-C uses two ET applications (EG, ST) with 32x peak
load and one MP application, MM, with 16x peak load.

4) Set-D uses EG, 64 x peak load, and MM, 16x peak load.

For realistic arrival patterns, we use trace snippets from
WITS [24], NLANR [15], and Wikipedia [7], appropriately
scaled for our setup, and consider the following scenarios:

1) We employ WITS traces to drive the load for all four test
set ET applications with a peak load of 18x.

2) NLANR traces drive the load for all four test set ET
applications with 22x peak load and an MP application
(SO) with 13x peak load.

3) WIKI traces drive the load for two test set ET applications
(EG, ST) with 16x peak load and SO with 14 x peak load.

4) Flat-mix uses relatively stable request rate traces from all
three trace families to drive the load for two test set ET
applications (EG, FE) with peak load of 15x and SO with
peak load of 12x.

5) Bursty-mix uses bursty traces from all trace families to
drive the load for two test set ET applications (EG, SR)
with peak load of 14x and SO with peak load of 12x.

Figure[(a)|shows the latency degradation for each workload
scenario under all four schedulers. For ease of presentation, we
only show the maximum latency degradation from among all
applications employed in each scenario. We see that ENSURE
(abbreviated as EN) easily meets the 15% latency target for
all workload scenarios, highlighting the efficacy of EN under
gradual synthetic load changes and realistic load fluctuations.
In fact, the degradation is less than 3% for all scenarios, except
for NLANR (8.2%), which has some abrupt load changes. RR
and LC also meet the 15% latency target for all workload
scenarios, but have relatively higher degradations for Set-B
and Set-C workloads, in addition to NLANR. In general, LC
has lower latency degradation than RR.

However, Knative (KN) does not meet the latency target
in any case, with the maximum latency degradation ranging
from 44%-132%; this is clearly much higher than the 15%
degradation target. Worse, Knative also drops 1-2% of the
EG application requests in all scenarios, and 5-13% of the
SO application requests for the scenarios which employ SO.

Figure (D) shows the time-average number of invokers
employed for each scenario under all four schedulers. For
every scenario, ENSURE uses the least number of invok-
ers. Across all synthetic trace workloads, ENSURE uses, on
average, 25%, 30%, and 27% fewer invokers, respectively,
compared to LC, RR, and KN. The savings afforded by EN
for the trace-driven workloads are higher — 40%, 43%, and
43%, respectively, compared to LC, RR, and KN. This shows
that EN autoscales the invokers much better than the other
baselines, especially for the workload fluctuations experienced
by real-world applications. In terms of other baselines, LC,
RR, and Knative all have similar invoker usage, with LC being
the most resource efficient among them. Combined with the
latency degradation results, we conclude that LC is slightly
superior to RR, and both are vastly superior to Knative (which
drops requests and still has a similar invoker usage).

The resource savings achieved by ENSURE validate the
theoretical resource efficiency properties enabled by FnScale.
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Fig. 5. Performance of ENSURE++ and Least-Connections compared to ENSURE.

Consider the timeline view of resource usage in Figure
(corresponding to the Bursty-mix workload); the relative ap-
plication load is depicted by the solid lines (left axis) and
the invoker usage is shown with dotted lines (right axis). We
see that while RR, LC, and KN clearly overprovision the
number of invokers, ENSURE (shown as EN) uses much fewer
invokers. Importantly, the invoker count under EN closely
follows the overall application load (which increases with
time), highlighting the agility of EN.

Another important aspect of our design is that ENSURE
achieves acceptable latency despite packing requests in fewer
invokers. A key reason for this is the proactive spawning done
by FnScale, which significantly reduces the number of cold
starts experienced under ENSURE. Compared to LC and RR,
ENSURE has 64% and 60% fewer cold starts, respectively. In
general, bursty workload traffic necessitates more cold-starts.
For example, all policies incurred 5%—10% additional cold-
starts under the Bursty-mix workload compared to Flat-mix.

Tuning the resource efficiency tradeoff. Serverless providers
may have varying requirements and priorities when it comes
to the tradeoff between, say, latency degradation and resource
efficiency. ENSURE has been purposely designed with tunable
parameters to allow such tradeoffs.

As one specific example, consider the case where a
thinly provisioned serverless provider has higher prefer-
ence for invoker efficiency given the scarcity of servers
at their disposal. In this case, the provider can tune the
capacity parameter in FnSched (see Section [II-BI)) to al-
low more containers to be packed at each invoker. In
particular, we implement a variation of ENSURE, which
we refer to as ENSURE++ (or EN++), in which the
capacity for Safe and Prewarning invokers is increased to
number of cores (from the previous value of capacity
min(number of application containers, number of cores)).

Figures [5(a)] and [5(b)] shows the latency degradation and
increase in invoker usage (relative to ENSURE) for EN++
and LC; we ignore RR and Knative since LC and EN are
clearly superior to them, as established by our previous results.
We see that EN++ provides additional invoker usage savings
over EN, to the tune of 30%; compared to LC, we find
that EN++ reduces the number of invokers used by almost
54%, averaged across all workload scenarios. However, this
enhanced resource efficiency comes at the expense of an
increase in latency degradation, though the degradation is still
within the allowed 15% threshold. Compared to EN, EN++

increases the (absolute) latency degradation by around 3.5%.

Finally, there is another tradeoff that can be explored —
the tradeoff between different types of resource usage. For
example, the average number of containers in use can serve as
a proxy for the memory cost, in addition to the invoker usage
metric which serves as a proxy for the overall resource cost to
the provider. Figure shows the increase in memory usage
incurred by EN++ and LC compared to the memory usage of
EN. We see that, while EN++ reduces invoker usage compared
to EN, it increases memory usage (by about 33%). This is
because, by design, ENSURE++ deploys more containers in
invokers, hurting memory usage. Interestingly, ENSURE is
more memory efficient than LC; on average, LC uses 47%
more memory than ENSURE. Note that this 47% is higher
than the 33% memory increase incurred by ENSURE++,
making ENSURE++ more memory efficient than LC.

Extension to multiple input sizes. Thus far we as-
sumed that the runtimes of an application, when ade-
quately resource provisioned, should be similar across in-
vocations. However, this may not be the case if, for ex-
ample, the input data is vastly different across invoca-
tions. We consider the File Encrypt application and create
three different sets of input files to be encrypted, each
with a different file size: 0.9MB, 1.8MB, and 3.6MB.
The average isoLatency across

multiple (150) invocations of the ~ £200
FE application for each input 3§
S . § 1000
file size is shown in Figure [6] %
We make two important obser- & |
vations here. First, there is neg- 09MB T:ﬁfe”:) 36MB

ligible variation in runtimes be-
tween different invocations for
the same input size, as evidenced by the near-zero standard
deviation range around the three individual bars. Second, the
runtime can indeed change with the input data.

Fig. 6. isoLatency for different
input sizes of File Encryption.

We perform a simple experiment where all three input
file size sets are made available to FE, and the overall load
scales from 1x to 16x and back. Based on the input data
size, we classify, at runtime, different invocations of FE into
three classes, each with its own isoLatency (obtained during
the first few request executions). This can be easily done at
the invoker, by the provider, by monitoring the data transfer
over the network during a request execution. ENSURE treats
each class as a different application, and attempts to maintain
application latency for each class close to its isoLatency.



The resulting latency degradation for each class is below the
15% degradation target. Thus, by also classifying applications
based on their input data sizes, we can extend ENSURE to
applications with diverse inputs.

V. PRIOR WORK

Serverless platform characterization: In FaasProfiler [19],
the authors perform a microarchitectural characterization of
the FaaS (Function as a Service) platform. The study attributes
cold-starts and resource contention as the major sources of
performance degradation for serverless applications; these are
exactly the factors that ENSURE attempts to mitigate. A
performance study was conducted by Wang et al. [25] on the
serverless offerings of AWS, Azure and Google. The study
finds that AWS uses a bin-packing-like strategy to maximize
VM memory utilization and that severe contention between
functions can arise in AWS and Azure. A similar characteri-
zation was conducted by Lloyd et al. [13]], revealing that con-
tainer initialization burdens serverless computing platforms.
The authors found that extra infrastructure is provisioned to
compensate for initialization overhead of cold service requests,
motivating the need for resource efficiency.

Scheduling: In  Archipelago’s serverless scheduling
scheme [21]], which is similar to our LC baseline, a new
container is placed on a node which has the fewest number
of containers of that application. This is done to ensure that
application latency is low and to ensure that application
container coverage is well balanced across hosts. In stark
contrast to the design choice made by Archipelago [21]], we
show that it is indeed possible to achieve acceptable latency
while concentrating load on fewer invokers by carefully
monitoring request latency (via operating zones, in our case).
In fact, concentrating load also naturally scales in capacity
by allowing unneeded nodes to time out.

Prior work has inferred that AWS Lambda’s (closed-source)
scheduling employs bin packing to pack requests from the
same user on an invoker [25], [L13]. However, AWS statically
allots the cpu (proportional to memory request), resulting in
potential under-utilization of memory; by contrast, ENSURE
independently and dynamically sets cpu-shares. As shown
in Section ENSURE provides superior performance
compared to static or proportional cpu-shares policies.

Kubernetes can schedule serverless containers (currently
available as Knative service), but it requires the scaling policy
parameters to be specified by the user. By contrast, ENSURE
monitors resource usage and autonomically scales resources
(invokers) to meet SLO requirements, without introducing too
much complexity in the scheduling design. Further, as we
show in our evaluation, Knative often drops function requests
under high load and has high invoker usage, unlike ENSURE.

Existing request-level schedulers, such as Sparrow [16],
typically consider requests that have similar execution patterns.
By contrast, serverless requests can take anywhere from a few
milliseconds (ET applications) to multiple seconds or even
minutes (MP applications) to complete. As such, ENSURE
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also regulates the resource usage of the requests at a fine-
grained level (via cpu-shares) to mitigate contention.

VI. CONCLUSION

This paper presents the design and evaluation of ENSURE, an
efficient scheduler and resource manager for serverless plat-
forms. Unlike existing solutions designed for serverful clouds,
ENSURE is specifically tailored to avoid fine-grained resource
contention between diverse application functions and prevent
container cold starts. The design of ENSURE, grounded in
queueing theoretic concepts, enables high resource efficiency
without compromising on application latency.
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