Dol at UCSE

Database and Distributed Computing
Foundations of Blockchains

Sujaya Maiyya, Victor Zakhary, Mohammad Javad Amiri, Divyakant
Agrawal, Amr El Abbadi

{sujaya-maiyya, victorzakhary, amiri, agrawal, amr}@cs.ucsb.edu

DSL at LCSB
Traditional Banking Systems

DSL at LCSB
Traditional Banking Systems

BANK

111

DSL at LCSB
Traditional Banking Systems

DSL at LCSB
Traditional Banking Systems

' BANK

llll

DSL at LCSB
Traditional Banking Systems

‘._ _________________________ ‘

DSL at LCSB
Traditional Banking Systems

DSL at LCSB
Traditional Banking Systems

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspectlve

* [dentities and Signatures e
Date veh 4, 20

roote K ondva Meilliams $ 51.25

f(ﬂ:g one And “Zioo ey

m MIDFIRST

e
Math Jutor é’w /&3&9’

1:000000000w0 0% »0OOOOOOOOOO™

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspectlve

* [dentities and Signatures el |
* You are your signature [ID, username and password] | ... Keuta Mofiliams .
Fifty one and “ioo Dotars
mngimﬂ
etk iter Goes B

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspectlve
* |dentities and Signatures

* You are your signature [ID, username and password] | ... Keuta Mofiliams B
Fifty one and “ioo Dotars
* Ledger e

Matk Jutor é’ /3432»9”

1:000000000:w0i0% »0DOOOOOOOOO™

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* You are your signature [ID, username and password]

* Ledger

* The balance of each identity (saved in a DB)

Date
parove K gudva Meilliams s 51.25

Fifty one and “ioo

Bﬂ MIDFIRST
BANK

Matk Jutor

1:000000000:x0104%

7 ,&5/32,9

*0000000000n

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* You are your signature [ID, username and password] | ... Kuctea Mcloilimes < 52

Fifty one and “ioo Doters
* Ledger e
* The balance of each identity (saved in a DB) oMot St Grus Bisd

1:000000000:w0i0% »0DOOOOOOOOO™

* Transactions

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

* |dentities and Signatures

* You are your signature [ID, username and password]
* Ledger

* The balance of each identity (saved in a DB)

* Transactions
* Move money from one identity to another

Date
parone K guAva MeNilliams $ 51.25

Fifty one and “ioo

Bﬂ MIDFIRST
BANK

Matk Jutor

1:000000000:x0104%

7 /6’4%2,9—

*0000000000n

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* You are your signature [ID, username and password] | ... Kuctea Mcloilimes < 52
’;F}'ijtg one and “ioo o
* Ledger s
* The balance of each identity (saved in a DB) ST — T B

* Transactions
* Move money from one identity to another
e Concurrency control to serialize transactions (prevent double spending)

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* You are your signature [ID, username and password] | ... Kuctea Mcloilimes < 52
’;F}'ijtg one and “ioo o
* Ledger s
* The balance of each identity (saved in a DB) ST — T B

* Transactions
* Move money from one identity to another
e Concurrency control to serialize transactions (prevent double spending)
* Typically backed by a transactions log

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* You are your signature [ID, username and password] | ... Kuctea Mcloilimes < 52
’;F}'ijtg one and “ioo s
* Ledger TS
* The balance of each identity (saved in a DB) ST S — 2 55 &

* Transactions
* Move money from one identity to another
e Concurrency control to serialize transactions (prevent double spending)

* Typically backed by a transactions log
* Logis persistent

DSL at LCSB
Traditional Banking Systems

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* You are your signature [ID, username and password] | ... Kuctea Mcloilimes < 52
’;F’(i'tg one and “Foo s
* Ledger TS
* The balance of each identity (saved in a DB) ST S — 2 55 &

* Transactions
* Move money from one identity to another
e Concurrency control to serialize transactions (prevent double spending)

* Typically backed by a transactions log
* Logis persistent
* Logisimmutable and tamper-free (end-users trust this)

DSL at UCSB
Bitcoin

DSL at UCSB
Bitcoin

DSL at LICSB

Bitcoin

DSL at LCSB
Bitcoin: A Peer-to-Peer Electronic Cash System

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* Public/Private key pair

* Ledger

* The balance of each identity (saved in the blockchain)

* Transactions
* Move bitcoins from one identity to another
* Concurrency control to serialize transactions (Mining and PoW)

» Typically backed by a transactions log (blockchain)
* Log is persistent (replicated across the network nodes)
* Logis immutable and tamper-free (PoW and Hash pointers)

DSL at LICSB

Digital Signatures

DSL at LCSB
Digital Signatures

* P, S, < Keygen(keysize)

DSL at LCSB
Digital Signatures

* P, S, < Keygen(keysize)

* Your P, is your identity (username, e-mail address)

DSL at LCSB
Digital Signatures

* P, S, < Keygen(keysize)

* Your P, is your identity (username, e-mail address)

* Your S, is your signature (password)

* P, is made public and used to verify documents signed by S,
* S, Is private

DSL at LICSB .

Digital Signatures A

* P, is made public and used to verify documents signed by S, h h

is pri P S
* S, Is private : ‘

DSL at LICSB .

Digital Signatures PN

* P, is made public and used to verify documents signed by S, h h

is pri P S
* S, Is private : ‘

DSL at LICSB .

Digital Signatures PN

* P, is made public and used to verify documents signed by S, h h

is pri P S
* S, Is private : ‘

L Sign()

DSL at LICSB .

Digital Signatures PN

* P, is made public and used to verify documents signed by S, h h

is pri P S
* S, Is private : ‘

Document

L Sign() 5

DSL at LICSB .

Digital Signatures PN

* P, is made public and used to verify documents signed by S, h h
. Sk IS private

Slgn(

Signature

DSL at UCSE
Digital Signatures

* P, is made public and used to verify documents signed by S, h h
* S, Is private

Document

L Sign() ‘ > Verify()

DSL at UCSE
Digital Signatures

* P, is made public and used to verify documents signed by S, h h
* S, Is private

Document

DSL at LICSB .

Digital Signatures 4

* P, is made public and used to verify documents signed by S, h h
* S, Is private

Document “ Signature
LSign()

> Verify()

Signature Valid Invalid

DSL at UCSB .

Digital Signatures PN

* P, is made public and used to verify documents signed by S, h h
* S, Is private

? “ Signature
Sign() > Verify()

Valid Invalid

Signature

DSL at LCSB
Digital Signatures

* Unique to the sighed document
* Mathematically hard to forge
* Mathematically easy to verify

Document q Signature
LSign()

> Verify() -

Signature Valid Invalid

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

\

S
P k-Alice

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

\

S
P k-Alice

> Sign() -

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

2)

L‘ g / P k_ B O b
k-Ali
N) Ice

> Sign() -

Signature;..sob

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

Signature;..sob

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

Signature;..sob

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

Signature,jicesob

> Verify() -

Signature;..sob

DSL at LCSB
Digital Signatures and Bitcoin

* A bitcoin is a chain of digital signatures
* Coin owners digitally sign their coins to transfer them to other recipients
* Alice wants to move a bitcoin to Bob

Signature,jicesob

> Verify() -

Signature;..sob

DSL at LCSB
Digital Signatures and Bitcoin

* Now what if Bob wants to move his coins to Diana

DSL at LCSB
Digital Signatures and Bitcoin

* Now what if Bob wants to move his coins to Diana

Slgnatu reAIice-Bob

DSL at LCSB
Digital Signatures and Bitcoin

e Now what if Bob wants to move his coins to Diana

SignatureAlice—Bob

DSL at LCSB
Digital Signatures and Bitcoin

e Now what if Bob wants to move his coins to Diana

Signatu € Alice-Bob
SIgnatureAlice-Bob S
k-Bob

DSL at LCSB
Digital Signatures and Bitcoin

e Now what if Bob wants to move his coins to Diana

Signatu € Alice-Bob
SIgnatureAlice-Bob S
k-Bob

> Sign() -

DSL at LCSB
Digital Signatures and Bitcoin

e Now what if Bob wants to move his coins to Diana

Signatu € Alice-Bob
SIgnatureAlice-Bob S
k-Bob

> Sign() -

Signatureg,,, piana

DSL at UCSR
A Bitcoin Big Picture

DSL at LCSB
A Bitcoin Big Picture

DSL at LCSB
A Bitcoin Big Picture

DSL at LCSB
A Bitcoin Big Picture

{ Signa‘ture...—Alice }

DSL at LCSB
A Bitcoin Big Picture

{ Signa‘ture...—Alice }
l

DSL at LCSB
A Bitcoin Big Picture

Signaturem_Alice }
!
S

DSL at LCSB
A Bitcoin Big Picture

{ Signature .. }
!
|
S il

DSL at LCSB
A Bitcoin Big Picture

{ Signature...—Alice }
1
S MR icnoures. o) Pran)
1
B2 XN,

DSL at LCSB
A Bitcoin Big Picture

Signature...—Alice }

!
|

DSL at LCSB
A Bitcoin Big Picture

Signaturem_Alice }
!
|
ignl

lana

-0 — -

DSL at LCSB
What About’s?

{ Signature...—Alice }
l
S MR icnoures. o) Pran)
l
Sent

DSL at LCSB
What About’s?

{ Signature ... } - What is this combination function?
1 i
1
e

DSL at LCSB
What About’s?

{ Signature i } - What is this combination function?
l . .
, : What is double spending
1
o pall

1

-0 — -

DSL at LCSB
What About’s?

{ Signature _Alice } - What is this combination function?

What is double spending
Slgn() SlgnatureAhce g | and how to prevent it?
I
I
' 1

I
What does the first m_ Sign() — ...
signature look like?

DSL at LICSB

Hashing H(x) { Pk-mana

DSL at LICSB

Hashing H(x) { Pk-mana

* Signatures and public keys are combined using Hashing

DSL at LICSB

Hashing H(x) [Pk-mana

* Signatures and public keys are combined using Hashing
* Takes any string x of any length as input
* Fixed output size (e.g., 256 bits)

DSL at LICSB

Hashing H(x) [Pk-mana

* Signatures and public keys are combined using Hashing
* Takes any string x of any length as input

* Fixed output size (e.g., 256 bits)

* Efficiently computable.

e Satisfies:
e Collision Free: no two x, y s.t. H(x) = H(y)
* Message digest.
* Hiding: Given H(x) infeasible to find x (one-way hash function)
* Commitment: commit to a value and reveal later

* Puzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such
that: H(ID | x) e Y

DSL at LICSB

Bitcoin uses SHA-256 { Pk-mana

DSL at LICSB

Bitcoin uses SHA-256 { Pk_mana
shazse((CCANGR || (X5)-

256-bit (32-byte) unique string

DSL at LICSB

Bitcoin uses SHA-256 { Pk_mana
stazse((e || S -

256-bit (32-byte) unique string

DSL at LICSB

Bitcoin uses SHA-256 [Pk_Diana
stazse((e || B -

256-bit (32-byte) unique string

SHA256(abc) =
ba7816bf8f01cfead414140de5dae2223b00361a396177a9cb410ff61f20015ad

DSL at LICSB

Bitcoin uses SHA-256 [Pk_Diana
stazse((e || B -

256-bit (32-byte) unique string

SHA256(abc) =
ba7816bf8f01cfead414140de5dae2223b00361a396177a9cb410ff61f20015ad

SHA256(abC) =
0a2432a1e349d8fdb9bfcad1bbade9f2836990fe937193d84deef26c6f3b8F76

DSL at LCSB
What About's?

{ Signature _Alice } - What is this combination function?

What is double spending
Slgn() SlgnatureAhce g | and how to prevent it?
I
I
' 1

I
What does the first m_ Sign() — ...
signature look like?

DSL at LCSB
What About's?

{ Signature Al } - What is this combination function? \/
m Slgn() J What is double spen.ding
and how to prevent it?
I
.' o
: i

I
What does the first m_ Sign() — ...
signature look like?

DSL at LCSB
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

DSL at LCSB
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

Signature;...gob

DSL at LCSB
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

Signature;...gob

Signature;...sob

DSL at LCSB
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

SIgnatureAlice—Bob

DSL at LICSB
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

{ Signatu € Alice-Bob

SigﬂatureAIice-Bob Pk-Marty }

DSL at LCSB
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

S

> Sign()
> Sign()

[Signatu € Alice-Bob

DSL at LCSB
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

igenature,, P, .. Sk-Bob .
[Signature;...gob - Signatureg,, piana

> Sign()

> Sign()
: Signature o-
Slgnatu € Alice-Bob } Sob-Marty

DSL at UCSE
Double Spending

* Spending the same digital cash asset more than once
* Impossible to do in physical cash

* Prevented in traditional banking systems through concurréncy control
| took her car
. S)
[SignatureBob-Diana X
> Sign()
> Sign()

DSL at LCSB
Double Spending Prevention

 Centralized

DSL at LCSB
Double Spending Prevention

e Centralized i»“

* Transactions on coins go through a trusted 3" party (Trent)

DSL at UCSE
Double Spending Prevention

e Centralized i»“

* Transactions on coins go through a trusted 3" party (Trent)

50 BTC

Slgnatu € rent-Bob

DSL at UCSE
Double Spending Prevention

e Centralized i»“

* Transactions on coins go through a trusted 3" party (Trent)

50 BTC

Signatu € rent-Bob
O

| want to transfer 20
coins to Diana

DSL at UCSE
Double Spending Prevention

e Centralized i»“

* Transactions on coins go through a trusted 3" party (Trent)

50 BTC

Slgnatu € rent-Bob

O

| want to transfer 20
coins to Diana

SIgnatureTrent-Bob

DSL at UCSE
Double Spending Prevention

e Centralized i»“

* Transactions on coins go through a trusted 3" party (Trent)

50 BTC

Slgnatu € rent-Bob

O

| want to transfer 20
coins to Diana
Wasn’t spent :
before? Good Slgnatu € rent-Bob

DSL at UCSE
Double Spending Prevention

e Centralized i»“

* Transactions on coins go through a trusted 3" party (Trent)

50 BTC

Slgnatu € rent-Bob

O

| want to transfer 20
coins to Diana
Wasn’t spent
before? Good

DSL at UCSE
Double Spending Prevention

e Centralized
* Transactions on coins go through a trusted 3™ party (Trent)

50 BTC 30 BTC 20 BTC

Slgnatu € rent-Bob

O

| want to transfer 20
coins to Diana
Wasn’t spent
before? Good

DSL at UCSE
Double Spending Prevention

e Centralized
* Transactions on coins go through a trusted 3™ party (Trent)

50 BTC 30 BTC 20 BTC

SIgnatureTrent-Bob SIgﬂatureTrent—Bob SIgnatureTrent—Diana

O
O
| want to transfer 20 N
o tran //BANK
coins to Diana |

Wasn’t spent
before? Good

DSL at UCSE
Double Spending Prevention

e Centralized
* Transactions on coins go through a trusted 3™ party (Trent)

50 BTC 30 BTC 20 BTC

SIgnatureTrent—Bob

O
| want to transfer 20
coins to Diana

Same old, same old!

Wasn’t spent
before? Good

DSL at UCSE
Double Spending Prevention

 Decentralized

DSL at LCSB
Double Spending Prevention

e Decentralized
* A network of nodes maintains a ledger

DSL at LCSB
Double Spending Prevention

e Decentralized
* A network of nodes maintains a ledger

* Network nodes work to agree on transactions order
 Serializing transactions on every coin prevents double spending

DSL at LCSB
Double Spending Prevention

e Decentralized
* A network of nodes maintains a ledger

* Network nodes work to agree on transactions order
 Serializing transactions on every coin prevents double spending

 What is the ledger?

DSL at UCSE
Double Spending Prevention

e Decentralized
* A network of nodes maintains a ledger

* Network nodes work to agree on transactions order
 Serializing transactions on every coin prevents double spending

 What is the ledger?
 How to agree on transaction order? L

L - ™
- .--:;I’--.__.___:"\._ .
‘ :: //,f
! ’ . .: /,.r"
pe - .I‘\ \ ‘
—o\. \
-

DSL at UCSE
Double Spending Prevention

e Decentralized
* A network of nodes maintains a ledger

Network nodes work to agree on transactions order
 Serializing transactions on every coin prevents double spending

 What is the ledger?

* How to agree on transaction order? NS

* What incentives network nodes to maintain the ledger?
N

DSL at LCSB
What is the Ledger?

DSL at LCSB
What is the Ledger?

e Blockchain

DSL at LCSB
What is the Ledger?

DSL at LCSB
What is the Ledger?

* Transactions are grouped into blocks

DSL at LCSB
What is the Ledger?

* Transactions are grouped into blocks
* Blocks are chained to each other through pointers (Hence blockchain)

DSL at LCSB
What is the Ledger?

* Blockchain /%

* Transactions are grouped into blocks
* Blocks are chained to each other through pointers (Hence blockchain)

X,
X,

X

DSL at LCSB
What is the Ledger?

* Blockchain %

* Transactions are grouped into blocks
* Blocks are chained to each other through pointers (Hence blockchain)

™, X,
X, TX,

X, TX

DSL at LCSB
What is the Ledger?

* Blockchain %

* Transactions are grouped into blocks
* Blocks are chained to each other through pointers (Hence blockchain)

™, ™, X,
X, TX, X,

X, X X

DSL at LCSB
What is the Ledger?

* Blockchain %

* Transactions are grouped into blocks
* Blocks are chained to each other through pointers (Hence blockchain)

™, ™, X,
X, TX, X,

X, X X

DSL at LCSB
What is the Ledger?

* Blockchain %

* Transactions are grouped into blocks
* Blocks are chained to each other through pointers (Hence blockchain)

X, ™, X,
X, TX, X,
X, X X,

X,
X,

X

Dol at UCSE

The Ledger’s What About's?

™,
X,

X,

™,
X,

X,

TXq
X,

X,

TX;
X,

X,

DSL at LCSB
The Ledger’s What About's?

* Where is the ledger stored?

™%, @, X,
X, TX, %,
X, TX, TX,

TX;
X,

X,

Dol at UCSE

The Ledger’s What About's?

* Where is the ledger stored?
* Each network node maintains its copy of the ledger

X,
X,

X,

™,
X,

X,

TXq
X,

X,

TX;
X,

X,

DSL at LCSB
The Ledger’s What About's?

* Where is the ledger stored?
* Each network node maintains its copy of the ledger

* How is the ledger tamper-free?

™%, @, X, T
X, X, X, X,

X, TX, TX, ™,

Dol at UCSE

The Ledger’s What About's?

* Where is the ledger stored?
* Each network node maintains its copy of the ledger

* How is the ledger tamper-free?

1. Blocks are connected through hash-pointers

Hash()

Hash()

X,
X,

X,

™,

™%,

X,

TXq
X,

X,

Hash()

TX;
X,

X,

DSL at LCSB
The Ledger’s What About's?

* Where is the ledger stored?
* Each network node maintains its copy of the ledger

* How is the ledger tamper-free?

1. Blocks are connected through hash-pointers
e Each block contains the hash of the previous block
* This hash gives each block its location in the blockchain
 Tampering with the content of any block can easily be detected (is this enough? NO)

Hash()

Hash()

X,
X,

X,

X,
™%,

X,

TXq
X,

X,

Hash()

TX;
X,

X,

Dol at UCSE

Tampering with the Ledger

Hash() Hash()
™% ™, X,
TX, X, X,
TX, e T,

Hash()

TX;
X,

X,

Dol at UCSE

Tampering with the Ledger

Hash() Hash()
X, X,
X, %,
X, Tkn Tkn

Hash()

TX;
X,

X,

Dol at UCSE

Tampering with the Ledger

Hash() Hash()
X, X, X,
X, T, %,
X, Tkn Tkn

Hash()

TX;
X,

X,

Dol at UCSE

Tampering with the Ledger

Hash()

H34()

™,
TX,

X,

™,

X,

X,

TXq
TX,

X,

Hash()

TX;
X,

X,

Dol at UCSE

Tampering with the Ledger

Hash()

H34()

™,
TX,

X,

™,

X,

X,

TXq
TX,

X,

Hash()

TX;
X,

X,

Inconsistent Blockchain

Dol at UCSE

Tampering with the Ledger

Hash()

H34()

TX,

X,

™,

™,

X,

X,

TXq
TX,

X,

However,

Hash()

TX;
X,

X,

Inconsistent Blockchain

Dol at UCSE

Tampering with the Ledger

Hash() H34()
TX, ™, X,
ks %, e
™, X, T,

However,

Hash() Hash()
TX, ™, X,
s ™, b
™, X, T,

TX;
X,

X,

TX;
X,

X,

Inconsistent Blockchain

DSL at LICSB

Tampering with the Ledger

Hash() H34()
TX, ™, X,
s ™, b
T, T, T,

However,

Hash() Hash()
TX, ™, X,
s ™, b
T, T, T,

TX;
X,

X,

TX;
X,

X,

Inconsistent Blockchain

Consistent Blockchain

DSL at LCSB
The Ledger’s What About’s?

* How is the ledger tamper-free?

1. Blocks are connected through hash-pointers
* Each block contains the hash of the previous block
* This hash gives each block its location in the blockchain
 Tampering the content of any block can easily be detected (is this enough? NO)

DSL at LCSB
The Ledger’s What About’s?

* How is the ledger tamper-free?

1. Blocks are connected through hash-pointers
* Each block contains the hash of the previous block
* This hash gives each block its location in the blockchain
 Tampering the content of any block can easily be detected (is this enough? NO)
2. Replacing a consistent blockchain with another tampered consistent block
chain should be made very hard, How?

DSL at LCSB
Network Nodes Big Picture

=

DSL at LCSB
Network Nodes Big Picture

o Ll

DSL at LUCSB

Network Nodes Big Picture

DSL at LCSB
Making Progress

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes
* To make progress:

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes

* To make progress:
* Network nodes group new transactions into a block

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes

* To make progress:

* Network nodes group new transactions into a block
e Blocks are fixed in size (1MB)

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes

* To make progress:

* Network nodes group new transactions into a block
e Blocks are fixed in size (1MB)
* Network nodes validate new transactions to make sure that:

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes

* To make progress:
* Network nodes group new transactions into a block
e Blocks are fixed in size (1MB)

* Network nodes validate new transactions to make sure that:
* Transactions on the new block do not conflict with each other
* Transactions on the new block do not conflict with previous blocks transactions

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes

* To make progress:

* Network nodes group new transactions into a block
e Blocks are fixed in size (1MB)

* Network nodes validate new transactions to make sure that:
* Transactions on the new block do not conflict with each other
* Transactions on the new block do not conflict with previous blocks transactions

* Network nodes need to agree on the next block to be added to the blockchain

DSL at LCSB
Making Progress

* The ledger is fully replicated to all network nodes

* To make progress:

* Network nodes group new transactions into a block
e Blocks are fixed in size (1MB)
* Network nodes validate new transactions to make sure that:

* Transactions on the new block do not conflict with each other
* Transactions on the new block do not conflict with previous blocks transactions

* Network nodes need to agree on the next block to be added to the blockchain

Consensus

DSL at LCSB
Cconsensus

* Types of systems: synchronous and asynchronous

DSL at LCSB
Cconsensus

* Types of systems: synchronous and asynchronous

* Problem statement: given n processes and one leader:
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

DSL at LCSB
Cconsensus

* Types of systems: synchronous and asynchronous

* Problem statement: given n processes and one leader:
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

* Types of failure:
* Crash
* Malicious (or Byzantine)

DSL at LCSB
Cconsensus

* Types of systems: synchronous and asynchronous

* Problem statement: given n processes and one leader:
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

* Types of failure:
* Crash
* Malicious (or Byzantine)

* Important Impossibility Results:

DSL at LCSB
Cconsensus

* Types of systems: synchronous and asynchronous

* Problem statement: given n processes and one leader:
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

* Types of failure:
* Crash
* Malicious (or Byzantine)

* Important Impossibility Results:

* FLP, in asynchronous systems:
* With even 1 crash failure, termination isn’t guaranteed (no liveness)

DSL at LCSB
Cconsensus

* Types of systems: synchronous and asynchronous

* Problem statement: given n processes and one leader:
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

* Types of failure:
* Crash
* Malicious (or Byzantine)

* Important Impossibility Results:
* FLP, in asynchronous systems:
* With even 1 crash failure, termination isn’t guaranteed (no liveness)

* Synchronous systems:
* Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n

DSL at LICSB
(Multi-) Paxos

DSL at LICSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

DSL at LICSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
e Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

DSL at LCSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
* Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

* Multi-Paxos, simplified:

Majority
—

DSL at LICSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
e Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

* Multi-Paxos, simplified:
* |nitially, a leader is elected by a majority quorum

Leader
Election

Majority

DSL at LICSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
* Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

* Multi-Paxos, simplified:
* |nitially, a leader is elected by a majority quorum
* Replication: Leader replicates new updates to a majority quorum

A

Leader
Election

Majority

DSL at LCSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
* Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

* Multi-Paxos, simplified:
* |nitially, a leader is elected by a majority quorum
* Replication: Leader replicates new updates to a majority quorum

A

Leader Replication
Election

Majority

DSL at LCSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
* Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

* Multi-Paxos, simplified:
* |nitially, a leader is elected by a majority quorum
* Replication: Leader replicates new updates to a majority quorum

A

Leader Replication Replication

Election

Majority

DSL at LCSB
(Multi-) Paxos

* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
* Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

* Multi-Paxos, simplified:
* |nitially, a leader is elected by a majority quorum
* Replication: Leader replicates new updates to a majority quorum

* Leader Election: If the leader fails, a new leader is elected
A

Leader Replication Replication

Election

Majority

DSL at LUCSB

Can Network Nodes Use Paxos?

DSL at UCSB
Can Network Nodes Use Paxos?

5 P hend
m |

) '

{

DSL at LUCSB

Can Network Nodes Use Paxos?

DSL at LCSB
Paxos Consensus

DSL at LCSB
Paxos Consensus

 All participants should be known a priori

DSL at LCSB
Paxos Consensus

 All participants should be known a priori
* Permissioned vs Permissionless settings

DSL at LCSB
Paxos Consensus

 All participants should be known a priori
* Permissioned vs Permissionless settings

* Permissionless setting:
* Network nodes freely join or leave the network at anytime

DSL at LCSB
Paxos Consensus

 All participants should be known a priori
* Permissioned vs Permissionless settings

* Permissionless setting:
* Network nodes freely join or leave the network at anytime

* Tolerates only Crash failures

DSL at LCSB
Paxos Consensus

 All participants should be known a priori
* Permissioned vs Permissionless settings

* Permissionless setting:
* Network nodes freely join or leave the network at anytime

* Tolerates only Crash failures
* However, network nodes can be Malicious

DSL at LCSB
Paxos Consensus

* All participants should be known a priori
* Permissioned vs Permissionless settings

* Permissionless setting:
* Network nodes freely join or leave the network at anytime

* Tolerates only Crash failures
* However, network nodes can be Malicious

* To make progress, at least 1/2 of the participants should be alive
* Progress is not guaranteed (FLP impossibility)

DSL at LCSB
Paxos Consensus

* All participants should be known a priori
* Permissioned vs Permissionless settings
* Permissionless setting:
* Network nodes freely join or leave the network at anytime
* Tolerates only Crash failures
* However, network nodes can be Malicious
* To make progress, at least 1/2 of the participants should be alive
* Progress is not guaranteed (FLP impossibility)

* Also, Paxos has high network overhead

DSL at LCSB
Practical Byzantine Fault Tolerance (PBFT)

DSL at LCSB
Practical Byzantine Fault Tolerance (PBFT)

* Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

DSL at LCSB
Practical Byzantine Fault Tolerance (PBFT)

* Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

* No assumptions about faulty behavior
* No bounds on delays

DSL at LCSB
Practical Byzantine Fault Tolerance (PBFT)

* Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

* No assumptions about faulty behavior
* No bounds on delays

* Provides safety in asynchronous system and assume eventual time bounds
for liveness

DSL at LCSB
Practical Byzantine Fault Tolerance (PBFT)

* Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

* No assumptions about faulty behavior
* No bounds on delays

* Provides safety in asynchronous system and assume eventual time bounds
for liveness

* Assumptions:

DSL at LCSB
Practical Byzantine Fault Tolerance (PBFT)

* Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

* No assumptions about faulty behavior
* No bounds on delays

* Provides safety in asynchronous system and assume eventual time bounds
for liveness

* Assumptions:
* 3f+1 replicas to tolerate f Byzantine faults (optimal)

DSL at LGSR
Practical Byzantine Fault Tolerance (PBFT)

* Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

* No assumptions about faulty behavior
* No bounds on delays

* Provides safety in asynchronous system and assume eventual time bounds
for liveness

* Assumptions: . .
* 3f+1 replicas to tolerate f Byzantine faults (optimal) quordm quorum

e quorums have at least 2f+1 replicas
e quorums intersect in f+1, hence have at least one correct replica
» Strong cryptography

* Only for liveness: eventual time bounds 3f+1 replicas

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

Request Pre-prepare Prepare Commit Reply

replica O
(Primary)

replica 1

replica 2

replica 3

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(1) A client sends a request for a service to the primary

Request Pre-prepare Prepare Commit Reply
replica O :
(Primary)
replica 1
replica 2

replica 3 _H

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

Request Pre-prepare Prepare Commit Reply

(Primary)
replica 1

replica 2

replica 3

MW

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(2) The primary multicasts the request to the backups

Request Pre-prepare Prepare Commit Reply

replica O
(Primary) \
replica 1 \\
replica 2

replica 3

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

Request Pre-prepare Prepare Commit Reply

replica O
(Primary) \
replica 1 \\
replica 2

replica 3

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(3) Backups multicast PREPARE message

Request Pre-prepare Prepare Commit Reply

N7
_ N«
p M\ O\

replica 3

replica O
(Primary)

replica 1

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

Request Pre-prepare Prepare Commit Reply

N7
N«

a

replica 2 \
falil

replica 3

replica O
(Primary)

replica 1

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPARE message, multicasts a COMIMIT message

Request Pre-prepare Prepare Commit Reply

lica O
N L
replica 2 \ A’ A‘:\
e\ N\ N\

replica 3

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

Request Pre-prepare Prepare Commit Reply

replica O
Nl
replica 2 \ A’ A‘:\

e\ N\ N\

replica 3

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMIT messages, reply the result to the client

Request Pre-prepare Prepare Commit Reply

replica O
(Primary)

replica 1

replica 2

replica 3

DSL at LCSB
Algorithm

The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the same result

Request Pre-prepare Prepare Commit Reply

replica O
(Primary)

replica 1

replica 2

replica 3

DSL at LCSB
PBFT Consensus

* Tolerates Byzantine (Malicious) failures
* To make progress, at least 2/3 of the participants should be correct
* Progress is not guaranteed (FLP impossibility)

* However, PBFT is Permissioned
 All participants should be known a priori

* Also, PBFT has high network overhead O(N?) [number of messages]
* Every node multi-casts their responses to every other node

DSL at LCSB
Nakamoto’s Consensus

* Intuitively, network nodes race to solve a puzzle
* This puzzle is computationally expensive

* Once a network node finds (mines) a solution:
* |t adds its block of transactions to the blockchain
* |t multi-casts the solution to other network nodes
* Other network nodes accept and verify the solution

DSL at LCSB
Mining Details

DSL at UCSE
Mining Details

DSL at UCSE
Mining Details

X, X,
X, TX,

X, TX,

DSL at LICSB

Mining Details

X,
X,

X,

X,
X,

X,

o

DSL at LICSB

Mining Details

X,
X,

X,

X,
X,

X,

o

DSL at LICSB

Mining Details

X,
X,

X,

™,

X,

X,

o

DSL at LICSB

Mining Details

X,
X,

X,

™,

X,

X,

X,

o

DSL at LICSB

Mining Details

X,
X,

X,

™,

X,

X,

X,

o

DSL at LICSB

Mining Details

X,
X,

X,

™,

X,

X,

X,
TX,

DSL at LICSB

Mining Details

X,
X,

X,

X,
X,

X,

X,
TX,

DSL at LICSB

Mining Details

X,
X,

X,

X,
X,

X,

X,
TX,

DSL at UCSE
Mining Details

X,
X,

X, TX,

DSL at UCSE
Mining Details

X,
X,

X, TX, T)'(n

Dol at UCSE

Mining Details

X,
X,

X,

™,

X,

X,

X,
X,

X,

DSL at LCSB
Mining Details

_I_Xl v TXl v TX1
TX, TX, TX,

X, X TX,

Dol at UCSE

Mining Details

X,
X,

X,

™,

X,

X,

X,
X,

TXre a .

X,

Dol at UCSE

Mining Details

X,
X,

X,

™,

X,

X,

X,
X,

TXre a .

X,

DSL at LCSB
Mining Details

\ 4 A 4

TXl TX1 TXl X reward
™, X, X, ™
> . . . TX Transactions
. _ X reward . 2
X, TX, X TX

n

DSL at LCSB
Mining Details

Version il
Previous Block Header Hash
Merkle Tree Root Hash Header
' Time Stamp
Current Target Bits
Nonce |
™ ™, TX, X eward
™, X, X, ™
> ' ' T g TX, Transactions
X, X, X, X,

Dol at UCSE

Mining Details

X,
X,

X

X,
X,

X

\ 4

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256(
X,
X,
Xreward
T

n

X reward
X

X,

TX

n

Header) < D

Transactions

Dol at UCSE

Mining Details

X,
X,

X

‘ X reward

X,
X,

X

\ 4

SHA256(

X,
X,

X

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X reward
X

X,

TX

n

Header) < D

Transactions

Dol at UCSE

Mining Details

X,
X,

X

‘ SHA256(

X,
X,

X

v

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X,
X,

X

X reward
X

X,

TX

n

Header) < D

Transactions

DSL at LICSB

Mining Details

\ 4

X,
X,

X

SHA256
o= "

X,
X,

X

* TX.warq IS Self signed (also called coinbase transaction)
* First signature? Self signed ©

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X,
X,

X

X reward
X

X,

TX

n

Header) < D

Transactions

DSL at LICSB

Mining Details

\ 4

X,
X,

X

SHA256
o= "

X,
X,

X

* TX.warq IS Self signed (also called coinbase transaction)
* First signature? Self signed ©
* TX..warq 1S bitcoin’s way to create new coins

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X,
X,

X

X reward
X

X,

TX

n

Header) < D

Transactions

DSL at LICSB

Mining Details

rewar

\ 4

X,
X,

X

SHA256
o= "

X,
X,

X

* TX.warq IS Self signed (also called coinbase transaction)
* First signature? Self signed ©

* TX..warq 1S bitcoin’s way to create new coins

* The reward value is halved every 4 years (210,000 blocks)

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X,
X,

X

X reward
X

X,

TX

n

Header) < D

Transactions

DSL at LICSB

Mining Details

rewar

\ 4

X,
X,

X

X,
X,

X

* TX.warq IS Self signed (also called coinbase transaction)
* First signature? Self signed ©

* TX..warq 1S bitcoin’s way to create new coins

* The reward value is halved every 4 years (210,000 blocks)
e Currently, it’s 12.5 Bitcoins per block

SHA256
o= "

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X,
X,

X

X reward
X
X,

TX

n

Header) < D

Transactions

Dol at UCSE

Mining Details

rewar

rewar

* First signature? Self signed ©
* TX..warq 1S bitcoin’s way to create new coins

\ 4

X,
X,

X

X,
X,

X

* TX.warq IS Self signed (also called coinbase transaction)

* The reward value is halved every 4 years (210,000 blocks)
e Currently, it’s 12.5 Bitcoins per block
* Incentives network nodes to mine

SHA256
o= "

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X,
X,

X

X reward
X

X,

TX

n

Header) < D

Transactions

Dol at UCSE

Mining Details

X,
X,

X

‘ X reward

X,
X,

X

\ 4

SHA256(

X,
X,

X

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X reward
X

X,

TX

n

Header) < D

Transactions

Dol at UCSE

Mining Details

X,
X,

X

‘ X reward

X,
X,

X

SHA256(

v

X,
X,

X

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X reward
X

X,

TX

n

Header) <@

Transactions

DSL at LICSB

Mining Details

e D: dynamically adjusted difficulty

X,
X,

X

' X reward

X,
X,

X

SHA256(

v

X,
X,

X

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X reward
X

X,

TX

n

Header) <@

Transactions

DSL at LICSB

Mining Details

e D: dynamically adjusted difficulty

256 bits

‘ X reward

X,
X,

X

X,
X,

X

v

SHA256(

X,
X,

X

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X reward
X

X,

TX

n

Header) <@

Transactions

DSL at LICSB

Mining Details

D: dynamically adjusted difficulty

256 bits

L J
Difficulty bits

X,
X,

X

SHA256(
‘ TXreward
™, TX,
X, TX,
X, T)-(n

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X reward
X

X,

TX

n

Header) <@

Transactions

DSL at LICSB

Mining Details

e D: dynamically adjusted difficulty

256 bits

|]
Difficulty bits
* Difficulty is adjusted every 2016 blocks (almost 2 weeks)

‘ X reward
v
X, TX, X,
X, TX, X,
TX, X, X,

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

X reward
X

X,

TX

n

Header) <@

Transactions

DSL at LCSB
Difficulty

DSL at LCSB
Difficulty

* Adjust difficulty every 2016 blocks

DSL at LCSB
Difficulty

* Adjust difficulty every 2016 blocks
* Expected 20160 mins to mine (10 mins per block)

DSL at LCSB
Difficulty

* Adjust difficulty every 2016 blocks
* Expected 20160 mins to mine (10 mins per block)
* Actual time = timestamp of block 2016 — time stamp of block 1

DSL at LCSB
Difficulty

* Adjust difficulty every 2016 blocks

* Expected 20160 mins to mine (10 mins per block)

e Actual time = timestamp of block 2016 — time stamp of block 1
* New_difficulty = old_difficulty * expected/actual

DSL at LCSB
Difficulty

* Adjust difficulty every 2016 blocks

* Expected 20160 mins to mine (10 mins per block)

e Actual time = timestamp of block 2016 — time stamp of block 1
* New_difficulty = old_difficulty * expected/actual

* Difficulty decreases if actual > expected, otherwise, increases

DSL at LUCSB

Mining Big Picture

DSL at LICSB
Mining Big Picture

5 P hend
m |

) '

DSL at LUCSB

Mining Big Picture

DSL at LICSB
Mining Big Picture

3 P 1)

— A
riri ,

sk3iy

¥

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
* The solution space is a set. Once a solution is found, a block is mined

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
* The solution space is a set. Once a solution is found, a block is mined
* Easily verified by network nodes

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
* The solution space is a set. Once a solution is found, a block is mined
* Easily verified by network nodes

e Cannot be precomputed
* Depends on current block transactions and previous blocks

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
* The solution space is a set. Once a solution is found, a block is mined
* Easily verified by network nodes

e Cannot be precomputed
* Depends on current block transactions and previous blocks

* Cannot be stolen
* Reward Transaction is signed to the public key of the miner

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
* The solution space is a set. Once a solution is found, a block is mined
* Easily verified by network nodes

e Cannot be precomputed
* Depends on current block transactions and previous blocks

* Cannot be stolen
* Reward Transaction is signed to the public key of the miner

* Network nodes accept the first found block:
* The problem is difficult, there is no guaranteed bound to find another block

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
* The solution space is a set. Once a solution is found, a block is mined
* Easily verified by network nodes

e Cannot be precomputed
* Depends on current block transactions and previous blocks

* Cannot be stolen
* Reward Transaction is signed to the public key of the miner

* Network nodes accept the first found block:
* The problem is difficult, there is no guaranteed bound to find another block

* What happens when 2 nodes concurrently mine a block? Fork

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)| 02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
| AA9C4EC8C3D6B51A4C4935409D58FED

AE04D109A3A7A0460AD2DFD95A4FOFAA
Merkle Tree Root Hash (32B
erkle Tree Root Hash (3)145F3249BEE9F371F8204D16C01D4921

Time Stamp (4B)|] 5C9F3E20
Current Target Bits (4B)| 172E6117

Nonce (4B)

Previous Block Hash (32B)

X reward
X,

X

n

Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)| 02000000

25F947B7C18A1E4E2DF96D0D4368DFC24

Previous Block Hash (32B)] \aqcaecacapessia4cag35409D58FED

AE04D109A3A7A0460AD2DFD95A4FOFAA
Merkle Tree Root Hash (32B
erkle Tree Root Hash (3)145F3249BEE9F371F8204D16C01D4921

Time Stamp (4B)|] 5C9F3E20

Current Target Bits (4B)| 172E6117

Nonce (4B)

X reward
X,

X

n

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Y
18 zeros

Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)| 02000000

25F947B7C18A1E4E2DF96D0D4368DFC24

Previous Block Hash (32B)] \aqcaecacapessia4cag35409D58FED

AE04D109A3A7A0460AD2DFD95A4FOFAA
Merkle Tree Root Hash (32B
erkle Tree Root Hash (3)145F3249BEE9F371F8204D16C01D4921

Time Stamp (4B)|] 5C9F3E20

Current Target Bits (4B)| 172E6117

Nonce (4B)

X reward
X,

X

n

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Y
18 zeros

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

Version (4B)| 02000000

25F947B7C18A1E4E2DF96D0D4368DFC24 Y
| AA9C4EC8C3D6B51A4C4935409D58FED 18 zeros

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Previous Block Hash (32B)

4E04D109A3A7A0460AD2DFDISA4FOFAA :
Merkle Tree Root Hash (328 145F3249BEE9F371F8204D16C01D4921 SHA256(V,P,M,T,C,0) = C 3\

. BD72804EE251889F9013C100767999B57E92ECSB6ADBDBF64F2DF1B0324 =
Time Stamp (4B)|] 5C9F3E20

Current Target Bits (4B)| 172E6117
Nonce (4B)

X reward
X,

X

n

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

Version (4B)| 02000000

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

25F947B7C18A1E4E2DF96D0D4368DFC24

H Y
Previous Block Hash (32B)l \rgcarcscapspsiaacas3sa09pssreD 18 zeros
4E04D109A3A7A0460AD2DFDI5A4FOFAA L
Merkle Tree Root Hash (328 145F3249BEE9F371F8204D16C01D4921 SHA256(V,P,M,T,C,0) = C D\
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B0324 =
Time Stamp (4B)] 5C9F3E20
b (48) SHA256(V,P,M,T,C,1) =
Current Target Bits (4B)| 172E6117 DF64342507E785FDCOD4C776D7142BB2BC6467F09E0040A3E9F65E38872A45D8
Nonce (4B)
Txreward

X,

X

n

DSL at UCSB
Mining

Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)
Previous Block Hash (32B)
Merkle Tree Root Hash (32B)

Time Stamp (4B)

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
| AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4FOFAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

Current Target Bits (4B)

172E6117

Nonce (4B)

X reward
X,

X

n

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

18 zeros
SHA256(V,P,M,T,C,0) = (.)
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B0324 =
SHA256(V,P,M,T,C,1) = AR

DF64342507E785FDCOD4C776D7142BB2BC6467FO9EO040A3E9F65E38872 ¥ =+

DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)| 02000000

25F947B7C18A1E4E2DF96D0D4368DFC24

Previous Block Hash (32B)] \aqcaecacapessia4cag35409D58FED

4E04D109A3A7A0460AD2DFD95A4FOFAA

Merkle Tree Root Hash (32B
erkle Tree Root Hash (3)145F3249BEE9F371F8204D16C01D4921

Time Stamp (4B)|] 5C9F3E20
Current Target Bits (4B)| 172E6117
Nonce (4B)
TX eward

X,

X

n

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Y
18 zeros
SHA256(V,P,M,T,C,0) = / D\
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B0324 =
SHA256(V,P,M,T,C,1) = AR
DF64342507E785FDCOD4C776D7142BB2BC6467F09EOO040A3E9F65E38872 .; “
SHA256(V,P,M,T,C,2) =

0000000CC7F94221B95F4E606E037D31C10417435DEE60A61C627B64324590FE

Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4CA935409D58FED

4E04D109A3A7A0460AD2DFD95A4FOFAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

Current Target Bits (4B)

172E6117

Nonce (4B)

X reward
X,

X

n

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Y
18 zeros

SHA256(V,P,M.T.C,0) = C
BD72804EE251889F9013C100767999B57E92EC536ADBDBF64F2DFIBO324

SHA256(V,P,M,T,C,1) =
DF64342507E785FDCOD4C776D7142BB2BC6467F09E0040A3E9F65E38872 |

SHA256(V,P,M,T,C,2) =
OOOOOOOCC7F94221895F4E606EO37D31C10417435DEE60A61C627864324' ®

\){-/

O

"g/"f,/

7 zeros

Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4CA935409D58FED

4E04D109A3A7A0460AD2DFD95A4FOFAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

Current Target Bits (4B)

172E6117

Nonce (4B)

X reward
X,

X

n

™)

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Y
18 zeros

£

@
g (WA 1“ (A 11

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92ECSBEADBDBF6AF2DF1B0324 -

SHA256(V,P,M,T,C,1) =
DF64342507E785FDCOD4C776D7142BB2BC6467F09EO0040A3E9F65E38872

SHA256(V,P,M,T,C,2) =
0000000CC7F94221B95F4E606E037D31C10417435DEE60A61C627B64324!

@

)

/

7 zeros

SHA256(V,P,M,T,C,01F04A1C) =
\OOOOOOOOOOOOOOOOOO”LEBBFE56AD29732 B81128B79356442C8B87F6CED8B6610

\
5271 18 zeros 40

Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)
Previous Block Hash (32B)
Merkle Tree Root Hash (32B)

Time Stamp (4B)

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
| AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4FOFAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

Current Target Bits (4B)

172E6117

Nonce (4B)

X reward
X,

X

n

™)

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Y
18 zeros
SHA256(V,P,M,T,C,0) = C)‘
BD72804EE251889F9013C100767999B57E92ECSB6ADBDBF64F2DF1B0324 =
SHA256(V,P,M,T,C,1) = D
DF64342507E785FDCODAC776D7142BB2BC6467F09E0040A3EIF65E38872 4 ="
SHA256(V,P,M,T,C,2) =

e’

0000000CC7F94221B95F4E606E037D31C10417435DEE60A61C627B64324!

3

@

¢ |

<

y”

7 zeros

~ -~

SHA256(V,P,M,T,C,01F04A1C) =
\000000000000000000’1E3BFE56AD29732881128379356442C8887F6CED8_ !

\
5271 18 zeros 40

Dol at UCSE

Forks

™,
i‘ X,
X,

>,
™,

TX,

X,
X,

X,

DSL at LCSB
Forks

> - - .

= [
— —
>x - - X
= [%)

DSL at LCSB
Forks

F

I RE

e

X,
X,

X,

e

X,
X,

X,

* Transactions in the forked blocks might have conflicts

DSL at LCSB
Forks

™, X, X,
™%, X, %,
X TX, X,

e

X,
X,

X,

* Transactions in the forked blocks might have conflicts
e Could lead to double spending

DSL at LICSB

Forks

™, X,
™%, X,
X, X,

X,
X,

X

X,
X,

X

Transactions in the forked blocks might have conflicts

Could lead to double spending
Forks have to be eliminated

DSL at LCSB
Forks

> - - .

= [
— —
>x - - X
= [%)

DSL at LCSB
Forks

> - - .

= [
— —
>x - - X
= [%)

DSL at LCSB
Forks

> - - .

= [
— —
>x - - X
= [%)

DSL at LCSB
Forks

2.8 5

e

2.3

DSL at LCSB
Forks

e

X,
X,

X

e

R

X,
X,

X

DSL at LCSB
Forks

2.8 5

e

X,
X,

X,

e

R

X,

X,

>

DSL at LCSB
Forks

F

I RE

e

X,
X,

X,

e

R

[N

ER

X,

X,

* Miners join the longest chain to resolve forks

DSL at LCSB
Forks

2.8 5

e

X,
X,

X,

e

R

ER

X,

X,

DSL at LCSB
Forks

F

I RE

e

X,
X,

X,

e

R

[N

ER

X,

X,

* Transactions in this block have to be resubmitted

DSL at LICSB
Forks

!
2 3
< X

23

23

El

1 1 1
2 2 2
TX" Txn Txn

* Transactions in this block have to be resubmitted

DSL at LCSB
Forks: The Big Picture

DSL at LCSB
Forks: The Big Picture

DSL at LCSB
Forks: The Big Picture

DSL at LCSB
Forks: The Big Picture

DSL at LCSB
Forks: The Big Picture

DSL at LCSB
Forks: The Big Picture

Abandoned

Longest Chain

DSL at LCSB
Forks: The Big Picture

- Abandoned
~ Longest Chain

DSL at LCSB
Forks: The Big Picture

- Abandoned
~ Longest Chain

DSL at LCSB
Forks: The Big Picture

- Abandoned
~ Longest Chain

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

X, TX, X,
™%, X, X,
X, TX, TX,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

X,
X,

™, TX, TX, / TX,
| ™%, X, X,

TX, X, TX,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending @

X,
X,

™, TX, TX, / TX,
| ™%, X, X,

TX, X, TX,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending @

™, 7 @) X, X,
™%, X, X,
| X, TX, X,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

™, 7 @) X, X,
™%, X, X,
| X, TX, X,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

TX, X,

™, X, X, X,
| ™%, X, X,
X, TX, X,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

TX, X,

—® | ™

™ Q)+ ™, TX, TX,
™%, X, X,

. X,
X, X, X, ™,

TX,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

X, L2
—D ™
/ : D .

X, 4 @k /P TXl X, T)(n
™%, X, %,

. Txl TXI

T, T5<n Tkn TX, TX,

TX, TX,

DSL at LCSB
51% Attack

* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending

X, L2
—D ™
/ : D .
™, @k/l; ~ X, X,
™%, X, %,
. I IR _' TX, TX, TX,
T, T5<n Tkn TX, TX, TX,
. — . — .

X, TX, X,

DSL at LCSB
Selfish Mining

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Dol at UCSE

Selfish Mining

X,
X,

X

>,
™,

X

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

X,
X,

X

Dol at UCSE

Selfish Mining

X,
X,

X

>,
™,

X

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

X,
X,

X

Honest Miner

Selfish Miner

Dl at UCSE
Se|f|5h M]ﬂ”’]g Honest Miner

TX, T, ™.
R X, X,
TX, TX, T, -
X,
TX,
Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at LCSB
Selfish Mining

Honest Miner

R

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

X, >, X,
T, T, X,
T)I(n T)‘I(n Txn TX,
X,
* Block found, yay! .
X,

R

Selfish Miner

DSL at LCSB
Selfish Mining

Honest Miner

R

T, TX, X,

T, T, X,
T)I(n T)‘I(n Txn TX,
X,
* Block found, yay! .
. . . X,

* Don’t immediately announce it
Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at LCSB
Selfish Mining

Honest Miner

R

X, >, X,
T, T, X,
T)I(n T)‘I(n Txn TX,
X,
* Block found, yay! .
X,

* Don’t immediately announce it
* Let honest miners waste their mining ‘R

power on an obsolete block Yy
Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Dl at UCSE
Se|f|5h M]ﬂ”’]g Honest Miner

R

T, TX, X,
T, T, X,
T)I(n T)‘I(n Txn TX,
TX,
* Block found, yay! .
. . . X,
* Don’t immediately announce it
* Let honest miners waste their mining a

power on an obsolete block

ini Selfish Mi
Start mining the next block (Advantage) eltish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Dl at UCSE
Se|f|5h M]ﬂ”’]g Honest Miner

R

T, TX, X,
T, T, X,
T)I(n T)‘I(n Txn TX,
TX,
* Block found, yay! .
. . . X,
* Don’t immediately announce it
* Let honest miners waste their mining a

power on an obsolete block

ini Selfish Mi
Start mining the next block (Advantage) eltish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M]ﬂ”’]g Honest Miner

R

X, TX, %,
™%, X, %,
TX X Tkn TX,
X,
* Block found, yay! .
. . . X,
* Don’t immediately announce it
* Let honest miners waste their mining a

power on an obsolete block

ini Selfish Mi
Start mining the next block (Advantage) eltish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M]ﬂ”’]g Honest Miner

R

%, >, X,
™%, X, %,
™ X X, TX,
X,
* Block found, yay! .
. . . X,
* Don’t immediately announce it
* Let honest miners waste their mining a

power on an obsolete block

ini Selfish Mi
Start mining the next block (Advantage) eltish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M]ﬂ”’]g Honest Miner

R

X, >, X,
™%, X, %,
TX X Tkn TX,
X,
* Block found, yay! .
X,

* Don’t immediately announce it

* Let honest miners waste their mining a
power on an obsolete block

e Start mining the next block (Advantage)

* Two possible outcomes

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

™ X, X,

R X, TX,

TX, X, ™ -
TX,
TX,

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

R

™ ™ TX,
R X, TX,
T)I(“ X, T).(n T,
X,
* First Outcome _
X,

R

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSE
Selfish Mining

Honest Miner

R

X, X, X,
™%, X, %,
™, T, X, X, X,
TX, TX,
. — .
* First Outcome . _
X, X,

* Selfish miner finds the following

block first ‘R

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSE
Selfish Mining

Honest Miner

¥\

e

%, X, X,
™%, X, %,
TX“ TXn Txn TXl TXl
X, X,
e First Outcome . _
X, X,

* Selfish miner finds the following

block first ‘R

* Once an honest miner finds a block . .
Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSE
Selfish Mining

Honest Miner

¥\

e

%, X, X,
™%, X, %,
TX“ TXn Txn TXl TXl
X, X,
e First Outcome . _
X, X,

* Selfish miner finds the following

block first ‘R

* Once an honest miner finds a block Selfish Miner
* Selfish miner announces 2 blocks

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSE
Selfish Mining

Honest Miner

¥\

e

%, X, X,
™%, X, %,
TX“ TXn Txn TXl TXl
X, X,
e First Outcome . _
X, X,

* Selfish miner finds the following
block first ‘R
* Once an honest miner finds a block . .
i) Selfish Miner
e Selfish miner announces 2 blocks
e Honest miner loses the reward

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSE
Selfish Mining

Honest Miner

¥\
5

[.

%, X, X,
™%, X, %,
™ %, X, X, X,
X, X,
e First Outcome . _
X, X,

* Selfish miner finds the following
block first
* Once an honest miner finds a block
* Selfish miner announces 2 blocks
 Honest miner loses the reward

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

R

Selfish Miner

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

™ X, X,

R X, TX,

TX, X, ™ -
TX,
TX,

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

R

™ ™ TX,
R X, TX,
T)I(“ X4 X, T,
X,
e Second Outcome _
X,

R

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

¥\

e

X, TX, X,
%, X, %,
X X, X, T,
X,
e Second Outcome _
. . . X,
* An honest miner finds a block first

R

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M]ﬂ”’]g Honest Miner

¥\

e

X, TX, X,
™, X, %,
TX X, Tkn X,
X,
e Second Outcome _
. . . X,
* An honest miner finds a block first

* Selfish miner immediately announces ‘R

the previously found block Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M]ﬂ”’]g Honest Miner

¥\

e

X, TX, X,
™, X, %,
™ X X, X,
X,
e Second Outcome _
. . . X,
* An honest miner finds a block first

* Selfish miner immediately announces ‘R
the previously found block

* This splits the power of honest
miners

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

¥\

e

X, TX, X,
%, X, %,
TX X Tkn TX,
X,
e Second Outcome _
. . . X,
* An honest miner finds a block first

* Selfish miner immediately announces ‘R
the previously found block

* This splits the power of honest
miners

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

¥\

e

X, >, X,
T>fz X, X,
TX X TX TX,
X,
* |f selfish miner successfully splits honest .
miners: =
* The probability of finding the next ‘R

red block is 2/3 (secures the reward
of the previously found block)

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

¥\

e

™%, >, X,
T>fz X, TX,
X L2 TX X,
X,
e Also, _
* The probability of selfish miner to =
find the next red block is 1/2 even if ‘R

selfish miner has 1/3 of the mining

Selfish Miner
resources (Advantage)

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

DSL at LCSB
Limitations of Bitcoin

DSL at LCSB
Limitations of Bitcoin

* High transaction-confirmation latency

DSL at LCSB
Limitations of Bitcoin

* High transaction-confirmation latency

* Probabilistic consistency guarantees

DSL at UCSE
Limitations of Bitcoin

* High transaction-confirmation latency
* Probabilistic consistency guarantees

* VVery low TPS (Transactions per second) - average of 3 to 7 TPS

DSL at UCSE
Limitations of Bitcoin

* High transaction-confirmation latency
* Probabilistic consistency guarantees

* VVery low TPS (Transactions per second) - average of 3 to 7 TPS

 New block added every 10 minutes.

DSL at LCSB
How to scale Bitcoin?

DSL at LCSB
How to scale Bitcoin?

* Two obvious options for increasing Bitcoin’s transaction throughput:

DSL at LCSB
How to scale Bitcoin?

* Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

DSL at LCSB
Increasing Block Size

DSL at LCSB
Increasing Block Size

DSL at LCSB
Increasing Block Size

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

DSL at LCSB
Increasing Block Size

1MB/10 mins 10MB/10 mins
1MB = 4200 Txns 10MB = 42000 Txns
7 Txns/ second 70 Txns/ second

DSL at UCSE
Increasing Block Size

1MB/10 mins 10MB/10 mins 100MB/10 mins
1MB = 4200 Txns 10MB = 42000 Txns 100MB = 420000 Txns
7 Txns/ second 70 Txns/ second 700 Txns/ second

DSL at UCSE
Increasing Block Size

1MB/10 mins 10MB/10 mins 100MB/10 mins
1MB = 4200 Txns 10MB = 42000 Txns 100MB = 420000 Txns
7 Txns/ second 70 Txns/ second 700 Txns/ second

DSL at LCSB
Increasing Block Size

* Why they don’t work?

* Decreases fairness - giving large miners an advantage

* Requires more storage space (1 =2 10 = 100 MB/ 10 mins)
* Requires more Network bandwidth

* Requires more verification time

DSL at LCSB
Decrease Block Interval

DSL at LCSB
Decrease Block Interval

DSL at LCSB
Decrease Block Interval

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

DSL at LCSB
Decrease Block Interval

1MB/10 mins 1MB/5 mins
1MB = 4200 Txns 1IMB =4200 Txns
7 Txns/ second 14 Txns/ second

DSL at LCSB
Decrease Block Interval

1MB/10 mins 1MB/5 mins 1MB/1 min
1MB = 4200 Txns 1IMB =4200 Txns 1MB = 4200 Txns
7 Txns/ second 14 Txns/ second 70 Txns/ second

DSL at LCSB
Decrease Block Interval

1MB/10 mins 1MB/5 mins 1MB/1 min
1MB = 4200 Txns 1IMB =4200 Txns 1MB = 4200 Txns
7 Txns/ second 14 Txns/ second 70 Txns/ second

DSL at LCSB
Decrease Block Interval

* Requires to mining decrease difficulty
* Leads to more forks
e Results on network instability (many branches)

DSL at UCSB
Overview

DSL at UCSB
Overview

* Increase throughput by reducing consensus from all nodes to smaller set

DSL at UCSB
Overview

* Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times m

DSL at UCSB
Overview

* Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times m
Form a committee to vouch for new block ByzCoin

DSL at UCSB
Overview

* Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times m
Form a committee to vouch for new block ByzCoin

Shard txns across different committees m

DSL at LICSB
BitcoinNG (Next Generation)

DSL at LCSB
BitcoinNG (Next Generation)

Observation: In Bitcoin,
blocks provide two
purpose:

consensus and
txn verification

DSL at LCSB
BitcoinNG (Next Generation)

Observation: In Bitcoin,
blocks provide two
purpose:

consensus and
txn verification

DSL at LCSB
BitcoinNG (Next Generation)

Observation: In Bitcoin,
blocks provide two Keyblocks:
purpose: Used for Leader

Election and created

consensus and ,
o using Proof-of-work

txn verification

DSL at LCSB
BitcoinNG (Next Generation)

Observation: In Bitcoin,
blocks provide two Keyblocks:
purpose: Used for Leader

Microblocks:
Contains txns and is

generated by the epoch
leader, signed by
leader's private key

Election and created

consensus and ,
o using Proof-of-work

txn verification

- Key-block miner = leader till next key-block is mined
- Leader publishes micro-blocks while in tenure

Allowing one miner to be a leader, even for a brief interval, presents many
concerns!!
Eyal, Ittay, et al. "Bitcoin-NG: A Scalable Blockchain Protocol." NSDI. 2016.

DSL at UCSB
ByzCoin

DSL at UCSB
ByZCOi N PBFT + CoSi =2

next microblock
» Uses key-blocks and micro-blocks

» Key-block miner (PoW) in window
becomes a trustee
* Micro-block decided by trustees

* Trustees use PBFT to reach consensus on next
micro-block

* Each block is sighed using Collective Signing
approach

Kogias, Eleftherios Kokoris, et al. "Enhancing bitcoin security and performance with strong consistency via collective
signing." 25th USENIX Security Symposium (USENIX Security 16). 2016.

DSL at LCSB
Elastico

DSL at LCSB
Elastico

* Key idea: split all servers into smaller sized
groups, committees

DSL at LCSB
Elastico

* Key idea: split all servers into smaller sized
groups, committees

(e

(-
(«

(o
— (((0(((o

(o

(o

o -
(0

DSL at LCSB
Elastico

* Key idea: split all servers into smaller sized
groups, committees

* Each committee processes a disjoint shard
of txns

(-

(e
(e

(o
— (((0(((o
(o

(o

o -
(0

DSL at LCSB
Elastico

* Key idea: split all servers into smaller sized
groups, committees

* Each committee processes a disjoint shard
of txns

* Each committee runs any BFT to reach
consensus on a block

)

v

(

(

/

(o
(o

\\(. ‘\

11/
‘r.
A

BFT

-

|
\

otocol

0
&

e -

(o

"

DSL at LCSB
Elastico

* Key idea: split all servers into smaller sized
groups, committees

(o
(o
(o

* Each committee processes a disjoint shard
of txns / BFT

otocol \

-

* Each committee runs any BFT to reach
consensus on a block

DSL at LCSB
Elastico

* Key idea: split all servers into smaller sized
groups, committees

(o
(o
(o

* Each committee processes a disjoint shard
of txns / BFT ;iotocol \

* Each committee runs any BFT to reach o2 - -
consensus on a block %gﬂ; %% %;g}

* A special Final committee aggregates all - - -
chosen shards and publishes next block in ﬁ i i
the chain

DSL at LICSB

Elastico ——1—
* Key idea: split fall servers into smaller sized - o
roups, committees ——1—
g s, - e’
* Each committee processes a disjoint shard
of txns BFT piotocol
* Each committee runs any BFT to reach 2! - .
consensus on a block =S =N =
- - -

* A special Final committee aggregates all
chosen shards and publishes next block in i i

the chain

Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016.

DSL at LCSB
Sharding as a Scalability Solution

DSL at LICSB

Sharding as a Scalability Solution

DSL at LCSB
Sharding as a Scalability Solution

->-_>-_ -_— - >-_>-

DSL at LICSB

Sharding as a Scalability Solution

\ 4
\ 4

DSL at LCSB
Sharding as a Scalability Solution

DSL at LCSB
Sharding as a Scalability Solution

DSL at LCSB
Sharding as a Scalability Solution

DSL at UCSB
Classes of Transactions

- .-,

DSL at UCSB
Classes of Transactions

DSL at UCSB
Classes of Transactions

|_ - o o o0 Single Shard Transactions |_._.._.._“

DSL at UCSB
Classes of Transactions

- .-,

DSL at LUCSB
Classes of Transactions

- .-,

DSL at LUCSB
Classes of Transactions

Y S Tl Cross-Shard Transactions [— R

DSL at LUCSB
Classes of Transactions

Requires Atomic Cross-Shard Commitment Protocol

Y S Tl Cross-Shard Transactions [— T

DSL at LCSB
The Landscape

DSL at LCSB
The Landscape

Cryptocurrencies: 2225 « Markets: 18851 « Market Cap: $257,486,187,861 « 24h Vol: $66,548,083,112 « BTC Dominance: 55.4%

@ Coianrkethp Rankings Tools Resources Blog °** Search

Top 100 Cryptocurrencies by Market Capitalization

Cryptocurrencies ~ Exchanges ~ Watchlist USD~ Next100 — View All
Name Market Cap Price Volume (24h) Circulating Supply Change (24h) Price Graph (7d)

1 Bitcoin $142,627,334,795 $8,036.77 $19,138,268,181 17,746,837 BTC 3.15%
2 4 Ethereum $26,732,290,299 $251.25 $8,364,736,132 106,397,463 ETH 1.70%
3 X XRP $17,876,222,703 $0.423217 $1,658,461,942 42,238,947,941 XRP * 1.25%
4 @ Litecoin $7,281,728,951 $117.21 $5,141,138,982 62,124,551 LTC 6.28%
5 [@] Bitcoin Cash $7,157,820,741 $401.55 $1,572,103,916 17,825,688 BCH 2.02%

Source: coinmarketcap.com on June 7t at 5:00pm PST

DSL at LCSB
The Landscape

Cryptocurrencies: 2225 « Markets: 18851 « Market Cap: $257,486,187,861 « 24h Vol: $66,548,083,112 « BTC Dominance: 55.4%

Coianrkethp Rankings Tools Resources Blog °** Search

Top 100 Cryptocurrencies by Market Capitalization

Cryptocurrencies ~ Exchanges ~ Watchlist USD~ Next100 — View All
Name Market Cap Price Volume (24h) Circulating Supply Change (24h) Price Graph (7d)

1 Bitcoin $142,627,334,795 $8,036.77 $19,138,268,181 17,746,837 BTC 3.15%
2 4 Ethereum $26,732,290,299 $251.25 $8,364,736,132 106,397,463 ETH 1.70%
3 X XRP $17,876,222,703 $0.423217 $1,658,461,942 42,238,947,941 XRP * 1.25%
4 @ Litecoin $7,281,728,951 $117.21 $5,141,138,982 62,124,551 LTC 6.28%
5 [@] Bitcoin Cash $7,157,820,741 $401.55 $1,572,103,916 17,825,688 BCH 2.02%

Source: coinmarketcap.com on June 7t at 5:00pm PST

DSL at LCSB
The Landscape

Cryptocurrencies: 2225 = Markets: 18851‘

@ Coianrkethp Rankings Tools Resources Blog °** Search

Top 100 Cryptocurrencies by Market Capitalization

Cryptocurrencies ~ Exchanges ~ Watchlist USD~ Next100 — View All
Name Market Cap Price Volume (24h) Circulating Supply Change (24h) Price Graph (7d)

1 Bitcoin $142,627,334,795 $8,036.77 $19,138,268,181 17,746,837 BTC 3.15%

2 4 Ethereum $26,732,290,299 $251.25 $8,364,736,132 106,397,463 ETH 1.70%

3 X XRP $17,876,222,703 $0.423217 $1,658,461,942 42,238,947,941 XRP * 1.25%

4 @ Litecoin $7,281,728,951 $117.21 $5,141,138,982 62,124,551 LTC 6.28%

5 [@] Bitcoin Cash $7,157,820,741 $401.55 $1,572,103,916 17,825,688 BCH 2.02%

Source: coinmarketcap.com on June 7t at 5:00pm PST

DSL at LCSB
The Landscape

‘Eryptucurrencies: 2225 « Markets: 18251

Search

Market Cap: $257486,187861 « 24h Vol: $66,548,083,112

lion

Cryptocurrencies ~ Exchanges ~ Watchlist USD~ Next100 — View All
Name Market Cap Price Volume (24h) Circulating Supply Change (24h) Price Graph (7d)

1) Bitcoin $142,627,334,795 $8,036.77 $19,138,268,181 17,746,837 BTC 3.15%

2 4 Ethereum $26,732,290,299 $251.25 $8,364,736,132 106,397,463 ETH 1.70%

3 X XRP $17,876,222,703 $0.423217 $1,658,461,942 42,238,947,941 XRP * 1.25%

4 @ Litecoin $7,281,728,951 $117.21 $5,141,138,982 62,124,551 LTC 6.28%

5 [@] Bitcoin Cash $7,157,820,741 $401.55 $1,572,103,916 17,825,688 BCH 2.02%

Source: coinmarketcap.com on June 7t at 5:00pm PST

DSL at LCSB
The Landscape

DSL at LCSB
The Landscape

* Thousands of Blockchains

DSL at LCSB
The Landscape

* Thousands of Blockchains
* Tens of thousands of markets

DSL at LCSB
The Landscape

 Thousands of Blockchains
* Tens of thousands of markets
* Exchanges to trade tokens for USD

DSL at LCSB
The Landscape

* Thousands of Blockchains

* Tens of thousands of markets

e Exchanges to trade tokens for USD

* Direct token transactions in one blockchain

DSL at LCSB
The Landscape

* Thousands of Blockchains

* Tens of thousands of markets

e Exchanges to trade tokens for USD

* Direct token transactions in one blockchain

* Direct token transactions across blockchains, how?

DSL at LCSB
The Landscape

* Thousands of Blockchains

* Tens of thousands of markets

e Exchanges to trade tokens for USD

* Direct token transactions in one blockchain

* Direct token transactions across blockchains, how?
* Cross-chain transactions

DSL at LCSB
Cross-ChainTransaction Example

DSL at UCSE
Cross-ChainTransaction Example

>

A4

HEHEHE -

DSL at LCSB
Cross-ChainTransaction Example

>
F\I{*I*l“ HEHEHE -l

DSL at LCSB
Cross-ChainTransaction Example

>
m“ HEHEHE -l

DSL at UCSE
Cross-ChainTransaction Example

$
mEEEE -

DSL at UCSE
Cross-ChainTransaction Example

$
mEEEE R

DSL at UCSE
Cross-ChainTransaction Example

>
R S

DSL at UCSE
Cross-ChainTransaction Example

>
R S

P

a

DSL at UCSE
Cross-ChainTransaction Example

>
R S

g“ X bitcoins B

DSL at UCSE
Cross-ChainTransaction Example

>
R S

/__\

g Y ethers i
4 X bitcoins B

DSL at UCSE
Cross-ChainTransaction Example

>
R S

Atomic Cross-Chain Commitment Protocol

/__\

g Y ethers {
4 X bitcoins B

64

DSL at UCSE
Cross-ChainTransaction Example

>
R S

*
w

x
Atomic Cross-Chain Commitment Protocol

/__\

g Y ethers
4 X bitcoins B

64

DSL at UCSE
Cross-ChainTransaction Example

>
- S IR

*
w

x
Atomic Cross-Chain Commitment Protocol

/__\

g Y ethers
4 X bitcoins B

64

DSL at UCSE
Cross-ChainTransaction Example

Filﬂl@ nERRE

*
w

x
Atomic Cross-Chain Commitment Protocol

/__\

g Y ethers
4 X bitcoins B

64

DSL at LCSB
Smart Contracts

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages
* Allow end-users to:

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:
» Store generic data objects in the blockchain

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:

» Store generic data objects in the blockchain
* Define the functions that manipulate these data objects

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:
» Store generic data objects in the blockchain
* Define the functions that manipulate these data objects

* Have attributes (e.g., represents a car)

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:
» Store generic data objects in the blockchain
* Define the functions that manipulate these data objects

* Have attributes (e.g., represents a car)
* Have functions (e.g., rent, buy, etc)

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:
» Store generic data objects in the blockchain
* Define the functions that manipulate these data objects

* Have attributes (e.g., represents a car)
* Have functions (e.g., rent, buy, etc)
* Can be used to implement generic transaction logic:

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:
» Store generic data objects in the blockchain
* Define the functions that manipulate these data objects

* Have attributes (e.g., represents a car)
* Have functions (e.g., rent, buy, etc)

* Can be used to implement generic transaction logic:
* Conditionally lock assets in the blockchain

DSL at LCSB
Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:
» Store generic data objects in the blockchain
* Define the functions that manipulate these data objects

* Have attributes (e.g., represents a car)
* Have functions (e.g., rent, buy, etc)

* Can be used to implement generic transaction logic:
* Conditionally lock assets in the blockchain
* Transfer asset ownership on some condition

DSL at LCSB
Smart Contracts

DSL at LCSB
Smart Contracts

class AtomicSwap {
sender: s // Alice
recipient: r // Bob
asset: a // X bitcoins
secretHash: h
constructor() {

}

redeem (secret srt) {
if(hash(srt) == h)
transfer ato r

DSL at LCSB
Atomic Swap[Nolan’13, Herlihy’18]

e Alice wants to trade Bitcoin for Ethereum with Bob

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

e Alice wants to trade Bitcoin for Ethereum with Bob

2 g

Bob

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

e Alice wants to trade Bitcoin for Ethereum with Bob

* Create asecrets <9
e Calculate its hash h = H(s)

a Alice

2 g

Bob

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

e Alice wants to trade Bitcoin for Ethereum with Bob

* Create asecrets <9
e Calculate its hash h = H(s)

2 g

Bob

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

e Alice wants to trade X Bitcoin for Y Ethereum with Bob

SC, Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

2 g

=9 sandh

Bob Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

e Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bitcoin blockchain

SC, Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

2 g

=9 sandh

Bob Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

e Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bitcoin blockchain

oo 2~ SC,
P

/
e
SC, Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

2 g

=9 sandh

Bob Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, h is announced in Bitcoin blockchain and made public

Bitcoin blockchain

- 1 SC,

Alice’s X bitcoins are locked in
the smart contract SC,

2 g

<=9s

Bob Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, h is announced in Bitcoin blockchain and made public

Bitcoin blockchain

- < SC,
SC, Move Y Ethereum to Alice if Alice’s X bitcoins are locked in
Alice provides secret s | h = H(s) the smart contract SC,

<=9s

Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, h is announced in Bitcoin blockchain and made public

Ethereum blockchain Bitcoin blockchain
* - - - < - - - < SCl
SC, Move Y Ethereum to Alice if Alice’s X bitcoins are locked in
Alice provides secret s | h = H(s) the smart contract SC,

<=9s

Alice

DSL at LICSB

Atomic Swap[Nolan’13, Herlihy’18]

* Now, h is announced in Bitcoin blockchain and made public

Ethereum blockchain

oo «—— » SC,

/

SC, Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Bitcoin blockchain

- 1 SC,

Alice’s X bitcoins are locked in
the smart contract SC,

<=9s

Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, for Alice to execute SC, and redeem Y Ethereum, she reveals s

Ethereum blockchain Bitcoin blockchain
N — SC,] — 5
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

<=9s

Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, for Alice to execute SC, and redeem Y Ethereum, she reveals s

Ethereum blockchain Bitcoin blockchain

1 sc, 4. — SC,

~

Bob’s Y Ethereum are locked in ~ < _ Alice’s X bitcoins are locked in
smart contract SC, Emar\t\contract SC,

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, for Alice to execute SC, and redeem Y Ethereum, she reveals s

Ethereum blockchain Bitcoin blockchain

— 50,8 — SC,

~

Bob’s Y Ethereum are locked in ~ < _ Alice’s X bitcoins are locked in
smart contract SC, Emar\t\contract SC,

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Revealing s, executes SC,. Now s is public in Ethereum’s blockchain

Ethereum blockchain Bitcoin blockchain
. _— O N — SC,
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, Bob uses s to execute SC, and redeem his Bitcoins

Ethereum blockchain Bitcoin blockchain
S 5 S -] > SC,
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

¢

Bob Alice

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]

* Now, Bob uses s to execute SC, and redeem his Bitcoins

Ethereum blockchain Bitcoin blockchain
e__..
- - -1 < @ S - — - - = @15
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

¢

Bob Alice

DSL at LCSB
Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,

DSL at LCSB
Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,
* Bob sees SC, but refuses to publish SC,

Dol at UCSE

Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,
* Bob sees SC, but refuses to publish SC,

* Now, Alice’s Bitcoins are locked for good

* A conforming party (Alice) ends up worse off because Bob doesn’t follow the
protocol

Dol at UCSE

Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,
* Bob sees SC, but refuses to publish SC,

* Now, Alice’s Bitcoins are locked for good

* A conforming party (Alice) ends up worse off because Bob doesn’t follow the
protocol

* Prevention
* Use timelocks to expire a contract
» Specify that an expired contract is refunded to the creator of this contract

DSL at UCSE
Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

2 g

a Alice

Bob

DSL at LICSB

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

2 g

Bob

Refund SC, to Alice if Bob does
not execute SC, before 48 hours

SC;: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

a Alice

DSL at LICSB

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Refund SC, to Bob if Alice does
not execute SC, before 24 hours

SC,: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Refund SC, to Alice if Bob does
not execute SC, before 48 hours

SC,: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

DSL at LICSB

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Refund SC, to Bob if Alice does
not execute SC, before'hours

SC,: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Refund SC, to Alice if Bob does
not execute SC, befor-‘hours

SC,: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

DSL at UCSE
Atomic Swap Example [Nolan’13, Herlihy’18]

|
Bob-Alice in Ethereum | - : ‘ :

| | |
Alice-Bob in Bitcoin [} | | | o
| | |
|

Y ethers

g.\) e.g., A=12hr

X bitcoins

DSL at UCSE
Atomic Swap Example [Nolan’13, Herlihy’18]

|
Bob-Alice in Ethereum | - : ‘ :

| | |
Alice-Bob in Bitcoin [} | | | o
| | |
|

Y ethers
30

g.\) e.g., A=12hr

X bitcoins

DSL at UCSE
Atomic Swap Example [Nolan’13, Herlihy’18]

I A I A I A I
.))) | |
Alice-Bob in Bitcoin - | | ‘
I I I I
) . I I I
Bob-Alice in Ethereum - ; |
- |
Alice reveals the secret to Bob’s
contract and claims the Y ether
Y ethers

g\ } e.g., A =12hr

X bitcoins

DSL at UCSE
Atomic Swap Example [Nolan’13, Herlihy’18]

| A | A
Alice-Bob in Bitcoin - :
| |

Bob-Alice in Ethereum : -

Alice reveals the secret to Bob’s
contract and claims the Y ether
Y ethers

Supposedly, Bob takes the secret, GE‘:OOg/ —

reveals it to Alice’s contract and
~ e.g., A=12hr

claims the X bitcoins
X bitcoins

DSL at UCSE
Atomic Swap Example [Nolan’13, Herlihy’18]

I A I A I
.))) | |
Alice-Bob in Bitcoin - ; ;
I I I
) . I I
Bob-Alice in Ethereum - ;
- |
Alice reveals the secret to Bob’s
contract and claims the Y ether
Y ethers
Supposedly, Bob takes the secret, — T

reveals it to Alice’s contract and g
claims the X bitcoins N e.g.’ A = 12hr

X bitcoins

DSL at UCSE
What can go wrong?

| A | A
Alice-Bob in Bitcoin - :
| |

Bob-Alice in Ethereum : -

Y ethers
@ — T~

g\) e.g., A=12hr

X bitcoins

DSL at LICSB

What can go wrong?

A

Alice-Bob in Bitcoin -

|
Bob-Alice in Ethereum :

If Bob fails or suffers a network
denial of service attack for a A,
Alice’s contract will expire and
Bob will lose his X bitcoins

~&

\ Y ethers

X bitcoins

e.g., A=12hr

DSL at UCSE
What can go wrong?

X bitcoins are refunded to
Alice any time after the
A A A A Y tim
contract expires

|
Alice-Bob in Bitcoin -

Bob-Alice in Ethereum : -

\ Y ethers

~&

If Bob fails or suffers a network
denial of service attack for a A,
Alice’s contract will expire and

Bob will lose his X bitcoins

) e.g., A=12hr

X bitcoins

DSL at UCSE
What can go wrong?

X bitcoins are refunded to
Alice any time after the
A .
I contract expires

| A | A
Alice-Bob in Bitcoin - :
| |

Bob-Alice in Ethereum : -

If Bob fails or suffers a network ® s
denial of service attack for a A, Ato I I l I C I

Alice’s contract will expire and \

Bob will lose his X bitcoins

ty Violation

) e.g., A=12hr

Y ethers

X bitcoins

DSL at LCSB
Atomicity Violation

* Using timelocks leads to Atomicity violation

78

DSL at LCSB
Atomicity Violation

* Using timelocks leads to Atomicity violation

* Our Atomicity-based Approach:

* The decision of both transactions should be made atomic
* Once the decision is taken, both transactions either commit or abort

DSL at LCSB
Atomicity Violation

* Using timelocks leads to Atomicity violation

* Our Atomicity-based Approach:

* The decision of both transactions should be made atomic
* Once the decision is taken, both transactions either commit or abort
e A transaction cannot commit unless a commit decision is reached

* A transaction cannot abort unless an abort decision is reached

Dol at UCSE

Atomic Commitment Across
Blockchains

Victor Zakhary, Divyakant Agrawal, Amr El Abbadi

DSL at LCSB
Building block: Cross-Chain Verification

* How can miners of one blockchain:
 Verify a transaction in another blockchain?

DSL at LCSB
Building block: Cross-Chain Verification

* How can miners of one blockchain:
 Verify a transaction in another blockchain?
* Without maintaining a copy of this other blockchain.

DSL at LCSB
Building block: Cross-Chain Verification

DSL at LCSB
Building block: Cross-Chain Verification

Verifier Blockchain

Dol at UCSE

Building block: Cross-Chain Verification

Need to verify that TX; is actually
in verified blockchain

Verifier Blockchain

81

DSL at LCSB
Building block: Cross-Chain Verification

Need to verify that TX; is actually
in verified blockchain

Verified Blockchain [—1 [— [D ----- g

Verifier Blockchain

DSL at LICSB

Building block: Cross-Chain Verification

Need to verify that TX; is actually
in verified blockchain

Verified Blockchain

Verifier Blockchain

Current head

SC{
S1
}

1

Current head

81

DSL at LCSB
Building block: Cross-Chain Verification

Need to verify that TX; is actually
in verified blockchain

| guiiicen

1
VerifiedBlockchain —1 I —1 "1 N[~
\
\\Current head
\
\
\

sc{\

Verifier Blockchain [— [— [~1 [~ 1s, mm

}

1

Current head

DSL at LCSB
Building block: Cross-Chain Verification

Need to verify that TX; is actually
in verified blockchain

| guiiicen

1
Verified Blockchain m1 M1 "1 N~~~
\
\\Current head
\
\
\2

sc{\

Verifier Blockchain —/ [—/ [~~—""1 [~~~ - fl '

1

Current head

DSL at LCSB
Building block: Cross-Chain Verification

Need to verify that TX; is actually
in verified blockchain

1 3

Verified Blockchain —1 [—1 [~ N[~ { X,

\
\Currenthead Transaction TX,
\ of interest
\
\2
sc{\
Verifier Blockchain [— [[~~1 [~ l fl -

Current head

DSL at LCSB
Building block: Cross-Chain Verification

Need to verify that TX; is actually
in verified blockchain

Verified Blockchain — [—1 [M[7 { X, |- D

\
\Currenthead Transaction TX,
\ of interest
\
\2
sc{\
Verifier Blockchain [— [[~~1 [~ l fl -

Current head

81

DSL at LCSB
Building block: Cross-Chain Verification

5
£—<— - — > - ——J TX1 Evidence
1
X

Need to verify that TX; is actually
in verified blockchain

Verified Blockchain — [—1 [M[7 { X, |- D

\Currenthead Transaction TX,
\ of interest
\
\2
sc{\
Verifier Blockchain [— [[~~1 [~ l fl -

1

Current head

1 evidence

81

DSL at LCSB
Building block: Cross-Chain Verification

5
£—<— - — > - ——J TX1 Evidence
1
X

Need to verify that TX; is actually
in verified blockchain

Verified Blockchain — [—1 [M[7 { X, |- D

\Currenthead Transaction TX,

1 evidence

\ of interest
\
\2
SC {\i SC{
Verifier Blockchain — [— [~ [~~~ - ?1 fz

Current head
81

DSL at LCSB
Building block: Cross-Chain Verification

5
{—«- - — I« > : ——J '|')(1 Evidence
1

Need to verify that TX; is actually
in verified blockchain

VerifiedBlockchain —1 I —1 "1 N[~ { D

X

1 evidence

\
\Currenthead Transaction TX,
\ of interest \\
*\2 M6
sc{ SC {
Verifier Blockchain [— [— [~~"""1 [~ - S g fz L

Current head
81

DSL at LCSB
Building block: Cross-Chain Verification

L‘- = __J

* Verification process: X, cvidence

82

DSL at LCSB
Building block: Cross-Chain Verification

L‘- = __J

* Verification process: X, cvidence

e Each header includes the hash of the previous header

82

DSL at LCSB
Building block: Cross-Chain Verification

* Verification process: X, cvidence

e Each header includes the hash of the previous header

82

DSL at LCSB
Building block: Cross-Chain Verification

L‘- = __J

* Verification process: X, cvidence

e Each header includes the hash of the previous header

82

DSL at LCSB
Building block: Cross-Chain Verification

L‘- = __J

* Verification process:
e Each header includes the hash of the previous header
* The proof of work of each header is correct

TXl evidence

82

Dol at UCSE

Building block: Cross-Chain Verification

* Verification process:

|

rX;

TXl evidence

J

e Each header includes the hash of the previous header

* The proof of work of each header is correct

DSL at LCSB
Building block: Cross-Chain Verification

L‘- = __J

* Verification process:
e Each header includes the hash of the previous header
* The proof of work of each header is correct

TXl evidence

82

DSL at LCSB
Building block: Cross-Chain Verification

L‘- = __J

* Verification process:
e Each header includes the hash of the previous header
* The proof of work of each header is correct
* TX, is correct

X

1 evidence

82

DSL at LCSB
Building block: Cross-Chain Verification

L‘- = __J

* Verification process:
e Each header includes the hash of the previous header
* The proof of work of each header is correct
* TX, is correct

X

1 evidence

82

DSL at LCSB
Building block: Cross-Chain Verification

. —
o o . TXl
* Verification process: X
e Each header includes the hash of the previous header mm
* The proof of work of each header is correct

* TX, is correct
* TX, is buried under d blocks

1 evidence

82

DSL at LCSB
Building block: Cross-Chain Verification

. —
o o . Txl
* Verification process: X
e Each header includes the hash of the previous header mm
* The proof of work of each header is correct

* TX, is correct
* TX, is buried under d blocks

* The cost of generating evidence:
* Choose d to make this cost > the value transacted in TX,
* |f true, a malicious user has no incentive to create a fake evidence

1 evidence

82

DSL at LCSB
Atomic Commitment Across Blockchains

* Use another blockchain to witness the Atomic Swap

DSL at LCSB
Atomic Commitment Across Blockchains

* Use another blockchain to witness the Atomic Swap
* The witness blockchain decides the commit or the abort of a swap

Dol at UCSE

Atomic Commitment Across Blockchains

* Use another blockchain to witness the Atomic Swap
* The witness blockchain decides the commit or the abort of a swap

e Once a decision is made:

* All sub-transactions in the swap must follow the decision
* Achieves atomicity, either all committed or all aborted

Dol at UCSE

Atomic Commitment Across Blockchains

* Use another blockchain to witness the Atomic Swap
* The witness blockchain decides the commit or the abort of a swap

e Once a decision is made:

* All sub-transactions in the swap must follow the decision
* Achieves atomicity, either all committed or all aborted

* Cross chain verification is leveraged twice

Dol at UCSE

Atomic Commitment Across Blockchains

* Use another blockchain to witness the Atomic Swap
* The witness blockchain decides the commit or the abort of a swap

e Once a decision is made:

* All sub-transactions in the swap must follow the decision
* Achieves atomicity, either all committed or all aborted

* Cross chain verification is leveraged twice

* Miners of the witness network verify the publishing of contracts in asset
blockchains

DSL at UCSE
Atomic Commitment Across Blockchains

* Use another blockchain to witness the Atomic Swap
* The witness blockchain decides the commit or the abort of a swap

e Once a decision is made:

* All sub-transactions in the swap must follow the decision
* Achieves atomicity, either all committed or all aborted

* Cross chain verification is leveraged twice

* Miners of the witness network verify the publishing of contracts in asset
blockchains

* Miners of assets’ blockchains verify the decision made in the witness network

DSL at LCSB
Protocol Sketch

DSL at LCSB
Protocol Sketch

* Deploy a contract SC,, in the witness network with state Published (P)

DSL at LCSB
Protocol Sketch

* Deploy a contract SC,, in the witness network with state Published (P)

Witness Blockchain ’7 T D

Verifier

DSL at LCSB
Protocol Sketch

* Deploy a contract SC,, in the witness network with state Published (P)

SC
Witness Blockchain ’7 T 5=V|;}{

Verifier

DSL at LICSB

Protocol Sketch

* Deploy a contract SC,, in the witness network with state Published (P)

Witness Blockchain ’7

Verifier

Bitcoin Blockchain

Verified

Ethereum Blockchain

Verified

L

Current head

Y __dblocks 2

84

DSL at LICSB

Protocol Sketch

* Deploy a contract SC,, in the witness network with state Published (P)

* SC,, has a header of a

Witness Blockchain ’7

Verifier

Bitcoin Blockchain

Verified

Ethereum Blockchain

Verified

L

Current head

Y __dblocks 2

olock at depth d of all blockchains in the swap

84

DSL at LCSB
Protocol Sketch Cont’d

SC
Witness Blockchain ’7 T 5=V|;}=

Verifier

Bitcoin Blockchain o
Verified

Ethereum Blockchain IS
Verified

DSL at LICSB

Protocol Sketch Cont’d

Witness Blockchain ’7

Verifier

Bitcoin Blockchain

Verified

Ethereum Blockchain

Verified

85

DSL at LICSB

Protocol Sketch Cont’d

* Participants deploy their contracts in the corresponding blockchains

Witness Blockchain ’7

Verifier

Bitcoin Blockchain

Verified

Ethereum Blockchain

Verified

85

DSL at LICSB

Protocol Sketch Cont’d

* Participants deploy their contracts in the corresponding blockchains

Witness Blockchain ’7

Verifier

Bitcoin Blockchain

Verified

Ethereum Blockchain

Verified

85

DSL at LCSB
Protocol Sketch Cont’d

* Participants deploy their contracts in the corresponding blockchains
* Participants add the header of SC, to their contracts

SC
Witness Blockchain ’— R s=v|;}=\ e
Verifier ' NN '
\ '\
e \ i
.) N |sc,
Bitcoin Blockchain S—— N S S=I19P-
Verified ‘.\
P “’
Ethereum Blockchain o R 25;;:-
Verified

DSL at LICSB

Protocol Sketch Cont’d

Witness Blockchain

Verifier

Bitcoin Blockchain
Verified

Ethereum Blockchain
Verified

’7

— SC,{__

5=P}

86

DSL at LICSB

Protocol Sketch Cont’d

Witness Blockchain

Verifier

Bitcoin Blockchain
Verified

Ethereum Blockchain
Verified

’7

5=P}

. sc | ...

86

DSL at LICSB

Protocol Sketch Cont’d

Witness Blockchain

Verifier

Bitcoin Blockchain
Verified

Ethereum Blockchain
Verified

’7

86

DSL at LCSB
Protocol Sketch Cont’d

* Participants submit evidence of publishing the smart contracts in Assets

Blockchains
Witness Blockchain ’7 R] — B
Verifier s
— N
Bitcoin Blockchain R D :S::}L T ,/'/
Verified -/
—
Ethereum Blockchain Rl Rl ng,;— -----------
Verified N\ —

The Evidence hﬂm

DSL at LCSB
Protocol Sketch Cont’d

* Participants submit evidence of publishing the smart contracts in Assets
Blockchains

* If all contracts are published and correct, SC s state is altered to redeem (RD)

Witness Blockchain ’7 R] — B Gl
Verifier s
— N
Bitcoin Blockchain AR D :S::}L T ,/'/
Verified -/
[
Ethereum Blockchain Rl Rl 25;;- -----------
Verified \C —/

The Evidence hﬂm

86

DSL at UCSB

Protocol Sketch Cont’d

Witness Blockchain ’7

Verified

Bitcoin Blockchain

Verifier

Ethereum Blockchain

Verifier

sc,, {
S=RD}

87

DSL at UCSB

Protocol Sketch Cont’d

Witness Blockchain ’7

Verified

Bitcoin Blockchain

Verifier

Ethereum Blockchain

Verifier

sc,, {
S=RD}

87

DSL at UCSB

Protocol Sketch Cont’d

Witness Blockchain ’7

Verified

Bitcoin Blockchain

Verifier

Ethereum Blockchain

Verifier

87

DSL at UCSB

Protocol Sketch Cont’d

* Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

Witness Blockchain ’7

Verified

Bitcoin Blockchain

Verifier

Ethereum Blockchain

Verifier

O

SC,{__ ~._ Tl
) R N . e, =

S=P} e N,

~
~
N, .
\ 3

G Vo L \ A
5=p)™™

87

DSL at UCSB

Protocol Sketch Cont’d

* Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

Witness Blockchain ’7

Verified

Bitcoin Blockchain

Verifier

Ethereum Blockchain

Verifier

¢ o~

-~
L
~,
~,
~.
~.

SC, {
S=RD}

87

DSL at UCSB

Protocol Sketch Cont’d

* Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

» After evidence verification, participants redeem their assets from the

Assets Blockchains.

Witness Blockchain ’7 --------- [
Verified
[
Bitcoin Blockchain —H +H—H }-----
Verifier
]
Ethereum Blockchain+— —— = }-----1

Verifier

-~
L
~,
~,
~.
~.

SC, {
S=RD}

IO I S8 |

S=RD}

87

DSL at LCSB
Atomic Commitment Across Blockchains

DSL at LCSB
Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

DSL at LCSB
Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision
* Once SC, s state is altered and the block is buried under d blocks:

DSL at LCSB
Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
* All sub-transactions must follow this decision

DSL at LCSB
Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

Dol at UCSE

Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

* Even if a participant fails or faces a network denial of service:

Dol at UCSE

Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

* Even if a participant fails or faces a network denial of service:
* When the participant recovers, the evidence of the decision still exists

Dol at UCSE

Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

* Even if a participant fails or faces a network denial of service:
* When the participant recovers, the evidence of the decision still exists
* This evidence can be used to redeem or refund the contracts

Dol at UCSE

Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

* Even if a participant fails or faces a network denial of service:
* When the participant recovers, the evidence of the decision still exists
* This evidence can be used to redeem or refund the contracts

* The only way to violate atomicity is to fork the witness blockchain

Dol at UCSE

Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

* Even if a participant fails or faces a network denial of service:
* When the participant recovers, the evidence of the decision still exists
* This evidence can be used to redeem or refund the contracts

* The only way to violate atomicity is to fork the witness blockchain
* Economic incentives prevent this attack

DSL at LCSB
Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

* Even if a participant fails or faces a network denial of service:
* When the participant recovers, the evidence of the decision still exists
* This evidence can be used to redeem or refund the contracts

* The only way to violate atomicity is to fork the witness blockchain
* Economic incentives prevent this attack
* Any protocol is prone to fork attacks

-
-
-

»

»
¥
;o

DSL at LICSR
Supply Chain Management:

Tracking Fish from Ocean to Table

* Ocean fishing represents more than S70B in worldwide trade!
e Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction
are ever inspected?.
* Nearly one in three fish were mislabeled by sellers3
* 87% of snapper and 59% of tuna were mislabelled*
* 95% of all sushi restaurants were serving mislabeled fish*

! Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.

2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.
3 Miguel ¢ngel Pardo, Elisa JimZnez, Bego—a PZrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277—-283.

4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.

DSL at LICSR
Supply Chain Management:

Tracking Fish from Ocean to Table

* Ocean fishing represents more than S70B in worldwide trade!

* Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction are ever
inspected?.

* Nearly one in three fish were mislabeled by sellers3

* 87% of snapper and 59% of tuna were mislabelled*

* 95% of all sushi restaurants were serving mislabeled fish*

* Challenges:
 Many different paths from ocean to table
* Lack of global authority for tracing
* Proprietary tracing systems do not scale
* Most existing processes are paper-based
* The supply chain is extremely complex and includes many participants from different industries

! Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.

2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.

3 Miguel ¢ngel Pardo, Elisa JimZnez, Bego—a PZrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277—-283.
4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.

BRbfad¢CSBpply Chain ﬁ Seafood Supply Chain
in the real world) in Blockchain @@
Ecosystem Resources k

Source: Advancing Traceability in
the Seafood Industry, FishWise

Subsistence Fishing Recreational Fishing Aquaculture ' isheri i istributi
> g> q > Wild Capture Flsherleg Processing and D|str|but|on>

BRbfad¢CSBpply Chain ;\ Seafood Supply Chain
in the real world _ — in Blockchain
)

-

Breeder/Hatchery Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Subsistence Fishing/Farming

Commercial Fishing Vessel

Recreational Fishing

Source: Advancing Traceability in
the Seafood Industry, FishWise

Subsistence Fishin i ishi : . : . o
ubsi Ishi g» Recreational Flshlng> Aquaculture> Wild Capture Flsherleg Processing and D|str|but|on>

BBhfnddCSBpply Chain a Seafood Supply Chain

in the real world in Blockchain

Fish Meal Plant Feed Mill Breeder/Hatchery Seafood is ca ught by fishermen
\ . / and physically tagged with IOT

enabled sensors
E@ 7 Commercialishing Vessel _@

Wild Fish Ranch Farm

Transshipment \ E Sensors continuously
ﬂ f/- - transmit data about time ‘
ort

and location to Blockchain

Subsistence Fishing/Farming

Recreational Fishing

Source: Advancing Traceability in
the Seafood Industry, FishWise

Subsistence Fishin i ishi : . : . o
uosl ISni g» Recreational Flshlng> Aquaculture> Wild Capture Flshene; Processing and Dlstrlbutlon>

BBhfaddCSBpply Chain

Seafood Supply Chain
in the real world

in Blockchain

=

Ecosystem Resources

-
M- &
Fish Meal Plant Feed Mill Breeder/Hatchery

Wild Fish Ranch/ Farm

/ Pre-processor___ Auction/Broker
<+

Subsistence Flshlng/Farmmg

Transshipment \ ﬁ

/ Port
2 ~

Auction/Broker ‘

Commermal Flshlng Vessel

emey

Recreational Fishing

v First Buyer/Primary Processor

‘ AALLTTLLLLLLY

Fishmonger/Market

Source: Advancing Traceability in
the Seafood Industry, FishWise

Subsistence Fishin i ishi : . : . o
uosl ISni 8> Recreational Flshlng> Aquaculture> Wild Capture Flsherleg Processing and Dlstrlbutlon>

&)

Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Sensors continuously

transmit data about time ‘
and location to Blockchain

BEbfnddC3Bpply Chain

in the real world

_Sial P

Auction/Broker

. Ml

Recreational Fishing

Subsistence Flshlng/Farmmg

Transshipment \

. AALLTTLLLLLLY

Fishmonger/Market

Source: Advancing Traceability in
the Seafood Industry, FishWise

Second Buyer/Secondary Processor

=

Ecosystem Resources

_ "
n-g &

Fish Meal Plant Feed Mill Breeder/Hatchery

Wild Fish Ranch/ Farm

/ Port "—,-‘—ﬂ -
\
‘ / Pre-processor___. Auction/Broker

<+~

/wstBuyer/Prlmary Proces\
\ -
. Cold Storage

Commermal Flshlng Vessel

Distributor

Subsistence Fishin i ishi : . : . o
uosl ISni g» Recreational Flshlng> Aquaculture> Wild Capture Flshene; Processing and Dlstrlbutlon>

Seafood Supply Chain
in Blockchain

&)

Seafood is caught by fishermen‘

and physically tagged with IOT
enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Blockchain facilitates and
tracks possession changes
through the distribution

.4

BEbfnddC3Bpply Chain

in the real world

=

Ecosystem Resources

-
M- &
Fish Meal Plant Feed Mill Breeder/Hatchery

Wild Fish RanGh/ Farm

'
Port
/ \ | LA || —.
Auction/Broker / Pre-processor _. Auction/Broker

v ||"" /FrstBuyer/Pfary Proces\

Second Buyer/Secondary Processor

“ﬁ Cold Storage B

Distributor “

-(@
a’/ N\ ==

Food Ser\nce

Subsistence Flshlng/Farmmg

Transshipment \

Commermal Flshlng Vessel

emey

Recreational Fishing

“\\\\“\\\.\

Flshmonger/Marke

' l Fishmonger/Market

Restaurant
Retailer

Source: Advancing Traceability in
the Seafood Industry, FishWise

Subsistence Fishin i ishi : . : . o
uosl ISni g» Recreational Flshlng> Aquaculture> Wild Capture Flshene; Processing and Dlstrlbutlon>

Seafood Supply Chain
in Blockchain

&)

Seafood is caught by fishermen
and physically tagged with IOT

enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Blockchain facilitates and
tracks possession changes
through the distribution

The buyer can access a
comprehensive record of
the fish’s provenance

.4

BEbfnddC3Bpply Chain

in the real world

f=

Ecosystem Resources

-
M- &
Fish Meal Plant Feed Mill Breeder/Hatchery

Wild Fish RanCh/ Farm

"
Port
Auction/Broker / Pre-processor _. Auction/Broker

v ||"" /FwstBuyer/Prlmary Proces\

Second Buyer/Secondary Processor

.\\\.\\\“\!\.\. “ e
old Storage
]
Fishmonger/Marke Jik 0 / DS"'””*‘"\\A =
-(@
\ -_(@
0 q m

FoodSer\nce
w
ﬁ Retailer
Source: Advancing Traceability in |
the Seafood Industry, FishWise End Consumer

Subsistence Fishin i ishi : . : . o
uosl ISni g» Recreational Flshlng> Aquaculture> Wild Capture Flshene; Processing and Dlstrlbutlon>

Subsistence Flshlng/Farmmg

Transshipment \

Commermal Flshlng Vessel

emey

Recreational Fishing

Fishmonger/Market

Seafood Supply Chain
in Blockchain

&)

Seafood is caught by fishermen‘

and physically tagged with IOT

enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Blockchain facilitates and
tracks possession changes
through the distribution

The buyer can access a
comprehensive record of
the fish’s provenance

.4

DSL at LCSB
Blockchain for Supply Chains

* Eliminate information silos and ensure provenance with immutable records
e Access end-to-end supply chain data instantly and easily with full transparency
 Minimize waste and allocate inventory using insights from real-time demand forecasts

DSL at LCSB
Blockchain for Supply Chains

* Eliminate information silos and ensure provenance with immutable records
e Access end-to-end supply chain data instantly and easily with full transparency
 Minimize waste and allocate inventory using insights from real-time demand forecasts

TR
Physical Flow a’;

Digital Flow

Blockchain Network

DSL at LCSB
Blockchain for Supply Chains

* Eliminate information silos and ensure provenance with immutable records
e Access end-to-end supply chain data instantly and easily with full transparency
 Minimize waste and allocate inventory using insights from real-time demand forecasts

L
Farmer V=
. Registerltem |=

TER
Physical Flow a’; ®

EXE
15 B
=

Digital Flow

Blockchain Network —

DSL at LCSB
Blockchain for Supply Chains

* Eliminate information silos and ensure provenance with immutable records
e Access end-to-end supply chain data instantly and easily with full transparency

 Minimize waste and allocate inventory using insights from real-time demand forecasts

Producer
Mass Balance Verification

Farmer 4-: Oo
Register Item |==
Physical Flow a S @ O

Digital Flow

Blockchain Network

DSL at LCSB
Blockchain for Supply Chains

* Eliminate information silos and ensure provenance with immutable records
e Access end-to-end supply chain data instantly and easily with full transparency
 Minimize waste and allocate inventory using insights from real-time demand forecasts

Producer Distributer

Mass Balance Verification ~ Deliver Item
]

Farmer [|v= Qo 00
Register Iltem |[*=—

0
Physical Flow a S ® @ @

Digital Flow

Blockchain Network

DSL at LCSB
Blockchain for Supply Chains

* Eliminate information silos and ensure provenance with immutable records
e Access end-to-end supply chain data instantly and easily with full transparency

 Minimize waste and allocate inventory using insights from real-time demand forecasts

Producer Distributer Retailer
Mass Balance Verification Deliver Item Sell Iltem

Farmer [v= Qo -— é
Register Iltem |[*=— o

& ¥
Physical Flow a’; ‘ ‘ + a ;

Digital Flow EE‘ EI EE' EE E—ﬁ
=]

v

: ;

Blockchain Network) >

DSL at LCSB
Blockchain for Supply Chains

* Eliminate information silos and ensure provenance with immutable records
e Access end-to-end supply chain data instantly and easily with full transparency

 Minimize waste and allocate inventory using insights from real-time demand forecasts

Producer Distributer Retailer
Mass Balance Verification Deliver Item Sell Item

Farmer v— Qo —
e Register Item |+= - é p
$) >
Physical Flow a’; ® ® + =

=a 2 Consumer

Back-trace Item
i

= =ﬁ~@~ﬁ~@

Digital Flow

E3E ')'T’l-j\' EEI EIEI _é‘ii

b I

Blockchain Network

DSL at LCSB
The difference between Bitcoin and Supply

Chain?!
In Supply Chain Participants are known and ldentified

e

Commercial Fishing Vessel

-

\M% ﬁ First Buyer/Primary Processor

2.1,

A= |

(o) o) ' [
Distri taurant

DSL at LCSB
The difference between Bitcoin and Supply

Chain?!
In Supply Chain Participants are known and ldentified

.

Traditional Consensus Protocols can be used

e

Commercial Fishing Vessel

\M% é First Buyer/Primary Processor
Transshipment
a .
a 00 {1

Restaurant

. i '
-
' = . ,
~ . o ; B 2\ 2 -
2, \ - .
N T s A y
> - T £
N B _ NS x
o s | -- - -y
= o .(/
a—
A Blockchain system consists of a set of known,

identified nodes that might not fully trust each other.™-

DSL at LCSB
Permissioned Blockchain

* Run a blockchain among a set of known, identified participants

* Provides a way to secure the interactions among a group of entities that have a common goal but
which do not fully trust each other

* The ledger is distributed among all the nodes

DSL at LCSB
Permissioned Blockchain

* Run a blockchain among a set of known, identified participants

* Provides a way to secure the interactions among a group of entities that have a common goal but
which do not fully trust each other

* The ledger is distributed among all the nodes

Permissionless Permissioned
Participants Anonymous, Could be malicious Known, Identified
Consensus Mechanisms Proof of Work, Proof of Stake, ... Byzantine fault tolerance
Consensus, e.g., PBFT
* Large energy consumption e Lighter
* No finality * Faster
* 51% attack * Low energy consumption
* Enable finality
Transaction Approval time | Long (Bitcoin: 10 min or more) Short (100x msec)

DSL at LCSB | o
Consensus Protocols in Permissioned

Networks

* Types of systems: synchronous and asynchronous

* Problem statement: given NV processes (one of them is the /eader):
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

* Types of failure:
* Crash
* Malicious (or Byzantine)

* Important impossibility result:

* FLP, in asynchronous systems:
* With even one crash failure, termination is not guaranteed (no liveness)

DSL at UCSB
Bitcoin review

Client

P; P P P4 Ps

@ Validation @ Ordering @ Execution @ Append

Ps

DSL at UCSB
Bitcoin review

Client

P; P P P4 Ps

@ Validation @ Ordering @ Execution @ Append

Ps

DSL at UCSB
Bitcoin review

* Clients multicasts their requests

Client Ps P> Ps P4 Ps

e

Ps

@ Validation @ Ordering @ Execution @ Append

DSL at UCSB
Bitcoin review

* Clients multicasts their requests

* Nodes validate the transactions, put them into the blocks, and try to solve the puzzle
Client p; p; P3 Py Ps Ps

@ Validation @ Ordering @ Execution @ Append

DSL at UCSB
Bitcoin review

* Clients multicasts their requests
* Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

* The lucky node who solves the puzzle first <" P P Ps Py Ps Ps

multicasts the block W‘ 1 %I

[L]

@ Validation @ Ordering @ Execution @ Append

DSL at UCSB
Bitcoin review

* Clients multicasts their requests
* Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

e The lucky node who solves the puzzle first ~ “ie"t P P Ps Pa Ps Ps
multicasts the block W, = -
e Each node validates the transactions within I I I I I I

the block L;\QQ\J

@ Validation @ Ordering @ Execution @ Append

DSL at UCSB
Bitcoin review

* Clients multicasts their requests
Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

e The lucky node who solves the puzzle first ~ “ie"t P P2 Ps Ps Ps Ps
multicasts the block e — .

* Each node validates the transactions within I I I I I I
the block

* Transactions are deterministically executed
by every node and appended to the ledger I I J I I I

@ Validation @ Ordering @ Execution @ Append

DSL at LCSB
Order-execute Architecture

DSL at LCSB
Order-execute Architecture

DSL at LCSB
Order-execute Architecture

* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

DSL at UCSE
Order-execute Architecture

* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

* Each node then executes the transactions and updates the ledger.

R OMS

DSL at UCSE
Order-execute Architecture

* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

* Each node then executes the transactions and updates the ledger.

R MOMS

e Limitations of Order-Execute

DSL at UCSE
Order-execute Architecture

* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

* Each node then executes the transactions and updates the ledger.

KK = ” B

e Limitations of Order-Execute

* Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)

DSL at UCSE
Order-execute Architecture

* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

* Each node then executes the transactions and updates the ledger.

KK = ” B

* Limitations of Order-Execute
* Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)
* Non-deterministic code: any non-deterministic execution results in “fork” in
the distributed ledger

DSL at UCSE
Order-execute Architecture

* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

* Each node then executes the transactions and updates the ledger.

XX - . = g

e Limitations of Order-Execute

* Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)

* Non-deterministic code: any non-deterministic execution results in “fork” in
the distributed ledger

* Confidentiality of execution: all smart contracts run on all peers!

DSL at LCSB
Execute-Order-Validate Architecture

DSL at LCSB
Execute-Order-Validate Architecture

* Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

DSL at LCSB
Execute-Order-Validate Architecture

* Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

* A separate set of nodes (orderers) orders the transactions, puts them
into blocks, and multicasts them to all the nodes.

%

DSL at UCSE
Execute-Order-Validate Architecture

* Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

* A separate set of nodes (orderers) orders the transactions, puts them
into blocks, and multicasts them to all the nodes.

* Each node validates the transactions within a block and updates the
ledger

(H

DSL at LICSB
yperledger Fabric /" HYPERLEDGER

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

DSL at LICSB
yperledger Fabric 77+ HYPERLEDGER

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

OSL at UCSB === =

vperledger Fabric /7 HYPERLEDGER

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

OSL at UCSB === =

ype r] ed ger Fa b ric HYPERLEDGER

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

OSL at UCSB === =

ype rled ger Fabric /. HYPERLEDGER

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

OSL at UCSB === =

ype rled ger Fabric /. HYPERLEDGER

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

{Parallel Execution: Transactions of different applications can be executed in }
parallel

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

DSL at LCSB
Hyperledger Fabric

* Three types of Nodes: Clients, Endorsers, and Orderers

DSL at LCSB
Hyperledger Fabric

* Three types of Nodes: Clients, Endorsers, and Orderers

DSL at LCSB
Hyperledger Fabric

* Three types of Nodes: Clients, Endorsers, and Orderers
* Clients send transactions to be executed.

2803

Clients (of different applications)

DSL at UCSE
Hyperledger Fabric

* Three types of Nodes: Clients, Endorsers, and Orderers
* Clients send transactions to be executed.

* Endorsers execute transaction proposals and validate transactions.
* All endorsers maintain the blockchain ledger
* Each application has its own set of endorsers

2803

Clients (of different applications) Endorsers (of different applications)

Endors Endors
er er

DSL at LCSB
Hyperledger Fabric

* Three types of Nodes: Clients, Endorsers, and Orderers
* Clients send transactions to be executed.

* Endorsers execute transaction proposals and validate transactions.
* All endorsers maintain the blockchain ledger
* Each application has its own set of endorsers
* Orderers stablish the total order of all transactions using a consensus protocol
* Do not maintain the blockchain ledger or smart contracts
* The consensus protocol is pluggable

\ Endors Endors Endors Order Order Order
‘ er er er er er er

Clients (of different applications) Endorsers (of different applications) Orderers

DSL at LICSB
Hyperledger Fabric

DSI- at UESB Three Applications (Green, Blue, Vellow)

. Three Clients (Alice, Bob, Charlie)

H y p e rl e d ge I Fa b ' C Green and Blue have two Endorsers, Vellow
has four Endorsers

There are totally six Orderers

Charlie

DSL at LCSR
Hyperledger Fabric

Three Applications (Green, Blue, Vellow)
Three Clients (Alice, Bob, Charlie)

Green and Blue have two Endorsers, V=!low
has four Endorsers

There are totally six Orderers

Charlie

ns'- at UESB Three Applications (Green, Blue, Vellow)

Three Clients (Alice, Bob, Charlie)
H y p e rl e d ge r Fa b rl C Green and Blue have two Endorsers, V=!low
,\ has four Endorsers

There are totally six Orderers

Transactions of different
applications are executed in parallel

DSL at LCSR
Hyperledger Fabric

Three Applications (Green, Blue, Vellow)
Three Clients (Alice, Bob, Charlie)

Green and Blue have two Endorsers, V=!low
has four Endorsers

There are totally six Orderers

Charlie

Three Applications (Green, Blue, Vellow)

DSL at UCSB
. Three Clients (Alice, Bob, Charlie)
H y p e rl e d ge r Fa b rl C Green and Blue have two Endorsers, /=!low

has four Endorsers

If the results are identical, the client There are totally six Orderers

put them into a request

Charlie

DSI- at UESB Three Applications (Green, Blue, Vellow)

. Three Clients (Alice, Bob, Charlie)

H y p e rl e d ge I Fa b ' C Green and Blue have two Endorsers, Vellow
has four Endorsers

There are totally six Orderers

‘ ‘ Charlie

Three Applications (Green, Blue, Vellow)

DSL at UCSB
. Three Clients (Alice, Bob, Charlie)
H y p e rl e d ge r Fa b rl C Green and Blue have two Endorsers, /=!low

has four Endorsers
There are totally six Orderers

Charlie

ns'- at UESB Three Applications (Green, Blue, Vellow)

. Three Clients (Alice, Bob, Charlie)

H y p e rl e d ge I Fa b ' C Green and Blue have two Endorsers, Vellow
has four Endorsers

There are totally six Orderers

Charlie

A block might contains multiple transactions from the same application

DSI- at UESB Three Applications (Green, Blue, Vellow)

. Three Clients (Alice, Bob, Charlie)

H y p e rl e d ge I Fa b ' C Green and Blue have two Endorsers, Vellow
has four Endorsers

There are totally six Orderers

Charlie

DSL at LUCSB

Three Applications (Green, Blue, Vellow)

. Three Clients (Alice, Bob, Charlie)
H y p e rl e d ge r Fa b rl C Green and Blue have two Endorsers, /=!low
(v

has four Endorsers
There are totally six Orderers

(v (v)
® %!!%
1 [1 17

Charlle

In the validation phase, Endorsers check: (1) validity of transactions, (2) read-write conflicts

DSI- at UESB Three Applications (Green, Blue, Vellow)

. Three Clients (Alice, Bob, Charlie)

H y p e rl e d ge I Fa b ' C Green and Blue have two Endorsers, Vellow
has four Endorsers

There are totally six Orderers

Charlie

DSL at LCSR
Hyperledger Fabric

‘ Charlie

DSL at UCSB)
Writes record A
Hyperledger Fabric B Roads record A

- Readsrecord A
What if transactions are conflicting?

transactions access the same record and

one of them is a write operation % ﬁ

Charlie

DSL at LUCSB

.~ Writes record A

Hyperledger Fabric B Reads record A

- Readsrecord A

What if transactions are conflicting?

transactions access the same record and
one of them is a write operation

ALce

Charhe

L1 [

DSL at UCSB)
Writes record A
Hyperledger Fabric B Roads record A

()

- Readsrecord A
What if transactions are conflicting?

transactions access the same record and
one of them is a write operation

‘I') v
oo

Q

L1 [

DSL at UCSB)
Writes record A
Hyperledger Fabric B Roads record A

- Readsrecord A

transactions access the same record and
one of them is a write operation

(v I What if transactions are conflicting?

DSL at UCSB)
Writes record A
Hyperledger Fabric B Roads record A

- Readsrecord A
What if transactions are conflicting?

transactions access the same record and

one of them is a write operation % %

Charlie

DSL at LCSB
Dependency Graph

* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

DSL at LCSB
Dependency Graph

* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1 T Ts || T4l T5 || Ty

DSL at LCSB
Dependency Graph

* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1 T Ts || T4l T5 || Ty

DSL at LCSB
Dependency Graph

* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T, A EA A RN R
T2
Tl T5
T3
T4
T5

DSL at LCSB
Dependency Graph

* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T, T | Ts || Ta || T5 || To
T2
T, b that is by T,
Tl T5
T3 v
T4
T4
T5

DSL at LCSB
Dependency Graph

* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T, T Ts || Tal| T || T>
T2
T, b that is by T,

Tl T5

T, | T e that is by T
T4 T3

T4

T5

DSL at LCSB
Dependency Graph

* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T, T Ts || Tal| T || T>
T2
T, b that is by T,
Tl T5
T, | _I/\ T e that is by T
T LESJRE: T, d that is by T
T4
T5

DSL at LICSE
Order-Parallel Execute (OXIl) Architecture

DSL at LICSE
Order-Parallel Execute (OXIl) Architecture

* A separate set of nodes (orderers) orders the transactions, puts them
into blocks, generates a dependency graph for the block, and multicasts
it to all the nodes.

DSL at LICSE
Order-Parallel Execute (OXIl) Architecture

* A separate set of nodes (orderers) orders the transactions, puts them
into blocks, generates a dependency graph for the block, and multicasts
it to all the nodes.

e Each transaction (of an application) is then validated and executed by a subset
of nodes (executors of the application) following the dependency graph

DSL at LCSB
Order-Parallel Execute (OXIl) Architecture

* A separate set of nodes (orderers) orders the transactions, puts them
into blocks, generates a dependency graph for the block, and multicasts
it to all the nodes.

e Each transaction (of an application) is then validated and executed by a subset
of nodes (executors of the application) following the dependency graph

* The nodes multicast the results of execution and append the block

DSL at UCSB
(o

ParBlockchain

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in

A ‘l
(Jm \l
(i \l

Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

DSL at LICSB i

ParBlockchain I

[Order-Execute Architecture: Transactions are first ordered, and then executed }

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

A ‘l
(Jm \l
(i \l

Dol at UCSE |||
|

ParBlockchain I

A ‘l
|||) g
(i ‘l

[Order-Execute Architecture: Transactions are first ordered, and then executed J

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

|

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

DSL at UCSB |
l||| ||| mjy g |

ParBlockchain - o

[Order-Execute Architecture: Transactions are first ordered, and then executed J

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

Dol at UCSE

ParBlockchain "

[Order-Execute Architecture: Transactions are first ordered, and then executed }

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Pluggable architecture, Confidential transaction, non-deterministic execution
similar to Hyperledger Fabric, Parblockchain has these three properties

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in

Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

DSL at LCSB o (][
(i = o (I

ParBlockchain

[Order-Execute Architecture: Transactions are first ordered, and then executed }

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Pluggable architecture, Confidential transaction, non-deterministic execution
similar to Hyperledger Fabric, Parblockchain has these three properties

Non-deterministic Execution: inconsistent execution results can be detected in
the last phase (results in decreasing the performance)

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

DSL at LICSB
ParBlockchain

Clients

Orderes Executors

o ©
o oY)
© ©
KVS 3 51| 3| KvS

Ledger
OF
w N
)
(o)}
Ledger

KVS KVS

Ledger

KVS e, e,

k / \ Ay A

@Application A1|:| Application A, [x] Application A,

KVS

Each application has a set of Executors
Each Executor stores a copy of ledger and Data

DSL at LICSB

ParBlockchain

Clients

Ts

E2E2E2(= (0

] Read = {a}
=| Write = {a,b}

Read = {f
V\(/era;te ={{<}JI}

Read = {f}

A Write = {e}

Read = {b
V\?ﬁte ={{c}}

Read = {e}
Write = {d}

Each transaction of an application
include records to be read and written

Orderes

Executors
o A A o \
e : (3
e ©
KVS 3 e:5| 8| KVS

Ledger
OF
w N
)
(o)}
Ledger

KVS KVS

Ledger

KVS

KVS

@Application A1|:| Application A, |:| Application A,

DSL at LICSB

ParBlockchain

Clients

a
2
&
2
&

] Read = {a}
=| Write = {a,b}

Read = {f}
Write = {d}

Read = {f}

1 Write = {e}

Read = {b
V\?r?te ={{c}}

Read =
Witte =

Orderes
K 0, Pre-prepare Prepare Commit \
0,
O3
04

N /

The orderers order transactions using
a consensus protocol (e.g. PBFT)

Executors

1 A A, [+ \

arE . (3

o ©
KVS 3 ex| 3| KVS
a:JD A, As g?o
o e
KVS KVS

o)

[oT0] [oT0)

o ©
KVS | 8| €5 €1 | 8| KVS

@Application A1|:| Application A, [x] Application A,

DSL at LICSB

ParBlockchain

Clients

a
2
&
2
&

Read
Write

Read

1 Write

Read
Write

Read
Write

1 Read = {a}

.EE erte = {a;b} KO Pre-prepare Prepare Commit \

= {f}
= {d}

= {f}
= {e}

= {b}
= {c}

—

Orderes

Executors

1 A A, [+ \

arE . (3

o ©
KVS 3 ex| 3| KVS
a:JD A, As g?o
o e
KVS KVS

o)

[oT0] [oT0)

o ©
KVS | 8| €5 €1 | 8| KVS

Each orderer generates a dependency graph
for the block and multicasts it to all Executors

@Application A1|:| Application A, [x] Application A,

DSL at LICSB
ParBlockchain

Clients
Q jik \I}\?ad={a}b Orderes Executors
b ite =1{a, - = o
1 rite {a } Kol Pre-prepare Prepare Commit \ K 8’0 A2 A3 g_,o \
© ©
Read = {f} KVS | 3| €4 ex| 3| KVS
, T, Write = {d} 0,
i Read = {f} S| A, A, 5
g T Write=(e) | O3 g NE
T Read = {b} O4
4 | Write = {c} R KVS | — — KVS
Tl T T i & &
T Rea]d={eJ - - Kvs | 8 e, e, 2| kvs
5 | Write = {d} K k A A J
1 1

@Application A1|:| Application A, [x] Application A,

Executors of each application execute the
corresponding transactions following the
dependency graph and multicast the results

DSL at LCSB
Optimistic vs. Pessimistic Execution

Two ways to look at the problem!

[Supporting non-deterministic execution } [Supporting High Contention Workloads }

DSL at LCSB
Optimistic vs. Pessimistic Execution

Two ways to look at the problem!

[Supporting non-deterministic execution } [Supporting High Contention Workloads }

DSL at LCSB
Optimistic vs. Pessimistic Execution

Two ways to look at the problem!

[Supporting non-deterministic execution } [Supporting High Contention Workloads }

DSL at LCSB
Blockchain Scalability

* Scalability is one of the main roadblocks to business adoption of blockchains

DSL at LCSB
Blockchain Scalability

* Scalability is one of the main roadblocks to business adoption of blockchains

* Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks

DSL at LCSB
Blockchain Scalability

* Scalability is one of the main roadblocks to business adoption of blockchains
* Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks

2) On-chain (layer one): increase the throughput of the main chain
* \ertical techniques: more power is added to each node to perform more tasks
* Horizontal techniques: increase the number of nodes in the network

DSL at LCSB
Blockchain Scalability

* Scalability is one of the main roadblocks to business adoption of blockchains
* Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks

2) On-chain (layer one): increase the throughput of the main chain
* \ertical techniques: more power is added to each node to perform more tasks
* Horizontal techniques: increase the number of nodes in the network

7
Sharding (as a horizontal technique): Partitioning the data into F =
multiple shards that are maintained by different subsets of nodes // \

DSL at LCSB
Sharding Blockchains

DSL at LCSB
Sharding Blockchains

 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)

@ @ @ @ @ Ng N1o Nqp Ny N3 Nyg Nyg

Cluster p, Cluster p, Cluster p; Cluster p,

DSL at LCSB
Sharding Blockchains

 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)
* How to form clusters such that each cluster includes at most f faulty nodes?

* Assign nodes to clusters in a random manner (uniform distribution): works if fis very large
e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

@ @ @ @ @ Ng N1o Nqp Ny N3 Nyg Nyg

Cluster p, Cluster p, Cluster p; Cluster p,

DSL at LCSB
Sharding Blockchains

 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)

* How to form clusters such that each cluster includes at most f faulty nodes?
* Assign nodes to clusters in a random manner (uniform distribution): works if fis very large
e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

e Shard the data
e Shard the application data and assign shards to clusters
* Each data shard is replicated across nodes of a cluster
» Different clusters process the transactions of their corresponding shard in parallel

n Ng Nig Nyq Ny Ny3 N4 Nys Nie

@) @) @ @) d, d; d; d; @) @) (@) A

Cluster p, Cluster p, Cluster p; Cluster p,

DSL at LCSB
Sharding Blockchains

 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)

* How to form clusters such that each cluster includes at most f faulty nodes?
* Assign nodes to clusters in a random manner (uniform distribution): works if fis very large
e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

e Shard the data
* Shard the application data and assign shards to clusters
* Each data shard is replicated across nodes of a cluster
» Different clusters process the transactions of their corresponding shard in parallel

* The Blockchain ledger is also sharded

HH

@ & & &

OO
%@% o T T N @ @& @ G

Cluster p, Cluster p, Cluster p; Cluster p,

DSL at LCSB
Sharding Blockchains

 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)

* How to form clusters such that each cluster includes at most f faulty nodes?
* Assign nodes to clusters in a random manner (uniform distribution): works if fis very large
e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

e Shard the data
* Shard the application data and assign shards to clusters
* Each data shard is replicated across nodes of a cluster
» Different clusters process the transactions of their corresponding shard in parallel
* The Blockchain ledger is also sharded

* Cross-Shard transactions
* Need the participant of all (and only) involved clusters

i) E@ §o) 50| E0 B Bo) Ew) En Eew Eou Eow| o B Bo Eo
(@] @ @) @) @) @) @) (&) @) @) @) @) @) (@] @) G@J

Cluster p, Cluster p, Cluster p; Cluster p,

DSL at LCSB
SharPer: Sharding Permissioned Blockchains

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

DSL at LCSB
SharPer: Sharding Permissioned Blockchains

* The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

DSL at LCSB
SharPer: Sharding Permissioned Blockchains

* The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

* Each block includes a single transaction

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

DSL at LCSB
SharPer: Sharding Permissioned Blockchains

* The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

* Each block includes a single transaction

* The total order is captured by chaining the transactions (blocks) together
* Each transaction includes the cryptographic hash of the previous transaction

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

DSL at LCSB
SharPer: Sharding Permissioned Blockchains

* The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

* Each block includes a single transaction

* The total order is captured by chaining the transactions (blocks) together
* Each transaction includes the cryptographic hash of the previous transaction

* Cross-chain transactions include the hash of the previous transactions of a//
involved shards.

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

DSL at LCSB
SharPer: Sharding Permissioned Blockchains

* The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

* Each block includes a single transaction

* The total order is captured by chaining the transactions (blocks) together
* Each transaction includes the cryptographic hash of the previous transaction

* Cross-chain transactions include the hash of the previous transactions of a//
involved shards.

* The entire blockchain ledger is not maintained by any node

* Each node only maintains its own view of the blockchain ledger
* including the transactions that access the data shard of the cluster

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

DSL at LCSB
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

DSL at LCSB
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

DSL at UCSE
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

—t —t
Y
) Y
—t
()
—t+
)
o
—t+
DS
o
> <g |
B I
—+
w
o

)
[EEN
)
N
)
w

DSL at LCSB
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

e Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple
hash pointers

t32 42

t12 22 t12 22 t32 42 t32 42
v . 2
t41 t11 t71 t31 t41
t40 Q g t30 t40
A A A A
Py P, P3 P,

DSL at UCSE
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

e Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple
hash pointers

ta3 ty3 Q gsl ty3 i3
04 to20 tooo tonl |4
v v
t3; 9% t t), tsq tyq
ty i iﬂl iﬂl ty i
A A A A
P, P, P P,

DSL at UCSE
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

* Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple

hash pointers

{94344 |t24‘34‘44

2

t12*22 t12*22 t32 42
t11 t71 t31

>eg
My
g—l'

)
[EEN
)
N
)
w

DSL at UCSE
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

* Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple

td s

hash pointers

{94344 |t24‘34‘44

t t tas
t12 22 tlZ 22 t32 42
2 2
t11 t71 t31
28 .
v
A A A
P P, P3

DSL at UCSE
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

* Cross-shard transactions with non-
overlapping clusters are processed in parallel

15,26,36,4 |E15‘26‘36‘4d |E15‘26‘36‘44

15,26,36,46]

e A cross-shard transaction includes multiple tss tyc t tsc tyc
. Zﬂschluzc'z:er:zer:ight be involved in a cross-shard b4 3i;| f2430.04 Iﬁﬁﬂ Iﬁf’ﬁﬂ
transaction tas t,, t tas t,,
t32 42 t12*22 t32 42 t32 42
L3, Uy L5¥ L3, L%
£ Lo ;ﬂl LEN Lo

DSL at UCSE
SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

 Intra-shard transactions of different clusters

are processed in parallel t37 ty7 Lz
e Cross-shard transactions with non- U b |515 26 364|
overlapping clusters are processed in parallel
* Across-shard transaction includes multiple t tsc tyc
hash pointers
* All clusters might be involved in a cross-shard Y4300 ﬁﬁﬂ Iﬁ..?&.ﬂ
transaction t t, t,
t222 L4 L3242
L
5% L3 Uy

DSL at LCSB
Consensus in SharPer

DSL at LCSB
Consensus in SharPer

* Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT

Request Pre-Prepare Prepare , Commit . Reply
replica O

(Primary)

replica 1 \\
replica 2 \ \ \
replica 3 =——é

DSL at LCSB
Consensus in SharPer

* Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT

* |f nodes follow crash failure model, use crash fault-tolerant protocol, e.g., Paxos

Request Pre-Prepare Prepare , Commit . Reply

l Request , Accept , Accepted gg?l;niﬂ
replica O
(Primary) .
replica 1 replica
p \\ (Primary) ES ;
s \ \ N replica 1 \ \
replica 3 ——é _——

DSL at LCSB
Consensus in SharPer

* Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT
* |f nodes follow crash failure model, use crash fault-tolerant protocol, e.g., Paxos

* Cross-Shard Consensus: needs the participation of all the involved clusters
* |In each step 2f+1 nodes of every involved cluster must participate

Request Pre-Prepare Prepare , Commit . Reply

l Request , Accept , Accepted gg?l;niﬂ
replica O
(Primary)
replica 1 replica 0
\\ (Primary)

replica 1

replica2 \ \ N
replica 3 —=¢ replica 2 =

DSL at LCSB
Cross-Shard Consensus in SharPer

Non-overlapping cross-shard transactions can be processed in parallel c,C,

P;

P,

P3

P4

DSL at LCSB
Cross-Shard Consensus in SharPer

Non-overlapping cross-shard transactions can be processed in parallel c,C,
Clients (c, and ¢,) send requests to the (pre-elected) primary nodes l&q"es"

P4

DSL at LCSB
Cross-Shard Consensus in SharPer

Non-overlapping cross-shard transactions can be processed in parallel c,C, P, P, ps P,

Clients (c, and ¢,) send requests to the (pre-elected) primary nodes l&q“e“’
Primary nodes multicast messages including the hash of their

previous transactions to every node of all involved partitions {m‘ m‘

DSL at LCSB
Cross-Shard Consensus in SharPer

Non-overlapping cross-shard transactions can be processed in parallel c,C, P, P, ps P,
Clients (c, and ¢,) send requests to the (pre-elected) primary nodes l&q“es" ‘

Primary nodes multicast messages including the hash of their g

previous transactions to every node of all involved partitions

Each node multicasts message including the hash of its previous

transaction to every node of all involved partitions

DSL at LCSB
Cross-Shard Consensus in SharPer

Non-overlapping cross-shard transactions can be processed in parallel c,C, P, P, ps P,

Clients (c, and ¢,) send requests to the (pre-elected) primary nodes l&q“e“’
Primary nodes multicast messages including the hash of their

previous transactions to every node of all involved partitions
Each node multicasts message including the hash of its previous

transaction to every node of all involved partitions
Upon receiving 2f+1 matching message from each cluster, each

node collects hashes of all clusters and multicasts commit message to
every node of all involved partitions

DSL at LCSB
Cross-Shard Consensus in SharPer

Non-overlapping cross-shard transactions can be processed in parallel c,C, P, P, P, P,

Clients (c, and ¢,) send requests to the (pre-elected) primary nodes w
Primary nodes multicast messages including the hash of their

previous transactions to every node of all involved partitions

Each node multicasts message including the hash of its previous
transaction to every node of all involved partitions

Upon receiving 2f+1 matching message from each cluster, each
node collects hashes of all clusters and multicasts commit message to

every node of all involved partitions
Upon receiving 2f+1 matching commit message from each cluster, each

node executes the transaction and appends it to the ledger

DSL at UCSE
Collaborative Workflow: Supply Chain

Management

* Different parties (applications) need to communicate across organizations to provide services
 The communication follows Service Level Agreements (agreed upon by all participants)

 They do not trust each other
* The blockchain system should support both cross-application and internal transactions

* Internal data of each party is confidential

bed
Middleman

Bulk Buyer Carrier Supplier

DSL at UCSE
Collaborative Workflow: Supply Chain

Management

* Different parties (applications) need to communicate across organizations to provide services
 The communication follows Service Level Agreements (agreed upon by all participants)

 They do not trust each other
* The blockchain system should support both cross-application and internal transactions

* Internal data of each party is confidential

Place Order

Bulk Buyer Carrier Supplier

DSL at UCSE
Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
* Similar to Hyperledger Fabric
* Smart contracts are confidential
* Transactions data and blockchain ledger are replicated on every application

DSL at UCSE
Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
* Similar to Hyperledger Fabric
* Smart contracts are confidential
* Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

DSL at UCSE
Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
* Similar to Hyperledger Fabric
* Smart contracts are confidential
* Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

Second Solution: Deploy each application on a separate blockchain system
* Use another blockchain system for the cross-application transactions

DSL at UCSE
Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
* Similar to Hyperledger Fabric
* Smart contracts are confidential
* Transactions data and blockchain ledger are replicated on every application

‘Confidentiality issue ‘

Second Solution: Deploy each application on a separate blockchain system
* Use another blockchain system for the cross-application transactions

‘ Data Integrity issue ‘

DSL at UCSE
Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
* Similar to Hyperledger Fabric
* Smart contracts are confidential
* Transactions data and blockchain ledger are replicated on every application

‘Confidentiality issue ‘

Second Solution: Deploy each application on a separate blockchain system
* Use another blockchain system for the cross-application transactions

‘ Data Integrity issue ‘

Third Solution: Deploy each application on a separate blockchain system
e Use cross-chain operation

DSL at UCSE
Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
* Similar to Hyperledger Fabric
* Smart contracts are confidential
* Transactions data and blockchain ledger are replicated on every application

‘Confidentiality issue ‘

Second Solution: Deploy each application on a separate blockchain system
* Use another blockchain system for the cross-application transactions

‘ Data Integrity issue ‘

Third Solution: Deploy each application on a separate blockchain system
e Use cross-chain operation

‘ Performance issue ‘

DSL at LCSB
CAPER: A Cross-Application Permissioned Blockchain

* Distributed applications collaborate with each other following SLAs

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

DSL at LCSB
CAPER: A Cross-Application Permissioned Blockchain

* Distributed applications collaborate with each other following SLAs

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

DSL at LCSB
CAPER: A Cross-Application Permissioned Blockchain

* Distributed applications collaborate with each other following SLAs

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

DSL at LCSB
CAPER: A Cross-Application Permissioned Blockchain

* Distributed applications collaborate with each other following SLAs
* Two types of transactions: internal and cross-application

e Cross-application transactions are visible to all applications

* Internal transactions of each application are confidential

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

DSL at LCSB
CAPER: A Cross-Application Permissioned Blockchain

* Distributed applications collaborate with each other following SLAs
* Two types of transactions: internal and cross-application

e Cross-application transactions are visible to all applications

* Internal transactions of each application are confidential

* The blockchain ledger is formed as a directed acyclic graph

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

DSL at LCSB
CAPER: A Cross-Application Permissioned Blockchain

* Distributed applications collaborate with each other following SLAs
* Two types of transactions: internal and cross-application

e Cross-application transactions are visible to all applications

* Internal transactions of each application are confidential

* The blockchain ledger is formed as a directed acyclic graph

* Each application maintains only its own view of the ledger
* including its internal and all cross-application transactions.

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

DSL at LCSB
The Blockchain Ledger of CAPER

A A A A A
The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at LCSB
The Blockchain Ledger of CAPER

Each application has its own internal transactions

tll t21 t31 t41 t%l t21 t31 t41
T~ A 2 2 A

The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at LCSB
The Blockchain Ledger of CAPER

Cross-application transactions are maintained by every application

)2,1 Tlf,l— t12,1 t12,1 t12,1
tll\ t21 t31 t41 t%l t21 t31 t41

The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at LCSB
The Blockchain Ledger of CAPER

|
tll t21 t31 t41 tll tZl t31 t41
\ v

The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at UCSE
The Blockchain Ledger of CAPER

t23,2 3, t2*3,,2 3, 3,
tﬁ\\l/t%z ts, t%3 t,, ts, 1 1
[SPR 1 T12,1: t1h1 t1h1 5P
vl B t t £ t t t
ty, 21 31 41 11 21 31 41
T~ v v 4

The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at UCSE
The Blockchain Ledger of CAPER

ty, ty,

[‘T=, ¥

t23,2 tZE,Z t23,2

ti3 t5, l

; -
Tlf,l— t1h1 t1h1

Ty ti, t, T
4 v

The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at UCSE
The Blockchain Ledger of CAPER

345 345 345
t14 ty, l
¥
t23 2 tZE,Z A t23,2
ti3 t5, l
; -
Tlf,l— t1h1 t1h1
Ty ti, ty, T
4 v

The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at UCSE
The Blockchain Ledger of CAPER

42 tys ty,
‘ it34,3 ta s
t%4
ty3, = {3,
L 4
t5, l
= t1h1 5P
v
tll\ t%l t3; Ty t%l ty,
~ 1 L 1 1

The Blockchain Ledger Application 1 Application 2 Application3 Application 4

DSL at LCSB
Confidentiality of Cross-Application Transactions

Dol at UCSE

Confidentiality of Cross-Application Transactions

* |n CAPER:
* Internal transactions read both private and public data and write on private data
* Cross-application transactions read/write only public data

Dol at UCSE

Confidentiality of Cross-Application Transactions

* |n CAPER:
* Internal transactions read both private and public data and write on private data

* Cross-application transactions read/write only public data
* What if a cross-application transaction read/write private data?

* How to validate private transactions without revealing any information?

Dol at UCSE

Confidentiality of Cross-Application Transactions

* |n CAPER:
* Internal transactions read both private and public data and write on private data

* Cross-application transactions read/write only public data
* What if a cross-application transaction read/write private data?
* How to validate private transactions without revealing any information?

* Cryptography techniques are needed!

DSL at LICSB

Confidentiality of Cross-Application Transactions

* |n CAPER:
* Internal transactions read both private and public data and write on private data
* Cross-application transactions read/write only public data

* What if a cross-application transaction read/write private data?
* How to validate private transactions without revealing any information?

e Cryptography techniques are needed!
* Quorum uses zero knowledge proof
(<=7 * Fabric defines Private data collections

~
Transaction verification in Bitcoin Transaction verification in Zcash
A 4 . B e . N e . N
Transaction Transaction Transaction {«)\ Transaction
2 BTC —{t+Input || Output-— 2 BTC Input || Output 1 BTC ? Input Output ? Input Output ?
0 plice 6 e 4 Boly S Bob % Bob (eroimoviedge | @ et LLUJ/ oo knoviedge || [Do
R R \ Proof of validity | required to ' Proof of validity ;s E :tlt::iltj 5
OutputTr— 1BTC e 11 | oot |
*% Charlie el t ek |

_ - _ — -/ _ "

DSL at LUCSB

ol THELINUX FOUNDATION

A
\

/"> HYPERLEDGER

NS ~J

Case Study on
Change Healthcare’s
use of Hyperledger
Fabric

Change Healthcare turned to Hyperledger

Fabric to begin blockchain-enabling its
Intelligent Healthcare Network, which now
processes 50 million transactions a day.

LEARN MORE IN THE BLOG

READ THE CASE STUDY

Members

Projects Community Resources News & Events

Join Hyperledger as
a Member

Hyperledger Member Summit is coming
up July 30-31in Tokyo, Japan. Now is a
great time to consider joining Hyperledger
as a member so you can attend this
annual event to discuss the current and
future state of Hyperledger technologies.

LEARN MORE

https://www.hyperledger.or

Blog About v f

Hyperledger
Transact Now
Available

Announcing our latest project to jointhe
Hyperledger Greenhouse. Hyperledger
Transact provides a platform-agnostic
library that handles the execution of smart
contracts, including all aspects of
scheduling, transaction dispatch, and state
management.

LEARN MORE IN THE BLOG

START CONTRIBUTING

https://www.hyperledger.org/

’ HYPERLEDGER Members Projects Community Resources News&Events Blog About vy f in O

The Hyperledger Greenhouse

Business Blockchain Frameworks & Tools Hosted by Hyperledger

THE

L LINUX

FOUNDATION

OLF I
NETWORKING GRASELINUX

no@de cLoUD NATIVE

@ HYPERLEDGER

Community Stewardship and Technical, Legal, Marketing, Organizational Infrastructure

Frameworks

4. HYPERLEDGER ~™ . HYPERLEDGER HYPERLEDGER HYPERLEDGER HYPERLEDGER M HYPERLEDGER

BURROW % FABRIC & | GRID INDY IROHA & SAWTOOTH

Permissionable sman Permissioned WebAssembly-based project for Decentralized Mobile application Permissioned & permissionless
contract machine (EVM) with channel support building supply chain sclutions identity focus support; EVM transaction family

HYPERLEDGER HYPERLEDGER HYPERLEDGER HYPERLEDGER == —» HYPERLEDGER * HYPERLEDGER HYPERLEDGER * HYPERLEDGER
" ARIES @’)CAUPER f CELLO ©& composeR W EXPLORER ==QUILT ATRANSACT M URSA

Infrastructure for Bieckchaln As-a-service Mcdel and View and Ledger Advanced transaction Shared
peer-to-peer framework benchmark deployment build blockchain explore data on Interoperability execution and state Cryptographic
interactions platferm networks the blockchain management Library

Dol at UCSE

From Cryptocurrencies to
Global Asset Management

Victor Zakhary, Mohammad Amiri, Sujaya Maiyya, Divyakant Agrawal,
Amr El Abbadi

DSL at LCSB
From Cryptocurrencies to Global Assets

DSL at LCSB
From Cryptocurrencies to Global Assets

* So far, Mining Node:

DSL at LCSB
From Cryptocurrencies to Global Assets

* So far, Mining Node:
* Store cryptocurrency units
* Store ownership
e Execute Transactions (transfer ownership of currency units)

DSL at LCSB
From Cryptocurrencies to Global Assets

* So far, Mining Node:
* Store cryptocurrency units
* Store ownership
e Execute Transactions (transfer ownership of currency units)

* Mining Nodes = The new public cloud

DSL at LCSB
From Cryptocurrencies to Global Assets

* So far, Mining Node:
* Store cryptocurrency units
* Store ownership
e Execute Transactions (transfer ownership of currency units)

* Mining Nodes = The new public cloud
* Store:

DSL at LCSB
From Cryptocurrencies to Global Assets

* So far, Mining Node:
* Store cryptocurrency units
* Store ownership
e Execute Transactions (transfer ownership of currency units)

* Mining Nodes = The new public cloud

* Store:
* General Assets (e.g., cars, houses, etc)

DSL at LCSB
From Cryptocurrencies to Global Assets

* So far, Mining Node:
* Store cryptocurrency units
* Store ownership
e Execute Transactions (transfer ownership of currency units)

* Mining Nodes = The new public cloud

* Store:
* General Assets (e.g., cars, houses, etc)

* Transact on:

DSL at LCSB
From Cryptocurrencies to Global Assets

* So far, Mining Node:
* Store cryptocurrency units
* Store ownership
e Execute Transactions (transfer ownership of currency units)

* Mining Nodes = The new public cloud

* Store:
* General Assets (e.g., cars, houses, etc)

* Transact on:
* General Assets (e.g., buy a house, rent a car etc)

DSL at LCSB
Smart Contracts

DSL at LCSB
Smart Contracts

DSL at LCSB
Smart Contracts

* Alice registers her car

DSL at LCSB
Smart Contracts

* Alice registers her car
* Make: Honda
* Model: Civic
* Year: ..
* VIN: ...

DSL at LCSB
Smart Contracts

* Alice registers her car
* Make: Honda
* Model: Civic
* Year: ..
* VIN: ...
* Owner: Alice
* Price: x ethers

DSL at LCSB
Smart Contracts

* Alice registers her car
* Make: Honda
* Model: Civic
* Year: ..
* VIN: ...
* Owner: Alice
* Price: x ethers

Buy () {
// transfer ownership code

}

DSL at LCSB
Smart Contracts

DSL at LCSB
Smart Contracts

DSL at LCSB
Smart Contracts

2
@ 1.8 BTC

DSL at LCSB
Smart Contracts

2
@ 1.8 BTC

DSL at LICSB

Smart Contracts

% 1.8 BTC

130

DSL at LICSB
Smart Contracts

E)‘ 1.8 BTC

) £ 188TC

A1

130

DSL at LCSB
Challenges

e Asset Authenticity
* Double Spending

* Deploy two smart contracts for the same car
* On the same blockchain or different blockchains

* Legality
* Implementing taxation laws

DSL at LCSB
Permissioned and Permissionless Unite! 0,'
‘A

* Permissioned Blockchains
* Requires trust

e Trust can be distributed among several organizations
* Banks
* Governments
* NGOs

DSL at LCSB
Global Asset Management

DSL at UCSE
Global Asset Management

DSL at UCSE
Global Asset Management

‘8°878
[DMV SB
“‘ Q“
ax

Permissioned Blockchain Permissioned Blockchain

DSL at UCSE
Global Asset Management

Permissioned Blockchain Permissioned Blockchain

Permissionless Blockchain

DSL at LCSB
Global Asset Management

Asset
Registrati

Asset
Rel;istration

on Ly DMV SB DMV SD

Permissioned Blockchain Permissioned Blockchain

Permissionless Blockchain

DSL at LCSB
Global Asset Management

Asset
Rel;istration

Asset
Registrati

on Ly DMV SB DMV SD

Permissioned Blockchain Permissioned Blockchain
tract Smart Contrac

i B & m N & n _» s

Permissionless Blockchain

Smart Co
Deployme

DSL at LCSB
Global Asset Management

Asset
Rel;istration

Asset
Registrati

on Ly DMV SB DMV SD

Permissioned Blockchain Permissioned Blockchain
tract Smart Contrac

i B & m N & n _» s

Permissionless Blockchain

*
7y Py

Asset Trading ‘

Smart Co
Deployme

DSL at LCSB
Challenges Revisited

DSL at LCSB
Challenges Revisited

e Asset Authenticity

DSL at UCSE
Challenges Revisited

e Asset Authenticity
e Authenticated by the permissioned blockchain

DSL at UCSE
Challenges Revisited

e Asset Authenticity
e Authenticated by the permissioned blockchain

* Double Spending

DSL at UCSE
Challenges Revisited

e Asset Authenticity
* Authenticated by the permissioned blockchain

* Double Spending

* Permissioned blockchain:
* Allows the deployment of one contract per asset at a time
* Enables moving the asset from one Permissionless blockchain to another

DSL at UCSE
Challenges Revisited

e Asset Authenticity
* Authenticated by the permissioned blockchain

* Double Spending

* Permissioned blockchain:
* Allows the deployment of one contract per asset at a time
* Enables moving the asset from one Permissionless blockchain to another

* Legality

DSL at UCSE
Challenges Revisited

e Asset Authenticity
* Authenticated by the permissioned blockchain

* Double Spending

* Permissioned blockchain:
* Allows the deployment of one contract per asset at a time
* Enables moving the asset from one Permissionless blockchain to another

* Legality

e Encode the Taxation law in the smart contract code

DSL at LCSB
Open research questions

* Scalability
* |dentity theft
* Flexibility of asset marketing

DSL at LCSB
Blockchain: Panacea for all our data problems?

e Resource cost: e Extreme distribution:

* Proof-of-work consumes resources at * is it really worth it?
the planetary scale

* Extreme redundancy:

* Mythical notion of democratization: .
* is it really necessary?

* Handful of miners control the progress
of Bitcoin blockchain ,
* Social consequences:
* Are we comfortable if this technology

 False notion of security: is used for dark causes?

* An Individual vulnerable to the
security of his/her key

