
Database and Distributed Computing
Foundations of Blockchains

Sujaya Maiyya, Victor Zakhary, Mohammad Javad Amiri, Divyakant
Agrawal, Amr El Abbadi

{sujaya-maiyya, victorzakhary, amiri, agrawal, amr}@cs.ucsb.edu

Traditional Banking Systems

Traditional Banking Systems

Traditional Banking Systems

Traditional Banking Systems

Traditional Banking Systems

Traditional Banking Systems

Traditional Banking Systems

Traditional Banking Systems

• From Database and Distributed Computing Perspective

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)
• Typically backed by a transactions log

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)
• Typically backed by a transactions log

• Log is persistent

Traditional Banking Systems

• From Database and Distributed Computing Perspective

• Identities and Signatures
• You are your signature [ID, username and password]

• Ledger
• The balance of each identity (saved in a DB)

• Transactions
• Move money from one identity to another
• Concurrency control to serialize transactions (prevent double spending)
• Typically backed by a transactions log

• Log is persistent
• Log is immutable and tamper-free (end-users trust this)

Bitcoin

Bitcoin

Bitcoin

Bitcoin: A Peer-to-Peer Electronic Cash System

• From Database and Distributed Computing Perspective

• Identities and Signatures
• Public/Private key pair

• Ledger
• The balance of each identity (saved in the blockchain)

• Transactions
• Move bitcoins from one identity to another
• Concurrency control to serialize transactions (Mining and PoW)
• Typically backed by a transactions log (blockchain)

• Log is persistent (replicated across the network nodes)
• Log is immutable and tamper-free (PoW and Hash pointers)

Digital Signatures

Digital Signatures

• Pk, Sk Keygen(keysize)
Pk Sk

Digital Signatures

• Pk, Sk Keygen(keysize)

• Your Pk is your identity (username, e-mail address)
Pk Sk

Digital Signatures

• Pk, Sk Keygen(keysize)

• Your Pk is your identity (username, e-mail address)

• Your Sk is your signature (password)

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private
Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

Digital Signatures

• Pk is made public and used to verify documents signed by Sk

• Sk is private

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Pk Sk

Used for Authentication not privacy

Digital Signatures

• Unique to the signed document

• Mathematically hard to forge

• Mathematically easy to verify

Document Sk

Sign()

Signature

Document Pk Signature

Verify()

Valid Invalid

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

Verify()

Digital Signatures and Bitcoin

• A bitcoin is a chain of digital signatures
• Coin owners digitally sign their coins to transfer them to other recipients

• Alice wants to move a bitcoin to Bob

Pk-Bob
Sk-Alice

Sign()

SignatureAlice-Bob

Pk-Bob Pk-Alice SignatureAlice-Bob

Verify()

Valid

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

SignatureAlice-Bob

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

Sign()

SignatureAlice-Bob

Digital Signatures and Bitcoin

• Now what if Bob wants to move his coins to Diana

SignatureAlice-Bob Pk-Diana Sk-Bob

Sign()

SignatureBob-Diana

SignatureAlice-Bob

A Bitcoin Big Picture

A Bitcoin Big Picture

Signature…-Alice

A Bitcoin Big Picture

Signature…-Alice Pk-Bob

A Bitcoin Big Picture

Signature…-Alice Pk-Bob

Sk-Alice Sign()

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign()

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

A Bitcoin Big Picture

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What is double spending
and how to prevent it?

What About’s?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What does the first
signature look like?

What is double spending
and how to prevent it?

Hashing H(x) SignatureAlice-Bob Pk-Diana

Hashing H(x)

• Signatures and public keys are combined using Hashing

SignatureAlice-Bob Pk-Diana

Hashing H(x)

• Signatures and public keys are combined using Hashing

• Takes any string x of any length as input

• Fixed output size (e.g., 256 bits)

SignatureAlice-Bob Pk-Diana

Hashing H(x)

• Signatures and public keys are combined using Hashing

• Takes any string x of any length as input

• Fixed output size (e.g., 256 bits)

• Efficiently computable.

• Satisfies:
• Collision Free: no two x, y s.t. H(x) = H(y)

• Message digest.

• Hiding: Given H(x) infeasible to find x (one-way hash function)
• Commitment: commit to a value and reveal later

• Puzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such
that: H(ID | x) ε Y

SignatureAlice-Bob Pk-Diana

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

SHA256(abc) =
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(||) =
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

SHA256(abc) =
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

SHA256(abC) =
0a2432a1e349d8fdb9bfca91bba9e9f2836990fe937193d84deef26c6f3b8f76

What About's?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What does the first
signature look like?

What is double spending
and how to prevent it?

What About's?

SignatureAlice-Bob

Signature…-Alice Pk-Bob

Sk-Alice Sign() Pk-Diana

Sign()Sk-Bob SignatureBob-Diana Pk-….

Sign()Sk-Diana
…….

What is this combination function?

What does the first
signature look like?

What is double spending
and how to prevent it?

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob

SignatureAlice-Bob

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob Pk-Marty

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob Pk-Marty

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty Sk-Bob

Sign()

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty

SignatureBob-Diana

Sk-Bob

SignatureBob-Marty

Sign()

Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty

SignatureBob-Diana

Sk-Bob

SignatureBob-Marty

Sign()

I took her car

I took his ring

Double Spending Prevention

• Centralized

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

SignatureTrent-Bob

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20
coins to Diana

Wasn’t spent
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Same old, same old!

Double Spending Prevention

• Decentralized

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

• How to agree on transaction order?

Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

• How to agree on transaction order?

• What incentives network nodes to maintain the ledger?

What is the Ledger?

What is the Ledger?

• Blockchain

What is the Ledger?

• Blockchain

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

.

What is the Ledger?

• Blockchain

• Transactions are grouped into blocks
• Blocks are chained to each other through pointers (Hence blockchain)

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

.

The Ledger’s What About's?

The Ledger’s What About's?

• Where is the ledger stored?

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

• How is the ledger tamper-free?

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

Hash() Hash() Hash()

The Ledger’s What About's?

• Where is the ledger stored?
• Each network node maintains its copy of the ledger

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering with the content of any block can easily be detected (is this enough? NO)

Hash() Hash() Hash()

Tampering with the Ledger

Hash() Hash() Hash()

Tampering with the Ledger

Hash() Hash() Hash()

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Inconsistent Blockchain

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

However,

Inconsistent Blockchain

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Hash() Hash() Hash()

TX1

TX2

However,

Inconsistent Blockchain

Tampering with the Ledger

Hash() Hash() Hash()

TX1

TX2

Hash() Hash() Hash()

TX1

TX2

However,

Consistent Blockchain

Inconsistent Blockchain

The Ledger’s What About’s?

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering the content of any block can easily be detected (is this enough? NO)

The Ledger’s What About’s?

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering the content of any block can easily be detected (is this enough? NO)

2. Replacing a consistent blockchain with another tampered consistent block
chain should be made very hard, How?

Network Nodes Big Picture

Network Nodes Big Picture

Network Nodes Big Picture

Making Progress

Making Progress

• The ledger is fully replicated to all network nodes

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:
• Transactions on the new block do not conflict with each other

• Transactions on the new block do not conflict with previous blocks transactions

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:
• Transactions on the new block do not conflict with each other

• Transactions on the new block do not conflict with previous blocks transactions

• Network nodes need to agree on the next block to be added to the blockchain

Making Progress

• The ledger is fully replicated to all network nodes

• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:
• Transactions on the new block do not conflict with each other

• Transactions on the new block do not conflict with previous blocks transactions

• Network nodes need to agree on the next block to be added to the blockchain

Consensus

Consensus

• Types of systems: synchronous and asynchronous

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:
• FLP, in asynchronous systems:

• With even 1 crash failure, termination isn’t guaranteed (no liveness)

Consensus

• Types of systems: synchronous and asynchronous

• Problem statement: given n processes and one leader:
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:
• FLP, in asynchronous systems:

• With even 1 crash failure, termination isn’t guaranteed (no liveness)

• Synchronous systems:
• Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n

(Multi-) Paxos

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:

A

Majority

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

Leader
Election

A

Majority

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

Leader
Election

A

Majority

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

Leader
Election

Replication

A

Majority

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

Leader
Election

Replication Replication

A

Majority

(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11], etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

• Leader Election: If the leader fails, a new leader is elected

Leader
Election

Replication Replication

A

Majority

Can Network Nodes Use Paxos?

Can Network Nodes Use Paxos?

Can Network Nodes Use Paxos?

Paxos Consensus

Paxos Consensus

• All participants should be known a priori

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

• To make progress, at least 1/2 of the participants should be alive

• Progress is not guaranteed (FLP impossibility)

Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

• To make progress, at least 1/2 of the participants should be alive

• Progress is not guaranteed (FLP impossibility)

• Also, Paxos has high network overhead

Practical Byzantine Fault Tolerance (PBFT)

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

• Assumptions:

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

• Assumptions:
• 3f+1 replicas to tolerate f Byzantine faults (optimal)

Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds
for liveness

• Assumptions:
• 3f+1 replicas to tolerate f Byzantine faults (optimal)

• quorums have at least 2f+1 replicas
• quorums intersect in f+1, hence have at least one correct replica

• Strong cryptography
• Only for liveness: eventual time bounds 3f+1 replicas

quorum A quorum B

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(1) A client sends a request for a service to the primary

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(2) The primary multicasts the request to the backups

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(3) Backups multicast PREPARE message

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPARE message, multicasts a COMMIT message

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMIT messages, reply the result to the client

replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the same result

PBFT Consensus

• Tolerates Byzantine (Malicious) failures
• To make progress, at least 2/3 of the participants should be correct

• Progress is not guaranteed (FLP impossibility)

• However, PBFT is Permissioned
• All participants should be known a priori

• Also, PBFT has high network overhead O(N2) [number of messages]
• Every node multi-casts their responses to every other node

Nakamoto’s Consensus

• Intuitively, network nodes race to solve a puzzle

• This puzzle is computationally expensive

• Once a network node finds (mines) a solution:
• It adds its block of transactions to the blockchain

• It multi-casts the solution to other network nodes

• Other network nodes accept and verify the solution

Mining Details

Mining Details

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1 TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn
.
.
.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn
.
.
.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• First signature? Self signed ☺

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• First signature? Self signed ☺
• TXreward is bitcoin’s way to create new coins

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• First signature? Self signed ☺
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• First signature? Self signed ☺
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)
• Currently, it’s 12.5 Bitcoins per block

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• TXreward is self signed (also called coinbase transaction)
• First signature? Self signed ☺
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)
• Currently, it’s 12.5 Bitcoins per block
• Incentives network nodes to mine

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty
256 bits

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty
256 bits

Difficulty bits

Mining Details

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TX1

TX2

TXn

.

.

.

TXreward

TX1

TX2

TXn

.

.

TXreward

Transactions

Header

Version

Previous Block Header Hash

Merkle Tree Root Hash

Time Stamp

Current Target Bits

Nonce

SHA256() < D

• D: dynamically adjusted difficulty

• Difficulty is adjusted every 2016 blocks (almost 2 weeks)

256 bits

Difficulty bits

Difficulty

Difficulty

• Adjust difficulty every 2016 blocks

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

• New_difficulty = old_difficulty * expected/actual

Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

• New_difficulty = old_difficulty * expected/actual

• Difficulty decreases if actual > expected, otherwise, increases

Mining Big Picture

Mining Big Picture

Mining Big Picture

Mining Big Picture

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

• Network nodes accept the first found block:
• The problem is difficult, there is no guaranteed bound to find another block

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

• Network nodes accept the first found block:
• The problem is difficult, there is no guaranteed bound to find another block

• What happens when 2 nodes concurrently mine a block? Fork

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

SHA256(V,P,M,T,C,1) =
DF64342507E785FDC0D4C776D7142BB2BC6467F09E0040A3E9F65E38872A45D8

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

SHA256(V,P,M,T,C,1) =
DF64342507E785FDC0D4C776D7142BB2BC6467F09E0040A3E9F65E38872A45D8

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

SHA256(V,P,M,T,C,1) =
DF64342507E785FDC0D4C776D7142BB2BC6467F09E0040A3E9F65E38872A45D8

SHA256(V,P,M,T,C,2) =
0000000CC7F94221B95F4E606E037D31C10417435DEE60A61C627B64324590FE

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

SHA256(V,P,M,T,C,1) =
DF64342507E785FDC0D4C776D7142BB2BC6467F09E0040A3E9F65E38872A45D8

SHA256(V,P,M,T,C,2) =
0000000CC7F94221B95F4E606E037D31C10417435DEE60A61C627B64324590FE

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

7 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

SHA256(V,P,M,T,C,1) =
DF64342507E785FDC0D4C776D7142BB2BC6467F09E0040A3E9F65E38872A45D8

SHA256(V,P,M,T,C,2) =
0000000CC7F94221B95F4E606E037D31C10417435DEE60A61C627B64324590FE

SHA256(V,P,M,T,C,01F04A1C) =
0000000000000000001E3BFE56AD29732B81128B79356442C8B87F6CED8B6610

.

.

.

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

18 zeros

7 zeros

Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

CS271 40

TX1

TXn

.

.

TXreward

02000000

25F947B7C18A1E4E2DF96D0D4368DFC24
AA9C4EC8C3D6B51A4C4935409D58FED

4E04D109A3A7A0460AD2DFD95A4F0FAA
145F3249BEE9F371F8204D16C01D4921

5C9F3E20

172E6117

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)

Current Target Bits (4B)

Nonce (4B)

SHA256(V,P,M,T,C,1) =
DF64342507E785FDC0D4C776D7142BB2BC6467F09E0040A3E9F65E38872A45D8

SHA256(V,P,M,T,C,2) =
0000000CC7F94221B95F4E606E037D31C10417435DEE60A61C627B64324590FE

SHA256(V,P,M,T,C,01F04A1C) =
0000000000000000001E3BFE56AD29732B81128B79356442C8B87F6CED8B6610

.

.

.

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

000000000000000000cf3620d570d08d1799a1cafbbfae512fdba2124665eca0

18 zeros

18 zeros

7 zeros

Forks

Forks

Forks

• Transactions in the forked blocks might have conflicts

Forks

• Transactions in the forked blocks might have conflicts
• Could lead to double spending

Forks

• Transactions in the forked blocks might have conflicts
• Could lead to double spending
• Forks have to be eliminated

Forks

Forks

Forks

Forks

Forks

Forks

Forks

• Miners join the longest chain to resolve forks

Forks

Forks

• Transactions in this block have to be resubmitted

Forks

• Transactions in this block have to be resubmitted

Forks: The Big Picture

Forks: The Big Picture

Forks: The Big Picture

Forks: The Big Picture

Forks: The Big Picture

Forks: The Big Picture

Abandoned

Longest Chain

Forks: The Big Picture

Abandoned

Longest Chain

Forks: The Big Picture

Abandoned

Longest Chain

Forks: The Big Picture

Abandoned

Longest Chain

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

51% Attack

• If 51% of the computation (hash) power are malicious:
• They can cooperate to fork the chain at any block

• Can lead to double spending

CS271 43

Selfish Mining

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining

power on an obsolete block

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining

power on an obsolete block
• Start mining the next block (Advantage)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining

power on an obsolete block
• Start mining the next block (Advantage)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining

power on an obsolete block
• Start mining the next block (Advantage)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining

power on an obsolete block
• Start mining the next block (Advantage)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Block found, yay!
• Don’t immediately announce it
• Let honest miners waste their mining

power on an obsolete block
• Start mining the next block (Advantage)
• Two possible outcomes

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• First Outcome

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• First Outcome
• Selfish miner finds the following

block first

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• First Outcome
• Selfish miner finds the following

block first
• Once an honest miner finds a block

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• First Outcome
• Selfish miner finds the following

block first
• Once an honest miner finds a block

• Selfish miner announces 2 blocks

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• First Outcome
• Selfish miner finds the following

block first
• Once an honest miner finds a block

• Selfish miner announces 2 blocks
• Honest miner loses the reward

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• First Outcome
• Selfish miner finds the following

block first
• Once an honest miner finds a block

• Selfish miner announces 2 blocks
• Honest miner loses the reward

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Second Outcome

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Second Outcome
• An honest miner finds a block first

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Second Outcome
• An honest miner finds a block first
• Selfish miner immediately announces

the previously found block

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Second Outcome
• An honest miner finds a block first
• Selfish miner immediately announces

the previously found block
• This splits the power of honest

miners
Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Second Outcome
• An honest miner finds a block first
• Selfish miner immediately announces

the previously found block
• This splits the power of honest

miners
Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• If selfish miner successfully splits honest
miners:
• The probability of finding the next

red block is 2/3 (secures the reward
of the previously found block)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Selfish Mining Honest Miner

Selfish Miner

• Also,
• The probability of selfish miner to

find the next red block is 1/2 even if
selfish miner has 1/3 of the mining
resources (Advantage)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

Limitations of Bitcoin

Limitations of Bitcoin

• High transaction-confirmation latency

Limitations of Bitcoin

• High transaction-confirmation latency

• Probabilistic consistency guarantees

Limitations of Bitcoin

• High transaction-confirmation latency

• Probabilistic consistency guarantees

• Very low TPS (Transactions per second) - average of 3 to 7 TPS

Limitations of Bitcoin

• High transaction-confirmation latency

• Probabilistic consistency guarantees

• Very low TPS (Transactions per second) - average of 3 to 7 TPS

• New block added every 10 minutes.

How to scale Bitcoin?

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

How to scale Bitcoin?

• Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval

Increasing Block Size

Increasing Block Size

Increasing Block Size

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

Increasing Block Size

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

10MB/10 mins
10MB = 42000 Txns
70 Txns/ second

Increasing Block Size

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

10MB/10 mins
10MB = 42000 Txns
70 Txns/ second

100MB/10 mins
100MB = 420000 Txns
700 Txns/ second

Increasing Block Size

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

10MB/10 mins
10MB = 42000 Txns
70 Txns/ second

100MB/10 mins
100MB = 420000 Txns
700 Txns/ second

………

Increasing Block Size

• Why they don’t work?

• Decreases fairness - giving large miners an advantage

• Requires more storage space (1 → 10 → 100 MB/ 10 mins)
• Requires more Network bandwidth

• Requires more verification time

Decrease Block Interval

Decrease Block Interval

Decrease Block Interval

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

Decrease Block Interval

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

1MB/5 mins
1MB = 4200 Txns
14 Txns/ second

Decrease Block Interval

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

1MB/5 mins
1MB = 4200 Txns
14 Txns/ second

1MB/1 min
1MB = 4200 Txns
70 Txns/ second

Decrease Block Interval

1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

1MB/5 mins
1MB = 4200 Txns
14 Txns/ second

1MB/1 min
1MB = 4200 Txns
70 Txns/ second

………

Decrease Block Interval

• Requires to mining decrease difficulty

• Leads to more forks

• Results on network instability (many branches)

Overview

Overview
• Increase throughput by reducing consensus from all nodes to smaller set

Overview
• Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times BitcoinNG

Overview
• Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Overview
• Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico

BitcoinNG (Next Generation)

BitcoinNG (Next Generation)
Observation: In Bitcoin,

blocks provide two
purpose:

consensus and

txn verification

BitcoinNG (Next Generation)
Observation: In Bitcoin,

blocks provide two
purpose:

consensus and

txn verification

BitcoinNG (Next Generation)
Observation: In Bitcoin,

blocks provide two
purpose:

consensus and

txn verification

Keyblocks:
Used for Leader

Election and created
using Proof-of-work

BitcoinNG (Next Generation)

Eyal, Ittay, et al. "Bitcoin-NG: A Scalable Blockchain Protocol." NSDI. 2016.

Observation: In Bitcoin,
blocks provide two

purpose:
consensus and

txn verification

Keyblocks:
Used for Leader

Election and created
using Proof-of-work

Microblocks:
Contains txns and is

generated by the epoch
leader, signed by

leader's private key

- Key-block miner → leader till next key-block is mined
- Leader publishes micro-blocks while in tenure

Allowing one miner to be a leader, even for a brief interval, presents many
concerns!!

ByzCoin

ByzCoin
• Uses key-blocks and micro-blocks

• Key-block miner (PoW) in window

becomes a trustee

• Micro-block decided by trustees

• Trustees use PBFT to reach consensus on next
micro-block

• Each block is signed using Collective Signing
approach

Kogias, Eleftherios Kokoris, et al. "Enhancing bitcoin security and performance with strong consistency via collective
signing." 25th USENIX Security Symposium (USENIX Security 16). 2016.

Leader

2

34

5

PBFT + CoSi→
next microblock

Elastico

Elastico
• Key idea: split all servers into smaller sized

groups, committees

Elastico
• Key idea: split all servers into smaller sized

groups, committees

Elastico
• Key idea: split all servers into smaller sized

groups, committees

• Each committee processes a disjoint shard
of txns

Elastico
• Key idea: split all servers into smaller sized

groups, committees

• Each committee processes a disjoint shard
of txns

• Each committee runs any BFT to reach
consensus on a block

BFT protocol

Elastico
• Key idea: split all servers into smaller sized

groups, committees

• Each committee processes a disjoint shard
of txns

• Each committee runs any BFT to reach
consensus on a block

Shard 1 Shard 2 Shard 3

BFT protocol

Elastico
• Key idea: split all servers into smaller sized

groups, committees

• Each committee processes a disjoint shard
of txns

• Each committee runs any BFT to reach
consensus on a block

• A special Final committee aggregates all
chosen shards and publishes next block in
the chain

Shard 1 Shard 2 Shard 3

BFT protocol

Elastico
• Key idea: split all servers into smaller sized

groups, committees

• Each committee processes a disjoint shard
of txns

• Each committee runs any BFT to reach
consensus on a block

• A special Final committee aggregates all
chosen shards and publishes next block in
the chain

Shard 1 Shard 2 Shard 3

Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016.

BFT protocol

Sharding as a Scalability Solution

Sharding as a Scalability Solution

Sharding as a Scalability Solution

Sharding as a Scalability Solution

Sharding as a Scalability Solution

Sharding as a Scalability Solution

Sharding as a Scalability Solution

Classes of Transactions

Classes of Transactions

Classes of Transactions

Single Shard Transactions

Classes of Transactions

Classes of Transactions

Classes of Transactions

Cross-Shard Transactions

Classes of Transactions

Cross-Shard Transactions

Requires Atomic Cross-Shard Commitment Protocol

The Landscape

The Landscape

Source: coinmarketcap.com on June 7th at 5:00pm PST

The Landscape

Source: coinmarketcap.com on June 7th at 5:00pm PST

The Landscape

Source: coinmarketcap.com on June 7th at 5:00pm PST

The Landscape

Source: coinmarketcap.com on June 7th at 5:00pm PST

The Landscape

The Landscape

• Thousands of Blockchains

The Landscape

• Thousands of Blockchains

• Tens of thousands of markets

The Landscape

• Thousands of Blockchains

• Tens of thousands of markets

• Exchanges to trade tokens for USD

The Landscape

• Thousands of Blockchains

• Tens of thousands of markets

• Exchanges to trade tokens for USD

• Direct token transactions in one blockchain

The Landscape

• Thousands of Blockchains

• Tens of thousands of markets

• Exchanges to trade tokens for USD

• Direct token transactions in one blockchain

• Direct token transactions across blockchains, how?

The Landscape

• Thousands of Blockchains

• Tens of thousands of markets

• Exchanges to trade tokens for USD

• Direct token transactions in one blockchain

• Direct token transactions across blockchains, how?

• Cross-chain transactions

Cross-ChainTransaction Example

64

Cross-ChainTransaction Example

64

Cross-ChainTransaction Example

64

Cross-ChainTransaction Example

Y

64

Cross-ChainTransaction Example

Y

64

Cross-ChainTransaction Example

Y X

64

Cross-ChainTransaction Example

Y X

64

Cross-ChainTransaction Example

Y X

64

Cross-ChainTransaction Example

X bitcoins

Y X

64

Cross-ChainTransaction Example

X bitcoins

Y ethers

Y X

64

Cross-ChainTransaction Example

X bitcoins

Y ethers

Y X

Atomic Cross-Chain Commitment Protocol

64

Cross-ChainTransaction Example

X bitcoins

Y ethers

Y X

Atomic Cross-Chain Commitment Protocol

64

Cross-ChainTransaction Example

X bitcoins

Y ethers

Y X

Atomic Cross-Chain Commitment Protocol

Y X

64

Cross-ChainTransaction Example

X bitcoins

Y ethers

Y X

Atomic Cross-Chain Commitment Protocol

Y X

64

Smart Contracts

Smart Contracts

• Like classes in Object Oriented Programming Languages

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

• Define the functions that manipulate these data objects

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

• Define the functions that manipulate these data objects

• Have attributes (e.g., represents a car)

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

• Define the functions that manipulate these data objects

• Have attributes (e.g., represents a car)

• Have functions (e.g., rent, buy, etc)

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

• Define the functions that manipulate these data objects

• Have attributes (e.g., represents a car)

• Have functions (e.g., rent, buy, etc)

• Can be used to implement generic transaction logic:

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

• Define the functions that manipulate these data objects

• Have attributes (e.g., represents a car)

• Have functions (e.g., rent, buy, etc)

• Can be used to implement generic transaction logic:
• Conditionally lock assets in the blockchain

Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

• Define the functions that manipulate these data objects

• Have attributes (e.g., represents a car)

• Have functions (e.g., rent, buy, etc)

• Can be used to implement generic transaction logic:
• Conditionally lock assets in the blockchain

• Transfer asset ownership on some condition

Smart Contracts

Smart Contracts

class AtomicSwap {
sender: s // Alice

recipient: r // Bob

asset: a // X bitcoins

secretHash: h

constructor() {

}

redeem (secret srt) {

if(hash(srt) == h)

transfer a to r

}

…..

}

Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade Bitcoin for Ethereum with Bob

Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade Bitcoin for Ethereum with Bob

Bob Alice

Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade Bitcoin for Ethereum with Bob

Bob Alice

• Create a secret s
• Calculate its hash h = H(s)

Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade Bitcoin for Ethereum with Bob

Bob Alice

• Create a secret s
• Calculate its hash h = H(s)

s and h

Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

SC1 Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

SC1 Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

Bitcoin blockchain

Atomic Swap[Nolan’13, Herlihy’18]

• Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bob Alice

s and h

SC1 Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

Bitcoin blockchain

SC1

Atomic Swap[Nolan’13, Herlihy’18]

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
the smart contract SC1

Bitcoin blockchain

SC1

Atomic Swap[Nolan’13, Herlihy’18]

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
the smart contract SC1

Bitcoin blockchain

SC1

SC2 Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Atomic Swap[Nolan’13, Herlihy’18]

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
the smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

SC2 Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Atomic Swap[Nolan’13, Herlihy’18]

• Now, h is announced in Bitcoin blockchain and made public

Bob Alice

s

Alice’s X bitcoins are locked in
the smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

SC2 Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

SC2

Atomic Swap[Nolan’13, Herlihy’18]

• Now, for Alice to execute SC2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in
smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

Bob’s Y Ethereum are locked in
smart contract SC2

SC2

Atomic Swap[Nolan’13, Herlihy’18]

• Now, for Alice to execute SC2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in
smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

Bob’s Y Ethereum are locked in
smart contract SC2

SC2

Atomic Swap[Nolan’13, Herlihy’18]

• Now, for Alice to execute SC2 and redeem Y Ethereum, she reveals s

Bob Alice

s

Alice’s X bitcoins are locked in
smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

Bob’s Y Ethereum are locked in
smart contract SC2

SC2

Atomic Swap[Nolan’13, Herlihy’18]

• Revealing s, executes SC2. Now s is public in Ethereum’s blockchain

Bob Alice

s

Alice’s X bitcoins are locked in
smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

Bob’s Y Ethereum are locked in
smart contract SC2

SC2

Atomic Swap[Nolan’13, Herlihy’18]

• Now, Bob uses s to execute SC1 and redeem his Bitcoins

Bob Alice

s

Alice’s X bitcoins are locked in
smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

Bob’s Y Ethereum are locked in
smart contract SC2

SC2
s

Atomic Swap[Nolan’13, Herlihy’18]

• Now, Bob uses s to execute SC1 and redeem his Bitcoins

Bob Alice

s

Alice’s X bitcoins are locked in
smart contract SC1

Bitcoin blockchain

SC1

Ethereum blockchain

Bob’s Y Ethereum are locked in
smart contract SC2

SC2
s

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through SC1

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through SC1

• Bob sees SC1 but refuses to publish SC2

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through SC1

• Bob sees SC1 but refuses to publish SC2

• Now, Alice’s Bitcoins are locked for good
• A conforming party (Alice) ends up worse off because Bob doesn’t follow the

protocol

Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through SC1

• Bob sees SC1 but refuses to publish SC2

• Now, Alice’s Bitcoins are locked for good
• A conforming party (Alice) ends up worse off because Bob doesn’t follow the

protocol

• Prevention
• Use timelocks to expire a contract

• Specify that an expired contract is refunded to the creator of this contract

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Bob Alice

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Bob Alice

SC1: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

Refund SC1 to Alice if Bob does
not execute SC1 before 48 hours

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Bob Alice

SC1: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

SC2: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Refund SC1 to Alice if Bob does
not execute SC1 before 48 hours

Refund SC2 to Bob if Alice does
not execute SC2 before 24 hours

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Bob Alice

SC1: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

SC2: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Refund SC1 to Alice if Bob does
not execute SC1 before 48 hours

Refund SC2 to Bob if Alice does
not execute SC2 before 24 hours

Atomic Swap Example [Nolan’13, Herlihy’18]

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

Atomic Swap Example [Nolan’13, Herlihy’18]

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

Atomic Swap Example [Nolan’13, Herlihy’18]

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

Alice reveals the secret to Bob’s
contract and claims the Y ether

Atomic Swap Example [Nolan’13, Herlihy’18]

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

Alice reveals the secret to Bob’s
contract and claims the Y ether

Supposedly, Bob takes the secret,
reveals it to Alice’s contract and
claims the X bitcoins

Atomic Swap Example [Nolan’13, Herlihy’18]

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

Alice reveals the secret to Bob’s
contract and claims the Y ether

Supposedly, Bob takes the secret,
reveals it to Alice’s contract and
claims the X bitcoins

What can go wrong?

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

What can go wrong?

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

If Bob fails or suffers a network
denial of service attack for a Δ,
Alice’s contract will expire and
Bob will lose his X bitcoins

What can go wrong?

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

If Bob fails or suffers a network
denial of service attack for a Δ,
Alice’s contract will expire and
Bob will lose his X bitcoins

X bitcoins are refunded to
Alice any time after the
contract expires

What can go wrong?

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

If Bob fails or suffers a network
denial of service attack for a Δ,
Alice’s contract will expire and
Bob will lose his X bitcoins

Atomicity Violation

X bitcoins are refunded to
Alice any time after the
contract expires

Atomicity Violation

• Using timelocks leads to Atomicity violation

78

Atomicity Violation

• Using timelocks leads to Atomicity violation

• Our Atomicity-based Approach:
• The decision of both transactions should be made atomic

• Once the decision is taken, both transactions either commit or abort

78

Atomicity Violation

• Using timelocks leads to Atomicity violation

• Our Atomicity-based Approach:
• The decision of both transactions should be made atomic

• Once the decision is taken, both transactions either commit or abort

• A transaction cannot commit unless a commit decision is reached

• A transaction cannot abort unless an abort decision is reached

78

Atomic Commitment Across
Blockchains

Victor Zakhary, Divyakant Agrawal, Amr El Abbadi

Building block: Cross-Chain Verification

• How can miners of one blockchain:
• Verify a transaction in another blockchain?

80

Building block: Cross-Chain Verification

• How can miners of one blockchain:
• Verify a transaction in another blockchain?

• Without maintaining a copy of this other blockchain.

80

Building block: Cross-Chain Verification

81

Building block: Cross-Chain Verification

Current head

Verifier Blockchain

81

Building block: Cross-Chain Verification

Current head

Verifier Blockchain

81

Need to verify that TX1 is actually
in verified blockchain

Building block: Cross-Chain Verification

Current head

Verified Blockchain

d blocks

Current head

Verifier Blockchain

81

Need to verify that TX1 is actually
in verified blockchain

Building block: Cross-Chain Verification

Current head

Verified Blockchain

d blocks

SC {
S1

}

Current head

Verifier Blockchain

81

Need to verify that TX1 is actually
in verified blockchain

Building block: Cross-Chain Verification

Current head

Verified Blockchain

d blocks

SC {
S1

}

Current head

Verifier Blockchain

1

81

Need to verify that TX1 is actually
in verified blockchain

Building block: Cross-Chain Verification

Current head

Verified Blockchain

d blocks

SC {
S1

}

Current head

Verifier Blockchain

1

2

81

Need to verify that TX1 is actually
in verified blockchain

Building block: Cross-Chain Verification

TX1

Current head Transaction TX1

of interest

Verified Blockchain

d blocks

SC {
S1

}

Current head

Verifier Blockchain

1

2

3

81

Need to verify that TX1 is actually
in verified blockchain

Building block: Cross-Chain Verification

TX1

Current head Transaction TX1

of interest

Verified Blockchain

d blocks d blocks

SC {
S1

}

Current head

Verifier Blockchain

1

2

3 4

81

Need to verify that TX1 is actually
in verified blockchain

Building block: Cross-Chain Verification

TX1

Current head Transaction TX1

of interest

Verified Blockchain

d blocks d blocks

SC {
S1

}

Current head

Verifier Blockchain

TX1
TX1 evidence

1

2

3 4

5

81

Need to verify that TX1 is actually
in verified blockchain

TX1 Evidence

Building block: Cross-Chain Verification

TX1

Current head Transaction TX1

of interest

Verified Blockchain

d blocks d blocks

SC {
S1

}

Current head

Verifier Blockchain
SC {
S2

}

TX1
TX1 evidence

1

2

3 4

5

81

Need to verify that TX1 is actually
in verified blockchain

TX1 Evidence

Building block: Cross-Chain Verification

TX1

Current head Transaction TX1

of interest

Verified Blockchain

d blocks d blocks

SC {
S1

}

Current head

Verifier Blockchain
SC {
S2

}

TX1
TX1 evidence

1

2

3 4

5

6

81

Need to verify that TX1 is actually
in verified blockchain

TX1 Evidence

Building block: Cross-Chain Verification

• Verification process:
TX1

TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

• TX1 is correct

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

• TX1 is correct

TX1
TX1 evidence

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

• TX1 is correct

• TX1 is buried under d blocks

TX1
TX1 evidence

d blocks

82

Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

• TX1 is correct

• TX1 is buried under d blocks

• The cost of generating evidence:
• Choose d to make this cost > the value transacted in TX1

• If true, a malicious user has no incentive to create a fake evidence

TX1
TX1 evidence

d blocks

82

Atomic Commitment Across Blockchains

• Use another blockchain to witness the Atomic Swap

Atomic Commitment Across Blockchains

• Use another blockchain to witness the Atomic Swap

• The witness blockchain decides the commit or the abort of a swap

Atomic Commitment Across Blockchains

• Use another blockchain to witness the Atomic Swap

• The witness blockchain decides the commit or the abort of a swap

• Once a decision is made:
• All sub-transactions in the swap must follow the decision

• Achieves atomicity, either all committed or all aborted

Atomic Commitment Across Blockchains

• Use another blockchain to witness the Atomic Swap

• The witness blockchain decides the commit or the abort of a swap

• Once a decision is made:
• All sub-transactions in the swap must follow the decision

• Achieves atomicity, either all committed or all aborted

• Cross chain verification is leveraged twice

Atomic Commitment Across Blockchains

• Use another blockchain to witness the Atomic Swap

• The witness blockchain decides the commit or the abort of a swap

• Once a decision is made:
• All sub-transactions in the swap must follow the decision

• Achieves atomicity, either all committed or all aborted

• Cross chain verification is leveraged twice
• Miners of the witness network verify the publishing of contracts in asset

blockchains

Atomic Commitment Across Blockchains

• Use another blockchain to witness the Atomic Swap

• The witness blockchain decides the commit or the abort of a swap

• Once a decision is made:
• All sub-transactions in the swap must follow the decision

• Achieves atomicity, either all committed or all aborted

• Cross chain verification is leveraged twice
• Miners of the witness network verify the publishing of contracts in asset

blockchains

• Miners of assets’ blockchains verify the decision made in the witness network

Protocol Sketch

84

Protocol Sketch

• Deploy a contract SCw in the witness network with state Published (P)

84

Protocol Sketch

• Deploy a contract SCw in the witness network with state Published (P)

Witness Blockchain

84

Verifier

Protocol Sketch

• Deploy a contract SCw in the witness network with state Published (P)

SCw {
S=P}Witness Blockchain

84

Verifier

Protocol Sketch

• Deploy a contract SCw in the witness network with state Published (P)

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Current head

Ethereum Blockchain

84

Verifier

Verified

Verified

Protocol Sketch

• Deploy a contract SCw in the witness network with state Published (P)

• SCw has a header of a block at depth d of all blockchains in the swap

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Current head

Ethereum Blockchain

84

Verifier

Verified

Verified

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

Bitcoin Blockchain

Ethereum Blockchain

85

Verifier

Verified

Verified

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

85

Verifier

Verified

Verified

Protocol Sketch Cont’d

• Participants deploy their contracts in the corresponding blockchains

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

85

Verifier

Verified

Verified

Protocol Sketch Cont’d

• Participants deploy their contracts in the corresponding blockchains

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

85

Verifier

Verified

Verified

Protocol Sketch Cont’d

• Participants deploy their contracts in the corresponding blockchains

• Participants add the header of SCw to their contracts

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

85

Verifier

Verified

Verified

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

86

Verifier

Verified

Verified

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

86

Verifier

Verified

Verified

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

86

Verifier

Verified

Verified

Protocol Sketch Cont’d
• Participants submit evidence of publishing the smart contracts in Assets

Blockchains

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

86

Verifier

Verified

Verified

The Evidence

Protocol Sketch Cont’d
• Participants submit evidence of publishing the smart contracts in Assets

Blockchains

• If all contracts are published and correct, SCw’s state is altered to redeem (RD)

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

SCw {
S=RD}

86

Verifier

Verified

Verified

The Evidence

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

SCw {
S=RD}

87

Verifier

Verifier

Verified

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

SCw {
S=RD}

87

Verifier

Verifier

Verified

Protocol Sketch Cont’d

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

SCw {
S=RD}

87

Verifier

Verifier

Verified

Protocol Sketch Cont’d

• Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

SCw {
S=RD}

87

Verifier

Verifier

Verified

Protocol Sketch Cont’d

• Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

SCw {
S=RD}

SC1 {
S=RD}

87

Verifier

Verifier

Verified

Protocol Sketch Cont’d

• Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

• After evidence verification, participants redeem their assets from the
Assets Blockchains.

SCw {
S=P}Witness Blockchain

d blocks

Bitcoin Blockchain

Ethereum Blockchain

SC1 {
S=P}

SC2 {
S=P}

SCw {
S=RD}

SC1 {
S=RD}

SC2 {
S=RD}

87

Verifier

Verifier

Verified

Atomic Commitment Across Blockchains

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

• Even if a participant fails or faces a network denial of service:

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

• Even if a participant fails or faces a network denial of service:
• When the participant recovers, the evidence of the decision still exists

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

• Even if a participant fails or faces a network denial of service:
• When the participant recovers, the evidence of the decision still exists
• This evidence can be used to redeem or refund the contracts

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

• Even if a participant fails or faces a network denial of service:
• When the participant recovers, the evidence of the decision still exists
• This evidence can be used to redeem or refund the contracts

• The only way to violate atomicity is to fork the witness blockchain

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

• Even if a participant fails or faces a network denial of service:
• When the participant recovers, the evidence of the decision still exists
• This evidence can be used to redeem or refund the contracts

• The only way to violate atomicity is to fork the witness blockchain

• Economic incentives prevent this attack

Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

• Even if a participant fails or faces a network denial of service:
• When the participant recovers, the evidence of the decision still exists
• This evidence can be used to redeem or refund the contracts

• The only way to violate atomicity is to fork the witness blockchain

• Economic incentives prevent this attack

• Any protocol is prone to fork attacks

Permissioned Blockchain

Any applications other than

Cryptocurrency?

Supply Chain Management:
Tracking Fish from Ocean to Table
• Ocean fishing represents more than $70B in worldwide trade1

• Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction
are ever inspected2.

• Nearly one in three fish were mislabeled by sellers3

• 87% of snapper and 59% of tuna were mislabelled4

• 95% of all sushi restaurants were serving mislabeled fish4

1 Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.
2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.
3 Miguel çngel Pardo, Elisa JimŽnez, Bego–a PŽrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277–283.
4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.

Supply Chain Management:
Tracking Fish from Ocean to Table
• Ocean fishing represents more than $70B in worldwide trade1

• Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction are ever
inspected2.

• Nearly one in three fish were mislabeled by sellers3

• 87% of snapper and 59% of tuna were mislabelled4

• 95% of all sushi restaurants were serving mislabeled fish4

• Challenges:
• Many different paths from ocean to table

• Lack of global authority for tracing

• Proprietary tracing systems do not scale

• Most existing processes are paper-based

• The supply chain is extremely complex and includes many participants from different industries
1 Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.
2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.
3 Miguel çngel Pardo, Elisa JimŽnez, Bego–a PŽrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277–283.
4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.

Subsistence Fishing Recreational Fishing Aquaculture Wild Capture Fisheries Processing and Distribution

Seafood Supply Chain
in the real world

Seafood Supply Chain
in Blockchain

Source: Advancing Traceability in
the Seafood Industry, FishWise

Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Subsistence Fishing Recreational Fishing Aquaculture Wild Capture Fisheries Processing and Distribution

Seafood Supply Chain
in the real world

Seafood Supply Chain
in Blockchain

Source: Advancing Traceability in
the Seafood Industry, FishWise

Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Subsistence Fishing Recreational Fishing Aquaculture Wild Capture Fisheries Processing and Distribution

Seafood Supply Chain
in the real world

Seafood Supply Chain
in Blockchain

Source: Advancing Traceability in
the Seafood Industry, FishWise

Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Subsistence Fishing Recreational Fishing Aquaculture Wild Capture Fisheries Processing and Distribution

Seafood Supply Chain
in the real world

Seafood Supply Chain
in Blockchain

Source: Advancing Traceability in
the Seafood Industry, FishWise

Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Blockchain facilitates and
tracks possession changes
through the distribution

Subsistence Fishing Recreational Fishing Aquaculture Wild Capture Fisheries Processing and Distribution

Seafood Supply Chain
in the real world

Seafood Supply Chain
in Blockchain

Source: Advancing Traceability in
the Seafood Industry, FishWise

Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Blockchain facilitates and
tracks possession changes
through the distribution

The buyer can access a
comprehensive record of
the fish’s provenance

Subsistence Fishing Recreational Fishing Aquaculture Wild Capture Fisheries Processing and Distribution

Seafood Supply Chain
in the real world

Seafood Supply Chain
in Blockchain

Source: Advancing Traceability in
the Seafood Industry, FishWise

Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Sensors continuously
transmit data about time
and location to Blockchain

Blockchain facilitates and
tracks possession changes
through the distribution

The buyer can access a
comprehensive record of
the fish’s provenance

Subsistence Fishing Recreational Fishing Aquaculture Wild Capture Fisheries Processing and Distribution

Seafood Supply Chain
in the real world

Seafood Supply Chain
in Blockchain

Source: Advancing Traceability in
the Seafood Industry, FishWise

Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain Network

Digital Flow

Physical Flow

Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain Network

Digital Flow

Physical Flow

Farmer
Register Item

Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain Network

Digital Flow

Physical Flow

Farmer
Register Item

Producer
Mass Balance Verification

Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain Network

Digital Flow

Physical Flow

Farmer
Register Item

Distributer
Deliver Item

Producer
Mass Balance Verification

Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain Network

Digital Flow

Physical Flow

Farmer
Register Item

Distributer
Deliver Item

Retailer
Sell Item

Producer
Mass Balance Verification

Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain Network

Digital Flow

Physical Flow

Farmer
Register Item

Distributer
Deliver Item

Consumer
Back-trace Item

Retailer
Sell Item

Producer
Mass Balance Verification

The difference between Bitcoin and Supply
Chain?!

In Supply Chain Participants are known and Identified

The difference between Bitcoin and Supply
Chain?!

In Supply Chain Participants are known and Identified

Traditional Consensus Protocols can be used

A Permissioned Blockchain system consists of a set of known,

identified nodes that might not fully trust each other.

Permissioned Blockchain
• Run a blockchain among a set of known, identified participants

• Provides a way to secure the interactions among a group of entities that have a common goal but
which do not fully trust each other

• The ledger is distributed among all the nodes

Permissioned Blockchain
• Run a blockchain among a set of known, identified participants

• Provides a way to secure the interactions among a group of entities that have a common goal but
which do not fully trust each other

• The ledger is distributed among all the nodes

Permissionless Permissioned

Participants Anonymous, Could be malicious Known, Identified

Consensus Mechanisms Proof of Work, Proof of Stake, …

• Large energy consumption
• No finality
• 51% attack

Byzantine fault tolerance
Consensus, e.g., PBFT
• Lighter
• Faster
• Low energy consumption
• Enable finality

Transaction Approval time Long (Bitcoin: 10 min or more) Short (100x msec)

Consensus Protocols in Permissioned
Networks
• Types of systems: synchronous and asynchronous

• Problem statement: given N processes (one of them is the leader):
• Agreement: all correct processes agree on the same value
• Validity: If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important impossibility result:
• FLP, in asynchronous systems:

• With even one crash failure, termination is not guaranteed (no liveness)

• Synchronous systems:
• Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n

Bitcoin review

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

Bitcoin review

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

Bitcoin review

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

• Clients multicasts their requests

Bitcoin review

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

• Clients multicasts their requests
• Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

Bitcoin review

• The lucky node who solves the puzzle first
multicasts the block

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

• Clients multicasts their requests
• Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

WIN

Bitcoin review

• The lucky node who solves the puzzle first
multicasts the block

• Each node validates the transactions within
the block

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

• Clients multicasts their requests
• Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

WIN

Bitcoin review

• The lucky node who solves the puzzle first
multicasts the block

• Each node validates the transactions within
the block

• Transactions are deterministically executed
by every node and appended to the ledger

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

• Clients multicasts their requests
• Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

WIN

Order-execute Architecture

Order-execute Architecture

Order-execute Architecture

• A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

Order-execute Architecture

• A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

• Each node then executes the transactions and updates the ledger.

Order-execute Architecture

• A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

• Each node then executes the transactions and updates the ledger.

• Limitations of Order-Execute

Order-execute Architecture

• A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

• Each node then executes the transactions and updates the ledger.

• Limitations of Order-Execute

• Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)

Order-execute Architecture

• A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

• Each node then executes the transactions and updates the ledger.

• Limitations of Order-Execute

• Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)

• Non-deterministic code: any non-deterministic execution results in “fork” in
the distributed ledger

Order-execute Architecture

• A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

• Each node then executes the transactions and updates the ledger.

• Limitations of Order-Execute

• Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)

• Non-deterministic code: any non-deterministic execution results in “fork” in
the distributed ledger

• Confidentiality of execution: all smart contracts run on all peers!

Execute-Order-Validate Architecture

Execute-Order-Validate Architecture

• Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

Execute-Order-Validate Architecture

• Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

• A separate set of nodes (orderers) orders the transactions, puts them
into blocks, and multicasts them to all the nodes.

Execute-Order-Validate Architecture

• Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

• A separate set of nodes (orderers) orders the transactions, puts them
into blocks, and multicasts them to all the nodes.

• Each node validates the transactions within a block and updates the
ledger

Hyperledger Fabric

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

Parallel Execution: Transactions of different applications can be executed in
parallel

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.

Hyperledger Fabric

• Three types of Nodes: Clients, Endorsers, and Orderers

Hyperledger Fabric

• Three types of Nodes: Clients, Endorsers, and Orderers

Hyperledger Fabric

• Three types of Nodes: Clients, Endorsers, and Orderers
• Clients send transactions to be executed.

Clients (of different applications)

Hyperledger Fabric

• Three types of Nodes: Clients, Endorsers, and Orderers
• Clients send transactions to be executed.

• Endorsers execute transaction proposals and validate transactions.
• All endorsers maintain the blockchain ledger

• Each application has its own set of endorsers

Clients (of different applications)

Endors
er

Endors
er

Endors
er

Endorsers (of different applications)

Hyperledger Fabric

• Three types of Nodes: Clients, Endorsers, and Orderers
• Clients send transactions to be executed.

• Endorsers execute transaction proposals and validate transactions.
• All endorsers maintain the blockchain ledger

• Each application has its own set of endorsers

• Orderers stablish the total order of all transactions using a consensus protocol
• Do not maintain the blockchain ledger or smart contracts

• The consensus protocol is pluggable

Clients (of different applications)

Endors
er

Endors
er

Endors
er

Endorsers (of different applications)

Order
er

Order
er

Order
er

Orderers

Hyperledger Fabric

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Transactions of different
applications are executed in parallel

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six OrderersIf the results are identical, the client

put them into a request

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

A block might contains multiple transactions from the same application

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

In the validation phase, Endorsers check: (1) validity of transactions, (2) read-write conflicts

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Three Applications (Green, Blue, Yellow)
Three Clients (Alice, Bob, Charlie)
Green and Blue have two Endorsers, Yellow
has four Endorsers
There are totally six Orderers

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

What if transactions are conflicting?
transactions access the same record and
one of them is a write operation

Writes record A

Reads record A

Reads record A

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

What if transactions are conflicting?
transactions access the same record and
one of them is a write operation

Writes record A

Reads record A

Reads record A

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

What if transactions are conflicting?
transactions access the same record and
one of them is a write operation

Writes record A

Reads record A

Reads record A

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

What if transactions are conflicting?
transactions access the same record and
one of them is a write operation

Writes record A

Reads record A

Reads record A

Hyperledger Fabric

Bob

Alice

Charlie

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Endors
er

Order
er

Order
er

Order
er

Order
er

Order
er

Order
er

What if transactions are conflicting?
transactions access the same record and
one of them is a write operation

Writes record A

Reads record A

Reads record A

Dependency Graph

• A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

Dependency Graph

• A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1

T2

T3

T4

T5

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

T1 T5 T4 T3 T2

Dependency Graph

• A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1

T2

T3

T4

T5

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

T1 T5 T4 T3 T2

T1

Dependency Graph

• A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1

T2

T3

T4

T5

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

T1 T5 T4 T3 T2

T5T1

Dependency Graph

• A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1

T2

T3

T4

T5

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

T1 T5 T4 T3 T2

T5T1

T4

T4 reads b that is written by T1

Dependency Graph

• A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1

T2

T3

T4

T5

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

T1 T5 T4 T3 T2

T5

T3

T1

T4

T4 reads b that is written by T1

T3 writes e that is read by T5

Dependency Graph

• A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T1

T2

T3

T4

T5

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

T1 T5 T4 T3 T2

T5

T2T3

T1

T4

T4 reads b that is written by T1

T3 writes e that is read by T5

T2 writes d that is written by T5

Order-Parallel Execute (OXII) Architecture

Order-Parallel Execute (OXII) Architecture

• A separate set of nodes (orderers) orders the transactions, puts them
into blocks, generates a dependency graph for the block, and multicasts
it to all the nodes.

Order-Parallel Execute (OXII) Architecture

• A separate set of nodes (orderers) orders the transactions, puts them
into blocks, generates a dependency graph for the block, and multicasts
it to all the nodes.

• Each transaction (of an application) is then validated and executed by a subset
of nodes (executors of the application) following the dependency graph

Order-Parallel Execute (OXII) Architecture

• A separate set of nodes (orderers) orders the transactions, puts them
into blocks, generates a dependency graph for the block, and multicasts
it to all the nodes.

• Each transaction (of an application) is then validated and executed by a subset
of nodes (executors of the application) following the dependency graph

• The nodes multicast the results of execution and append the block

ParBlockchain

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

ParBlockchain

Order-Execute Architecture: Transactions are first ordered, and then executed

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

ParBlockchain

Order-Execute Architecture: Transactions are first ordered, and then executed

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

ParBlockchain

Order-Execute Architecture: Transactions are first ordered, and then executed

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

ParBlockchain

Order-Execute Architecture: Transactions are first ordered, and then executed

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Pluggable architecture, Confidential transaction, non-deterministic execution
similar to Hyperledger Fabric, Parblockchain has these three properties

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

ParBlockchain

Order-Execute Architecture: Transactions are first ordered, and then executed

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Pluggable architecture, Confidential transaction, non-deterministic execution
similar to Hyperledger Fabric, Parblockchain has these three properties

Non-deterministic Execution: inconsistent execution results can be detected in
the last phase (results in decreasing the performance)

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.

ParBlockchain

Orderes Executors

e5

e3

e2 e1

o1

o2

o3

o4

e6

e4

Le
d

ge
r

KVS

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

KVS

KVS KVS

KVS

KVS

Application A1 Application A2 Application A3

A1

A2

A2

A1

A3

A3

Each application has a set of Executors
Each Executor stores a copy of ledger and Data

Clients

ParBlockchain

T1

T2

T3

T4

T5

Orderes Executors

e5

e3

e2 e1

o1

o2

o3

o4

e6

e4

Le
d

ge
r

KVS

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

KVS

KVS KVS

KVS

KVS

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

Application A1 Application A2 Application A3

A1

A2

A2

A1

A3

A3

Each transaction of an application
include records to be read and written

Clients

ParBlockchain

T1

T2

T3

T4

T5

T1 T5 T4 T3 T2

Orderes Executors

e5

e3

e2 e1

o1

o2

o3

o4

e6

e4

Le
d

ge
r

KVS

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

KVS

KVS KVS

KVS

KVS

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

Application A1 Application A2 Application A3

A1

A2

A2

A1

A3

A3

The orderers order transactions using
a consensus protocol (e.g. PBFT)

Clients

Pre-prepare Prepare Commit

ParBlockchain

T1

T2

T3

T4

T5

T1 T5 T4 T3 T2

T5

T2 T3

T1

T4

Orderes Executors

e5

e3

e2 e1

o1

o2

o3

o4

e6

e4

Le
d

ge
r

KVS

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

KVS

KVS KVS

KVS

KVS

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

Application A1 Application A2 Application A3

A1

A2

A2

A1

A3

A3

Clients

Each orderer generates a dependency graph
for the block and multicasts it to all Executors

Pre-prepare Prepare Commit

ParBlockchain

T1

T2

T3

T4

T5

T1 T5 T4 T3 T2

T5

T2 T3

T1

T4

Orderes Executors

e5

e3

e2 e1

o1

o2

o3

o4

e6

e4

Le
d

ge
r

KVS

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

Le
d

ge
r

KVS

KVS KVS

KVS

KVS

Read = {a}
Write = {a,b}

Read = {f}
Write = {d}

Read = {f}
Write = {e}

Read = {b}
Write = {c}

Read = {e}
Write = {d}

Application A1 Application A2 Application A3

A1

A2

A2

A1

A3

A3

Clients

Executors of each application execute the
corresponding transactions following the
dependency graph and multicast the results

Pre-prepare Prepare Commit

Optimistic vs. Pessimistic Execution

Two ways to look at the problem!

Supporting non-deterministic execution Supporting High Contention Workloads

Optimistic vs. Pessimistic Execution

Two ways to look at the problem!

Supporting non-deterministic execution Supporting High Contention Workloads

Hyperledger
Executes first (does not submit

transactions with inconsistent results)
Validates read-write conflicts last (aborts

conflicting transactions)

Optimistic vs. Pessimistic Execution

Two ways to look at the problem!

Supporting non-deterministic execution Supporting High Contention Workloads

Hyperledger

ParBlcockchain

Executes first (does not submit
transactions with inconsistent results)

Checks conflicts first (generates a
dependency graph)

Validates non-determinist execution last
(aborts transactions with inconsistent results)

Validates read-write conflicts last (aborts
conflicting transactions)

Blockchain Scalability

• Scalability is one of the main roadblocks to business adoption of blockchains

Blockchain Scalability

• Scalability is one of the main roadblocks to business adoption of blockchains

• Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks

Blockchain Scalability

• Scalability is one of the main roadblocks to business adoption of blockchains

• Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks

2) On-chain (layer one): increase the throughput of the main chain
• Vertical techniques: more power is added to each node to perform more tasks

• Horizontal techniques: increase the number of nodes in the network

Blockchain Scalability

• Scalability is one of the main roadblocks to business adoption of blockchains

• Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks

2) On-chain (layer one): increase the throughput of the main chain
• Vertical techniques: more power is added to each node to perform more tasks

• Horizontal techniques: increase the number of nodes in the network

Sharding (as a horizontal technique): Partitioning the data into
multiple shards that are maintained by different subsets of nodes

Sharding Blockchains

Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the

presence of f malicious nodes)

n10n9

Cluster p3

n12n11
n14n13

Cluster p4

n16n15n2n1

Cluster p1

n4n3 n6n5

Cluster p2

n8n7

Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the

presence of f malicious nodes)

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

n10n9

Cluster p3

n12n11
n14n13

Cluster p4

n16n15n2n1

Cluster p1

n4n3 n6n5

Cluster p2

n8n7

Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the

presence of f malicious nodes)

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

• Shard the data
• Shard the application data and assign shards to clusters
• Each data shard is replicated across nodes of a cluster
• Different clusters process the transactions of their corresponding shard in parallel

n10n9

d3 d3

Cluster p3

n12n11

d3 d3

n14n13

d4 d4

Cluster p4

n16n15

d4 d4

n2n1

d1 d1

Cluster p1

n4n3

d1 d1

n6n5

d2 d2

Cluster p2

n8n7

d2 d2

Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the

presence of f malicious nodes)

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

• Shard the data
• Shard the application data and assign shards to clusters
• Each data shard is replicated across nodes of a cluster
• Different clusters process the transactions of their corresponding shard in parallel
• The Blockchain ledger is also sharded

n10n9

d3 d3

Cluster p3

n12n11

d3 d3

n14n13

d4 d4

Cluster p4

n16n15

d4 d4

n2n1

d1 d1

Cluster p1

n4n3

d1 d1

n6n5

d2 d2

Cluster p2

n8n7

d2 d2

Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the

presence of f malicious nodes)

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

• Shard the data
• Shard the application data and assign shards to clusters
• Each data shard is replicated across nodes of a cluster
• Different clusters process the transactions of their corresponding shard in parallel
• The Blockchain ledger is also sharded

• Cross-Shard transactions
• Need the participant of all (and only) involved clusters

n10n9

d3 d3

Cluster p3

n12n11

d3 d3

n14n13

d4 d4

Cluster p4

n16n15

d4 d4

n2n1

d1 d1

Cluster p1

n4n3

d1 d1

n6n5

d2 d2

Cluster p2

n8n7

d2 d2

SharPer: Sharding Permissioned Blockchains

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

SharPer: Sharding Permissioned Blockchains

• The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

SharPer: Sharding Permissioned Blockchains

• The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

• Each block includes a single transaction

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

SharPer: Sharding Permissioned Blockchains

• The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

• Each block includes a single transaction

• The total order is captured by chaining the transactions (blocks) together
• Each transaction includes the cryptographic hash of the previous transaction

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

SharPer: Sharding Permissioned Blockchains

• The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

• Each block includes a single transaction

• The total order is captured by chaining the transactions (blocks) together
• Each transaction includes the cryptographic hash of the previous transaction

• Cross-chain transactions include the hash of the previous transactions of all
involved shards.

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

SharPer: Sharding Permissioned Blockchains

• The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

• Each block includes a single transaction

• The total order is captured by chaining the transactions (blocks) together
• Each transaction includes the cryptographic hash of the previous transaction

• Cross-chain transactions include the hash of the previous transactions of all
involved shards.

• The entire blockchain ledger is not maintained by any node

• Each node only maintains its own view of the blockchain ledger
• including the transactions that access the data shard of the cluster

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)

SharPer Ledger

𝜆 𝜆 𝜆 𝜆 𝜆
P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10 t20 t30

𝜆 𝜆 𝜆 𝜆

t10 t20 t30

𝜆

t40t40

• Intra-shard transactions of different clusters
are processed in parallel

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10

t11

t20 t30

t21

𝜆 𝜆 𝜆 𝜆

t10

t11

t20

t21

t30

t31 t31

𝜆

t40

t41

t40

t41

• Intra-shard transactions of different clusters
are processed in parallel

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10

t11

t20 t30

t21

𝜆 𝜆 𝜆 𝜆

t10

t11

t20

t21

t30

t31 t31

t12,22 t12,22 t12,22

𝜆

t40

t41

t40

t41

t32,42 t32,42 t32,42

• Intra-shard transactions of different clusters
are processed in parallel

• Cross-shard transactions with non-
overlapping clusters are processed in parallel

• A cross-shard transaction includes multiple
hash pointers

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10

t11

t20

t13

t30

t21

t23 t33

𝜆 𝜆 𝜆 𝜆

t10

t11

t13

t20

t21

t23

t30

t33

t31 t31

t12,22 t12,22 t12,22

𝜆

t40

t43

t41

t40

t43

t41

t32,42 t32,42 t32,42

• Intra-shard transactions of different clusters
are processed in parallel

• Cross-shard transactions with non-
overlapping clusters are processed in parallel

• A cross-shard transaction includes multiple
hash pointers

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10

t11

t20

t13

t30

t21

t23 t33

t24,34,44

𝜆 𝜆 𝜆 𝜆

t10

t11

t13

t20

t21

t23

t30

t33

t31 t31

t12,22 t12,22 t12,22

t24,34,44 t24,34,44

𝜆

t40

t43

t41

t40

t43

t41

t32,42 t32,42 t32,42

t24,34,44

• Intra-shard transactions of different clusters
are processed in parallel

• Cross-shard transactions with non-
overlapping clusters are processed in parallel

• A cross-shard transaction includes multiple
hash pointers

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10

t11

t20

t13

t30

t21

t23 t33

t24,34,44

t35t25t14

𝜆 𝜆 𝜆 𝜆

t10

t11

t13

t20

t21

t23

t25

t30

t33

t35

t31 t31

t12,22 t12,22 t12,22

t24,34,44 t24,34,44

𝜆

t40

t43

t45

t41

t40

t43

t45

t41

t32,42

t14

t32,42 t32,42

t24,34,44

• Intra-shard transactions of different clusters
are processed in parallel

• Cross-shard transactions with non-
overlapping clusters are processed in parallel

• A cross-shard transaction includes multiple
hash pointers

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10

t11

t20

t13

t30

t21

t23 t33

t24,34,44

t35t25t14

𝜆 𝜆 𝜆 𝜆

t15,26,36,46

t10

t11

t13

t20

t21

t23

t25

t30

t33

t35

t31 t31

t12,22 t12,22 t12,22

t24,34,44 t24,34,44

t15,26,36,46 t15,26,36,46 t15,26,36,46

𝜆

t40

t43

t45

t41

t15,26,36,46

t40

t43

t45

t41

t32,42

t14

t32,42 t32,42

t24,34,44

• Intra-shard transactions of different clusters
are processed in parallel

• Cross-shard transactions with non-
overlapping clusters are processed in parallel

• A cross-shard transaction includes multiple
hash pointers

• All clusters might be involved in a cross-shard
transaction

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

SharPer Ledger

t10

t11

t20

t13

t30

t21

t23 t33

t24,34,44

t35t25t14

𝜆 𝜆 𝜆 𝜆

t15,26,36,46

t37t27t16

t10

t11

t13

t16

t20

t21

t23

t25

t27

t30

t33

t35

t37

t31 t31

t12,22 t12,22 t12,22

t24,34,44 t24,34,44

t15,26,36,46 t15,26,36,46 t15,26,36,46

𝜆

t40

t43

t45

t47

t41

t15,26,36,46

t40

t43

t45

t47

t41

t32,42

t14

t32,42 t32,42

t24,34,44

• Intra-shard transactions of different clusters
are processed in parallel

• Cross-shard transactions with non-
overlapping clusters are processed in parallel

• A cross-shard transaction includes multiple
hash pointers

• All clusters might be involved in a cross-shard
transaction

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4

Consensus in SharPer

Consensus in SharPer

• Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT

Consensus in SharPer

• Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT

• If nodes follow crash failure model, use crash fault-tolerant protocol, e.g., Paxos

Consensus in SharPer

• Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT

• If nodes follow crash failure model, use crash fault-tolerant protocol, e.g., Paxos

• Cross-Shard Consensus: needs the participation of all the involved clusters

• In each step 2f+1 nodes of every involved cluster must participate

Cross-Shard Consensus in SharPer

p2c2 p1c1 p4p3
Non-overlapping cross-shard transactions can be processed in parallel

Cross-Shard Consensus in SharPer

p2c2 p1
Request

c1 p4p3
Non-overlapping cross-shard transactions can be processed in parallel
Clients (c1 and c2) send requests to the (pre-elected) primary nodes

Cross-Shard Consensus in SharPer

p2c2 p1

Propose

Request
c1 p4p3

Non-overlapping cross-shard transactions can be processed in parallel
Clients (c1 and c2) send requests to the (pre-elected) primary nodes
Primary nodes multicast proposemessages including the hash of their

previous transactions to every node of all involved partitions

Cross-Shard Consensus in SharPer

p2c2 p1

Propose

Accept

Request
c1 p4p3

Non-overlapping cross-shard transactions can be processed in parallel
Clients (c1 and c2) send requests to the (pre-elected) primary nodes
Primary nodes multicast proposemessages including the hash of their

previous transactions to every node of all involved partitions
Each node multicasts acceptmessage including the hash of its previous

transaction to every node of all involved partitions

Cross-Shard Consensus in SharPer

p2c2 p1

Propose

Accept

Commit

Request
c1 p4p3

Non-overlapping cross-shard transactions can be processed in parallel
Clients (c1 and c2) send requests to the (pre-elected) primary nodes
Primary nodes multicast proposemessages including the hash of their

previous transactions to every node of all involved partitions
Each node multicasts acceptmessage including the hash of its previous

transaction to every node of all involved partitions
Upon receiving 2f+1 matching acceptmessage from each cluster, each
node collects hashes of all clusters and multicasts Commitmessage to

every node of all involved partitions

Cross-Shard Consensus in SharPer

p2c2 p1

Propose

Accept

Commit

Request
c1 p4p3

Non-overlapping cross-shard transactions can be processed in parallel
Clients (c1 and c2) send requests to the (pre-elected) primary nodes
Primary nodes multicast proposemessages including the hash of their

previous transactions to every node of all involved partitions
Each node multicasts acceptmessage including the hash of its previous

transaction to every node of all involved partitions
Upon receiving 2f+1 matching acceptmessage from each cluster, each
node collects hashes of all clusters and multicasts Commitmessage to

every node of all involved partitions
Upon receiving 2f+1 matching Commitmessage from each cluster, each

node executes the transaction and appends it to the ledger

Collaborative Workflow: Supply Chain
Management

Bulk Buyer Carrier Supplier

Manufacturer Middleman

• Different parties (applications) need to communicate across organizations to provide services
• The communication follows Service Level Agreements (agreed upon by all participants)
• They do not trust each other
• The blockchain system should support both cross-application and internal transactions
• Internal data of each party is confidential

Collaborative Workflow: Supply Chain
Management

Bulk Buyer Carrier Supplier

Manufacturer Middleman
1

8

2

7 4

5

6

3 Place Order

Place Order Place Order

Deliver

Notify

Deliver

Pick Order

Arrange Shipping

• Different parties (applications) need to communicate across organizations to provide services
• The communication follows Service Level Agreements (agreed upon by all participants)
• They do not trust each other
• The blockchain system should support both cross-application and internal transactions
• Internal data of each party is confidential

Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
• Similar to Hyperledger Fabric
• Smart contracts are confidential
• Transactions data and blockchain ledger are replicated on every application

Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
• Similar to Hyperledger Fabric
• Smart contracts are confidential
• Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
• Similar to Hyperledger Fabric
• Smart contracts are confidential
• Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

Second Solution: Deploy each application on a separate blockchain system
• Use another blockchain system for the cross-application transactions

Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
• Similar to Hyperledger Fabric
• Smart contracts are confidential
• Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

Second Solution: Deploy each application on a separate blockchain system
• Use another blockchain system for the cross-application transactions

Data Integrity issue

Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
• Similar to Hyperledger Fabric
• Smart contracts are confidential
• Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

Second Solution: Deploy each application on a separate blockchain system
• Use another blockchain system for the cross-application transactions

Third Solution: Deploy each application on a separate blockchain system
• Use cross-chain operation

Data Integrity issue

Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
• Similar to Hyperledger Fabric
• Smart contracts are confidential
• Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

Second Solution: Deploy each application on a separate blockchain system
• Use another blockchain system for the cross-application transactions

Third Solution: Deploy each application on a separate blockchain system
• Use cross-chain operation

Data Integrity issue

Performance issue

CAPER: A Cross-Application Permissioned Blockchain

• Distributed applications collaborate with each other following SLAs

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

CAPER: A Cross-Application Permissioned Blockchain

• Distributed applications collaborate with each other following SLAs

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

CAPER: A Cross-Application Permissioned Blockchain

• Distributed applications collaborate with each other following SLAs

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

CAPER: A Cross-Application Permissioned Blockchain

• Distributed applications collaborate with each other following SLAs

• Two types of transactions: internal and cross-application

• Cross-application transactions are visible to all applications

• Internal transactions of each application are confidential

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

CAPER: A Cross-Application Permissioned Blockchain

• Distributed applications collaborate with each other following SLAs

• Two types of transactions: internal and cross-application

• Cross-application transactions are visible to all applications

• Internal transactions of each application are confidential

• The blockchain ledger is formed as a directed acyclic graph

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

CAPER: A Cross-Application Permissioned Blockchain

• Distributed applications collaborate with each other following SLAs

• Two types of transactions: internal and cross-application

• Cross-application transactions are visible to all applications

• Internal transactions of each application are confidential

• The blockchain ledger is formed as a directed acyclic graph

• Each application maintains only its own view of the ledger
• including its internal and all cross-application transactions.

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.

The Blockchain Ledger of CAPER

The Blockchain Ledger

𝜆
Application 1

𝜆 𝜆 𝜆 𝜆

Application 2 Application 3 Application 4

The Blockchain Ledger of CAPER

t11 t21

The Blockchain Ledger

𝜆
Application 1

t31 t41 t11

𝜆

t21

𝜆 𝜆

t31 t41

𝜆

Application 2 Application 3 Application 4

Each application has its own internal transactions

The Blockchain Ledger of CAPER

t11

t12,1

t21

The Blockchain Ledger

𝜆
Application 1

t31 t41 t11

T12,1

𝜆

t12,1

t21

𝜆 𝜆

t31

t12,1

t41

𝜆

t12,1

Application 2 Application 3 Application 4

Cross-application transactions are maintained by every application

The Blockchain Ledger of CAPER

t11

t12,1

t13

t21

t22 t32

The Blockchain Ledger

𝜆
Application 1

t31 t41 t11

T12,1

t13

𝜆

t12,1

t21

t22

𝜆

t32

𝜆

t31

t12,1

t41

𝜆

t12,1

Application 2 Application 3 Application 4

The Blockchain Ledger of CAPER

t11

t12,1

t13

t21

t22 t32

t23,2

The Blockchain Ledger

𝜆
Application 1

t31 t41 t11

T12,1

t13

𝜆

t23,2

t12,1

t21

t22

t23,2

𝜆

t32

t23,2

𝜆

t31

t12,1

t41

𝜆

t23,2

t12,1

Application 2 Application 3 Application 4

The Blockchain Ledger of CAPER

t11

t12,1

t13

t21

t22 t32

t23,2

t33t24t14

The Blockchain Ledger

𝜆
Application 1

t31 t41 t11

T12,1

t13

t14

𝜆

t23,2

t12,1

t21

t22

t23,2

t24

𝜆

t32

t23,2

t33

𝜆

t31

t12,1

t41

𝜆

t23,2

t12,1

Application 2 Application 3 Application 4

The Blockchain Ledger of CAPER

t11

t12,1

t13

t21

t22 t32

t23,2

t33t24t14

The Blockchain Ledger

𝜆
Application 1

t34,3

t31 t41 t11

T12,1

t13

t14

𝜆

t23,2

t34,3

t12,1

t21

t22

t23,2

t24

𝜆

t34,3

t32

t23,2

t33

𝜆

t34,3

t31

t12,1

t41

𝜆

t23,2

t34,3

t12,1

Application 2 Application 3 Application 4

The Blockchain Ledger of CAPER

t11

t12,1

t13

t21

t22 t32

t23,2

t33t24t14

The Blockchain Ledger

𝜆
Application 1

t34,3

t35t25t15

t31

t42

t41 t11

T12,1

t13

t14

𝜆

t15

t23,2

t34,3

t12,1

t21

t22

t23,2

t24

𝜆

t34,3

t25

t32

t23,2

t33

𝜆

t34,3

t35

t31

t12,1

t42

t41

𝜆

t23,2

t34,3

t12,1

Application 2 Application 3 Application 4

Confidentiality of Cross-Application Transactions

Confidentiality of Cross-Application Transactions
• In CAPER:

• Internal transactions read both private and public data and write on private data

• Cross-application transactions read/write only public data

Confidentiality of Cross-Application Transactions
• In CAPER:

• Internal transactions read both private and public data and write on private data

• Cross-application transactions read/write only public data

• What if a cross-application transaction read/write private data?

• How to validate private transactions without revealing any information?

Confidentiality of Cross-Application Transactions
• In CAPER:

• Internal transactions read both private and public data and write on private data

• Cross-application transactions read/write only public data

• What if a cross-application transaction read/write private data?

• How to validate private transactions without revealing any information?

• Cryptography techniques are needed!

Confidentiality of Cross-Application Transactions
• In CAPER:

• Internal transactions read both private and public data and write on private data

• Cross-application transactions read/write only public data

• What if a cross-application transaction read/write private data?

• How to validate private transactions without revealing any information?

• Cryptography techniques are needed!

• Quorum uses zero knowledge proof

• Fabric defines Private data collections

https://www.hyperledger.org/

https://www.hyperledger.org/

From Cryptocurrencies to
Global Asset Management

Victor Zakhary, Mohammad Amiri, Sujaya Maiyya, Divyakant Agrawal,
Amr El Abbadi

From Cryptocurrencies to Global Assets

From Cryptocurrencies to Global Assets

• So far, Mining Node:

From Cryptocurrencies to Global Assets

• So far, Mining Node:
• Store cryptocurrency units

• Store ownership

• Execute Transactions (transfer ownership of currency units)

From Cryptocurrencies to Global Assets

• So far, Mining Node:
• Store cryptocurrency units

• Store ownership

• Execute Transactions (transfer ownership of currency units)

• Mining Nodes → The new public cloud

From Cryptocurrencies to Global Assets

• So far, Mining Node:
• Store cryptocurrency units

• Store ownership

• Execute Transactions (transfer ownership of currency units)

• Mining Nodes → The new public cloud

• Store:

From Cryptocurrencies to Global Assets

• So far, Mining Node:
• Store cryptocurrency units

• Store ownership

• Execute Transactions (transfer ownership of currency units)

• Mining Nodes → The new public cloud

• Store:
• General Assets (e.g., cars, houses, etc)

From Cryptocurrencies to Global Assets

• So far, Mining Node:
• Store cryptocurrency units

• Store ownership

• Execute Transactions (transfer ownership of currency units)

• Mining Nodes → The new public cloud

• Store:
• General Assets (e.g., cars, houses, etc)

• Transact on:

From Cryptocurrencies to Global Assets

• So far, Mining Node:
• Store cryptocurrency units

• Store ownership

• Execute Transactions (transfer ownership of currency units)

• Mining Nodes → The new public cloud

• Store:
• General Assets (e.g., cars, houses, etc)

• Transact on:
• General Assets (e.g., buy a house, rent a car etc)

Smart Contracts

Smart Contracts

Smart Contracts

• Alice registers her car

Smart Contracts

• Alice registers her car
• Make: Honda

• Model: Civic

• Year: ..

• VIN: …

Smart Contracts

• Alice registers her car
• Make: Honda

• Model: Civic

• Year: ..

• VIN: …

• Owner: Alice

• Price: x ethers

Smart Contracts

• Alice registers her car
• Make: Honda

• Model: Civic

• Year: ..

• VIN: …

• Owner: Alice

• Price: x ethers

Buy () {

// transfer ownership code

}

Smart Contracts

130

Smart Contracts

130

Smart Contracts

1.8 BTC

130

Smart Contracts

1.8 BTC

130

Smart Contracts

1.8 BTC

Sign

130

Smart Contracts

1.8 BTC1.8 BTC

Sign

130

Challenges

• Asset Authenticity

• Double Spending
• Deploy two smart contracts for the same car

• On the same blockchain or different blockchains

• Legality
• Implementing taxation laws

Permissioned and Permissionless Unite!

• Permissioned Blockchains
• Requires trust

• Trust can be distributed among several organizations
• Banks

• Governments

• NGOs

Global Asset Management

Global Asset Management

Global Asset Management

Permissioned Blockchain

DMV SB

Permissioned Blockchain

DMV SD

Global Asset Management

Permissioned Blockchain

DMV SB

Permissioned Blockchain

DMV SD

Permissionless Blockchain

Global Asset Management

Asset
Registration

Asset
Registration

Permissioned Blockchain

DMV SB

Permissioned Blockchain

DMV SD

Permissionless Blockchain

Global Asset Management

Asset
Registration

Smart Contract
Deployment

Asset
Registration

Permissioned Blockchain

DMV SB

Permissioned Blockchain

DMV SD

Permissionless Blockchain

Smart Contract
Deployment

Global Asset Management

Asset
Registration

Smart Contract
Deployment

Asset Trading

Asset
Registration

Permissioned Blockchain

DMV SB

Permissioned Blockchain

DMV SD

Permissionless Blockchain

Smart Contract
Deployment

Challenges Revisited

Challenges Revisited

• Asset Authenticity

Challenges Revisited

• Asset Authenticity
• Authenticated by the permissioned blockchain

Challenges Revisited

• Asset Authenticity
• Authenticated by the permissioned blockchain

• Double Spending

Challenges Revisited

• Asset Authenticity
• Authenticated by the permissioned blockchain

• Double Spending
• Permissioned blockchain:

• Allows the deployment of one contract per asset at a time

• Enables moving the asset from one Permissionless blockchain to another

Challenges Revisited

• Asset Authenticity
• Authenticated by the permissioned blockchain

• Double Spending
• Permissioned blockchain:

• Allows the deployment of one contract per asset at a time

• Enables moving the asset from one Permissionless blockchain to another

• Legality

Challenges Revisited

• Asset Authenticity
• Authenticated by the permissioned blockchain

• Double Spending
• Permissioned blockchain:

• Allows the deployment of one contract per asset at a time

• Enables moving the asset from one Permissionless blockchain to another

• Legality
• Encode the Taxation law in the smart contract code

Open research questions

• Scalability

• Identity theft

• Flexibility of asset marketing

Blockchain: Panacea for all our data problems?

• Resource cost:
• Proof-of-work consumes resources at

the planetary scale

• Mythical notion of democratization:
• Handful of miners control the progress

of Bitcoin blockchain

• False notion of security:
• An Individual vulnerable to the

security of his/her key

• Extreme distribution:
• is it really worth it?

• Extreme redundancy:
• is it really necessary?

• Social consequences:
• Are we comfortable if this technology

is used for dark causes?

