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Bitcoin: A Peer-to-Peer Electronic Cash System

• From Database and Distributed Computing Perspective

• Identities and Signatures
• Public/Private key pair

• Ledger
• The balance of each identity (saved in the blockchain)

• Transactions
• Move bitcoins from one identity to another
• Concurrency control to serialize transactions (Mining and PoW)
• Typically backed by a transactions log (blockchain)

• Log is persistent (replicated across the network nodes)
• Log is immutable and tamper-free (PoW and Hash pointers)
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Digital Signatures

• Unique to the signed document

• Mathematically hard to forge

• Mathematically easy to verify 

Document Sk

Sign()
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Document Pk Signature
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Hashing H(x)

• Signatures and public keys are combined using Hashing 

• Takes any string x of any length as input

• Fixed output size (e.g., 256 bits)

• Efficiently computable.

• Satisfies:
• Collision Free: no two x, y s.t. H(x) = H(y)

• Message digest.

• Hiding: Given H(x) infeasible to find x (one-way hash function)
• Commitment: commit to a value and reveal later

• Puzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such 
that:  H(ID | x) ε Y

SignatureAlice-Bob Pk-Diana
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Bitcoin uses SHA-256 SignatureAlice-Bob Pk-Diana

SHA256(                          ||               ) = 
256-bit (32-byte) unique string

SignatureAlice-Bob Pk-Diana

SHA256(abc) = 
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad

SHA256(abC) = 
0a2432a1e349d8fdb9bfca91bba9e9f2836990fe937193d84deef26c6f3b8f76
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Double Spending

• Spending the same digital cash asset more than once

• Impossible to do in physical cash

• Prevented in traditional banking systems through concurrency control

SignatureAlice-Bob Pk-Diana

SignatureAlice-Bob

Sign()

Sk-Bob

Pk-Marty

SignatureBob-Diana

Sk-Bob

SignatureBob-Marty

Sign()

I took her car

I took his ring
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Double Spending Prevention

• Centralized
• Transactions on coins go through a trusted 3rd party (Trent)

SignatureTrent-Bob

50 BTC

I want to transfer 20 
coins to Diana

Wasn’t spent 
before? Good

SignatureTrent-Bob

30 BTC

SignatureTrent-Diana

20 BTC

Same old, same old!
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Double Spending Prevention

• Decentralized
• A network of nodes maintains a ledger

• Network nodes work to agree on transactions order
• Serializing transactions on every coin prevents double spending

• What is the ledger?

• How to agree on transaction order?

• What incentives network nodes to maintain the ledger? 
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The Ledger’s What About’s?

• How is the ledger tamper-free?
1. Blocks are connected through hash-pointers

• Each block contains the hash of the previous block

• This hash gives each block its location in the blockchain

• Tampering the content of any block can easily be detected (is this enough? NO)

2. Replacing a consistent blockchain with another tampered consistent block 
chain should be made very hard, How?
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• To make progress:
• Network nodes group new transactions into a block

• Blocks are fixed in size (1MB)

• Network nodes validate new transactions to make sure that:
• Transactions on the new block do not conflict with each other

• Transactions on the new block do not conflict with previous blocks transactions

• Network nodes need to agree on the next block to be added to the blockchain
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Consensus

• Types of systems:  synchronous and asynchronous

• Problem statement:  given n processes and one leader:
• Agreement:  all correct processes agree on the same value
• Validity:  If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important Impossibility Results:
• FLP, in asynchronous systems:

• With even 1 crash failure, termination isn’t guaranteed (no liveness)

• Synchronous systems:  
• Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n
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(Multi-) Paxos

• Paxos is a consensus algorithm
• Processes want to agree on a value (e.g., the next block to be added to the chain)

• Paxos is currently used to manage local data in global-scale systems
• Spanner [OSDI’12, SIGMOD’17], Megastore [CIDR’11],  etc

• Multi-Paxos, simplified:
• Initially, a leader is elected by a majority quorum

• Replication: Leader replicates new updates to a majority quorum

• Leader Election: If the leader fails, a new leader is elected

Leader
Election

Replication Replication

A

Majority



Can Network Nodes Use Paxos?



Can Network Nodes Use Paxos?



Can Network Nodes Use Paxos?



Paxos Consensus



Paxos Consensus

• All participants should be known a priori



Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings



Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime



Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures



Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious



Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

• To make progress, at least 1/2 of the participants should be alive

• Progress is not guaranteed (FLP impossibility)



Paxos Consensus

• All participants should be known a priori
• Permissioned vs Permissionless settings

• Permissionless setting:
• Network nodes freely join or leave the network at anytime

• Tolerates only Crash failures
• However, network nodes can be Malicious

• To make progress, at least 1/2 of the participants should be alive

• Progress is not guaranteed (FLP impossibility)

• Also, Paxos has high network overhead
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Practical Byzantine Fault Tolerance (PBFT)

• Goal: Implement a deterministic replication service with arbitrary 
malicious faults in an asynchronous environment

• No assumptions about faulty behavior

• No bounds on delays

• Provides safety in asynchronous system and assume eventual time bounds 
for liveness

• Assumptions:
• 3f+1 replicas to tolerate f Byzantine faults (optimal)

• quorums have at least 2f+1 replicas
• quorums intersect in f+1, hence have at least one correct replica

• Strong cryptography
• Only for liveness: eventual time bounds 3f+1 replicas

quorum A quorum B
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Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests   (2) prepare ensures 
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPARE message, multicasts a COMMIT message
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replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests   (2) prepare ensures 
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMIT messages, reply the result to the client



replica 0
(Primary)

replica 1

replica 3 fail

replica 2

Request Pre-prepare Prepare Commit Reply

Algorithm
The algorithm has three main phases: (1) pre-prepare picks order of requests   (2) prepare ensures 
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the same result



PBFT Consensus

• Tolerates Byzantine (Malicious) failures
• To make progress, at least 2/3 of the participants should be correct

• Progress is not guaranteed (FLP impossibility)

• However, PBFT is Permissioned
• All participants should be known a priori

• Also, PBFT has high network overhead O(N2) [number of messages]
• Every node multi-casts their responses to every other node



Nakamoto’s Consensus

• Intuitively, network nodes race to solve a puzzle

• This puzzle is computationally expensive

• Once a network node finds (mines) a solution:
• It adds its block of transactions to the blockchain

• It multi-casts the solution to other network nodes

• Other network nodes accept and verify the solution
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• TXreward is self signed (also called coinbase transaction)
• First signature? Self signed ☺
• TXreward is bitcoin’s way to create new coins
• The reward value is halved every 4 years (210,000 blocks)
• Currently, it’s 12.5 Bitcoins per block
• Incentives network nodes to mine 
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• D: dynamically adjusted difficulty

• Difficulty is adjusted every 2016 blocks (almost 2 weeks)

256 bits

Difficulty bits
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Difficulty

• Adjust difficulty every 2016 blocks

• Expected 20160 mins to mine (10 mins per block)

• Actual time = timestamp of block 2016 – time stamp of block 1

• New_difficulty = old_difficulty * expected/actual

• Difficulty decreases if actual > expected, otherwise, increases
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Mining Details

• Find a nonce that results in SHA256(block) < Difficulty

• The solution space is a set. Once a solution is found, a block is mined

• Easily verified by network nodes

• Cannot be precomputed
• Depends on current block transactions and previous blocks

• Cannot be stolen
• Reward Transaction is signed to the public key of the miner

• Network nodes accept the first found block:
• The problem is difficult, there is no guaranteed bound to find another block

• What happens when 2 nodes concurrently mine a block? Fork
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• Find a nonce that results in SHA256(block) < Difficulty

CS271 40
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Previous Block Hash (32B)
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Time Stamp (4B)
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Nonce (4B)

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)
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18 zeros
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Selfish Miner

• If selfish miner successfully splits honest 
miners:
• The probability of finding the next 

red block is 2/3 (secures the reward 
of the previously found block)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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Selfish Miner

• Also,
• The probability of selfish miner to 

find the next red block is 1/2 even if 
selfish miner has 1/3 of the mining 
resources (Advantage)

Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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• High transaction-confirmation latency

• Probabilistic consistency guarantees

• Very low TPS ( Transactions per second) - average of  3 to 7 TPS

• New block added every 10 minutes. 
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Increasing Block Size

• Why they don’t work?

• Decreases fairness - giving large miners an advantage

• Requires more storage space (1 → 10 → 100 MB/ 10 mins)
• Requires more Network bandwidth

• Requires more verification time
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1MB/10 mins
1MB = 4200 Txns
7 Txns/ second

1MB/5 mins
1MB = 4200 Txns
14 Txns/ second

1MB/1 min
1MB = 4200 Txns
70 Txns/ second

………



Decrease Block Interval

• Requires to mining decrease difficulty

• Leads to more forks

• Results on network instability (many branches)
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Overview
• Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times

Form a committee to vouch for new block

BitcoinNG

ByzCoin

Shard txns across different committees Elastico
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BitcoinNG (Next Generation)

Eyal, Ittay, et al. "Bitcoin-NG: A Scalable Blockchain Protocol." NSDI. 2016.

Observation: In Bitcoin, 
blocks provide two 

purpose:
consensus and

txn verification

Keyblocks: 
Used for Leader 

Election and created 
using Proof-of-work

Microblocks: 
Contains txns and is 

generated by the epoch 
leader, signed by 

leader's private key

- Key-block miner → leader till next key-block is mined
- Leader publishes micro-blocks while in tenure

Allowing one miner to be a leader, even for a brief interval, presents many 
concerns!!
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ByzCoin
• Uses key-blocks and micro-blocks

• Key-block miner (PoW) in window 

becomes a trustee

• Micro-block decided by trustees

• Trustees use PBFT to reach consensus on next 
micro-block

• Each block is signed using Collective Signing
approach

Kogias, Eleftherios Kokoris, et al. "Enhancing bitcoin security and performance with strong consistency via collective 
signing." 25th USENIX Security Symposium (USENIX Security 16). 2016.

Leader

2

34

5

PBFT + CoSi→
next microblock
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Elastico
• Key idea: split all servers into smaller sized 

groups, committees

• Each committee processes a disjoint shard 
of txns

• Each committee runs any BFT to reach 
consensus on a block

• A special Final committee aggregates all 
chosen shards and publishes next block in 
the chain

Shard 1 Shard 2 Shard 3

Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of the 2016 ACM SIGSAC Conference 
on Computer and Communications Security. ACM, 2016.

BFT  protocol
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Cross-Shard Transactions

Requires Atomic Cross-Shard Commitment Protocol
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The Landscape

• Thousands of Blockchains

• Tens of thousands of markets

• Exchanges to trade tokens for USD

• Direct token transactions in one blockchain

• Direct token transactions across blockchains, how?

• Cross-chain transactions
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Smart Contracts

• Like classes in Object Oriented Programming Languages

• Allow end-users to:
• Store generic data objects in the blockchain

• Define the functions that manipulate these data objects

• Have attributes (e.g., represents a car)

• Have functions (e.g., rent, buy, etc)

• Can be used to implement generic transaction logic:
• Conditionally lock assets in the blockchain

• Transfer asset ownership on some condition
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Smart Contracts

class AtomicSwap {
sender: s // Alice

recipient: r // Bob

asset: a // X bitcoins

secretHash: h

constructor() {

}

redeem (secret srt) {

if(hash(srt) == h)

transfer a to r

}

…..

}
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Atomic Swap Example: What can go wrong?

• Alice locks her X Bitcoins in Bitcoin’s blockchain through SC1

• Bob sees SC1 but refuses to publish SC2

• Now, Alice’s Bitcoins are locked for good
• A conforming party (Alice) ends up worse off because Bob doesn’t follow the 

protocol

• Prevention
• Use timelocks to expire a contract

• Specify that an expired contract is refunded to the creator of this contract
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What can go wrong?

Δ Δ Δ Δ
Alice-Bob in Bitcoin

e.g., Δ = 12hr
X bitcoins

Y ethers

Bob-Alice in Ethereum

If Bob fails or suffers a network 
denial of service attack for a Δ, 
Alice’s contract will expire and 
Bob will lose his X bitcoins

Atomicity Violation

X bitcoins are refunded to 
Alice any time after the 
contract expires
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Atomicity Violation

• Using timelocks leads to Atomicity violation

• Our Atomicity-based Approach:
• The decision of both transactions should be made atomic

• Once the decision is taken, both transactions either commit or abort

• A transaction cannot commit unless a commit decision is reached

• A transaction cannot abort unless an abort decision is reached

78



Atomic Commitment Across 
Blockchains

Victor Zakhary, Divyakant Agrawal, Amr El Abbadi
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• How can miners of one blockchain:
• Verify a transaction in another blockchain?

• Without maintaining a copy of this other blockchain.

80
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Building block: Cross-Chain Verification

• Verification process:
• Each header includes the hash of the previous header

• The proof of work of each header is correct

• TX1 is correct

• TX1 is buried under d blocks

• The cost of generating evidence:
• Choose d to make this cost > the value transacted in TX1

• If true, a malicious user has no incentive to create a fake evidence

TX1
TX1 evidence

d blocks

82
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• Use another blockchain to witness the Atomic Swap

• The witness blockchain decides the commit or the abort of a swap

• Once a decision is made:
• All sub-transactions in the swap must follow the decision

• Achieves atomicity, either all committed or all aborted

• Cross chain verification is leveraged twice
• Miners of the witness network verify the publishing of contracts in asset 

blockchains

• Miners of assets’ blockchains verify the decision made in the witness network
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• Participants submit evidence of Redeem State (RD) from the Witness 
Blockchain to the Assets Blockchains.

• After evidence verification, participants redeem their assets from the 
Assets Blockchains.

SCw {
S=P}Witness Blockchain

d blocks
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Atomic Commitment Across Blockchains

• SCw’s state determines the commit (RD) or the abort (RF) decision

• Once SCw’s state is altered and the block is buried under d blocks:
• All sub-transactions must follow this decision
• None of the sub-transactions can decide on a different decision

• Even if a participant fails or faces a network denial of service:
• When the participant recovers, the evidence of the decision still exists
• This evidence can be used to redeem or refund the contracts

• The only way to violate atomicity is to fork the witness blockchain

• Economic incentives prevent this attack

• Any protocol is prone to fork attacks 



Permissioned Blockchain



Any applications other than 

Cryptocurrency?



Supply Chain Management:
Tracking Fish from Ocean to Table
• Ocean fishing represents more than $70B in worldwide trade1

• Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction 
are ever inspected2.

• Nearly one in three fish were mislabeled by sellers3

• 87% of snapper and 59% of tuna were mislabelled4

• 95% of all sushi restaurants were serving mislabeled fish4

1 Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.
2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.
3 Miguel çngel Pardo, Elisa JimŽnez, Bego–a PŽrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277–283.
4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.
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Tracking Fish from Ocean to Table
• Ocean fishing represents more than $70B in worldwide trade1

• Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction are ever 
inspected2.

• Nearly one in three fish were mislabeled by sellers3

• 87% of snapper and 59% of tuna were mislabelled4

• 95% of all sushi restaurants were serving mislabeled fish4

• Challenges:
• Many different paths from ocean to table

• Lack of global authority for tracing

• Proprietary tracing systems do not scale

• Most existing processes are paper-based

• The supply chain is extremely complex and includes many participants from different industries
1 Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.
2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.
3 Miguel çngel Pardo, Elisa JimŽnez, Bego–a PŽrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277–283.
4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.
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Blockchain for Supply Chains

• Eliminate information silos and ensure provenance with immutable records
• Access end-to-end supply chain data instantly and easily with full transparency
• Minimize waste and allocate inventory using insights from real-time demand forecasts

Blockchain Network

Digital Flow

Physical Flow

Farmer
Register Item

Distributer
Deliver Item

Consumer
Back-trace Item

Retailer
Sell Item

Producer
Mass Balance Verification
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Permissioned Blockchain
• Run a blockchain among a set of known, identified participants

• Provides a way to secure the interactions among a group of entities that have a common goal but 
which do not fully trust each other

• The ledger is distributed among all the nodes

Permissionless Permissioned

Participants Anonymous, Could be malicious Known, Identified

Consensus Mechanisms Proof of Work, Proof of Stake, …

• Large energy consumption
• No finality
• 51% attack

Byzantine fault tolerance 
Consensus, e.g., PBFT
• Lighter
• Faster
• Low energy consumption
• Enable finality

Transaction Approval time Long (Bitcoin: 10 min or more) Short (100x msec)



Consensus Protocols in Permissioned 
Networks 
• Types of systems: synchronous and asynchronous

• Problem statement:  given N processes (one of them is the leader):
• Agreement:  all correct processes agree on the same value
• Validity:  If initiator does not fail, all correct processes agree on its value

• Types of failure:
• Crash
• Malicious (or Byzantine)

• Important impossibility result:
• FLP, in asynchronous systems:

• With even one crash failure, termination is not guaranteed (no liveness)

• Synchronous systems:  
• Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n
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Bitcoin review

• The lucky node who solves the puzzle first 
multicasts the block

• Each node validates the transactions within 
the block

• Transactions are deterministically executed
by every node and appended to the ledger

Client

Execution AppendValidation Ordering

p1 p2 p3 p4 p5 p6

• Clients multicasts their requests
• Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

WIN
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Order-execute Architecture

• A set of nodes (might be all of them) orders transactions, puts them into blocks, 
multicasts them to all the nodes.

• Each node then executes the transactions and updates the ledger.

• Limitations of Order-Execute

• Sequential execution: Transactions are sequentially executed on all peers 
(performance bottleneck)

• Non-deterministic code: any non-deterministic execution results in “fork” in  
the distributed ledger

• Confidentiality of execution: all smart contracts run on all peers!
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Execute-Order-Validate Architecture

• Each transaction (of an application) is first executed by a subset of 
nodes (endorsers of the application)

• A separate set of nodes (orderers) orders the transactions, puts them 
into blocks, and multicasts them to all the nodes.

• Each node validates the transactions within a block and updates the 
ledger
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EuroSys, ACM.



Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains. 
EuroSys, ACM.



Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains. 
EuroSys, ACM.



Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains. 
EuroSys, ACM.



Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains. 
EuroSys, ACM.



Hyperledger Fabric

Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

Parallel Execution: Transactions of different applications can be executed in 
parallel

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains. 
EuroSys, ACM.
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Hyperledger Fabric

• Three types of Nodes: Clients, Endorsers, and Orderers
• Clients send transactions to be executed.

• Endorsers execute transaction proposals and validate transactions.
• All endorsers maintain the blockchain ledger

• Each application has its own set of endorsers

• Orderers stablish the total order of all transactions using a consensus protocol
• Do not maintain the blockchain ledger or smart contracts

• The consensus protocol is pluggable

Clients (of different applications)

Endors
er
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er

Endors
er

Endorsers (of different applications)

Order
er

Order
er

Order
er
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There are totally six Orderers

In the validation phase, Endorsers check: (1) validity of transactions, (2) read-write conflicts
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• A dependency graph exposes conflicts between transactions to give a 
partial order of transactions. 
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Order-Parallel Execute (OXII) Architecture

• A separate set of nodes (orderers) orders the transactions, puts them 
into blocks, generates a dependency graph for the block, and multicasts 
it to all the nodes.

• Each transaction (of an application) is then validated and executed by a subset 
of nodes (executors of the application) following the dependency graph

• The nodes multicast the results of execution and append the block
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Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in 
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.
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ParBlockchain

Order-Execute Architecture: Transactions are first ordered, and then executed

Parallel Execution: non-conflicting transactions of the same or different 
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Pluggable architecture, Confidential transaction, non-deterministic execution
similar to Hyperledger Fabric, Parblockchain has these three properties

Non-deterministic Execution: inconsistent execution results can be detected in
the last phase (results in decreasing the performance)

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in 
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.
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Optimistic vs. Pessimistic Execution

Two ways to look at the problem!

Supporting non-deterministic execution Supporting High Contention Workloads

Hyperledger

ParBlcockchain

Executes first (does not submit 
transactions with inconsistent results)

Checks conflicts first (generates a 
dependency graph)

Validates non-determinist execution last 
(aborts transactions with inconsistent results)

Validates read-write conflicts last (aborts 
conflicting transactions)
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Blockchain Scalability

• Scalability is one of the main roadblocks to business adoption of blockchains

• Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the 
transactions off the chain, e.g. lightning networks

2) On-chain (layer one): increase the throughput of the main chain
• Vertical techniques: more power is added to each node to perform more tasks

• Horizontal techniques: increase the number of nodes in the network

Sharding (as a horizontal technique): Partitioning the data into
multiple shards that are maintained by different subsets of nodes



Sharding Blockchains



Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the 

presence of f malicious nodes) 

n10n9

Cluster p3

n12n11
n14n13

Cluster p4

n16n15n2n1

Cluster p1

n4n3 n6n5

Cluster p2

n8n7



Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the 

presence of f malicious nodes) 

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if  f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

n10n9

Cluster p3

n12n11
n14n13

Cluster p4

n16n15n2n1

Cluster p1

n4n3 n6n5

Cluster p2

n8n7



Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the 

presence of f malicious nodes) 

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if  f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

• Shard the data
• Shard the application data and assign shards to clusters
• Each data shard is replicated across nodes of a cluster
• Different clusters process the transactions of their corresponding shard in parallel

n10n9

d3 d3

Cluster p3

n12n11

d3 d3

n14n13

d4 d4

Cluster p4

n16n15

d4 d4

n2n1

d1 d1

Cluster p1

n4n3

d1 d1

n6n5

d2 d2

Cluster p2

n8n7

d2 d2



Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the 

presence of f malicious nodes) 

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if  f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

• Shard the data
• Shard the application data and assign shards to clusters
• Each data shard is replicated across nodes of a cluster
• Different clusters process the transactions of their corresponding shard in parallel
• The Blockchain ledger is also sharded

n10n9

d3 d3

Cluster p3

n12n11

d3 d3

n14n13

d4 d4

Cluster p4

n16n15

d4 d4

n2n1

d1 d1

Cluster p1

n4n3

d1 d1

n6n5

d2 d2

Cluster p2

n8n7

d2 d2



Sharding Blockchains
• Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the 

presence of f malicious nodes) 

• How to form clusters such that each cluster includes at most f faulty nodes?
• Assign nodes to clusters in a random manner (uniform distribution): works if  f is very large
• Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

• Shard the data
• Shard the application data and assign shards to clusters
• Each data shard is replicated across nodes of a cluster
• Different clusters process the transactions of their corresponding shard in parallel
• The Blockchain ledger is also sharded

• Cross-Shard transactions
• Need the participant of all (and only) involved clusters
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• The total order is captured by chaining the transactions (blocks) together
• Each transaction includes the cryptographic hash of the previous transaction

• Cross-chain transactions include the hash of the previous transactions of all
involved shards.

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)



SharPer: Sharding Permissioned Blockchains

• The blockchain ledger is generalized from a linear chain to a directed acyclic 
graph (DAG)

• Each block includes a single transaction

• The total order is captured by chaining the transactions (blocks) together
• Each transaction includes the cryptographic hash of the previous transaction

• Cross-chain transactions include the hash of the previous transactions of all
involved shards.

• The entire blockchain ledger is not maintained by any node

• Each node only maintains its own view of the blockchain ledger
• including the transactions that access the data shard of the cluster

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)
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• Cross-shard transactions with non-
overlapping clusters are processed in parallel

• A cross-shard transaction includes multiple 
hash pointers

• All clusters might be involved in a cross-shard 
transaction

P1 P2 P3 P4

The Blockchain Ledger and the view of clusters P1, P2, P3, and P4
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• Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT

• If nodes follow crash failure model, use crash fault-tolerant protocol, e.g., Paxos

• Cross-Shard Consensus: needs the participation of  all the involved clusters

• In each step 2f+1 nodes of every involved cluster must participate
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Cross-Shard Consensus in SharPer

p2c2 p1

Propose

Accept

Commit

Request
c1 p4p3

Non-overlapping cross-shard transactions can be processed in parallel
Clients (c1 and c2) send requests to the (pre-elected) primary nodes
Primary nodes multicast proposemessages including the hash of their 

previous transactions to every node of all involved partitions
Each node multicasts acceptmessage including the hash of its previous 

transaction to every node of all involved partitions
Upon receiving 2f+1 matching acceptmessage from each cluster, each 
node collects hashes of all clusters and multicasts Commitmessage to 

every node of all involved partitions
Upon receiving 2f+1 matching Commitmessage from each cluster, each 

node executes the transaction and appends it to the ledger
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Bulk Buyer Carrier Supplier

Manufacturer Middleman
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7 4

5
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3 Place Order
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Deliver

Notify

Deliver

Pick Order

Arrange Shipping

• Different parties (applications) need to communicate across organizations to provide services
• The communication follows Service Level Agreements (agreed upon by all participants)
• They do not trust each other
• The blockchain system should support both cross-application and internal transactions
• Internal data of each party is confidential
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Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
• Similar to Hyperledger Fabric
• Smart contracts are confidential
• Transactions data and blockchain ledger are replicated on every application

Confidentiality issue

Second Solution: Deploy each application on a separate blockchain system
• Use another blockchain system for the cross-application transactions

Third Solution: Deploy each application on a separate blockchain system
• Use cross-chain operation

Data Integrity issue

Performance issue
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CAPER: A Cross-Application Permissioned Blockchain

• Distributed applications collaborate with each other following SLAs

• Two types of transactions: internal and cross-application

• Cross-application transactions are visible to all applications

• Internal transactions of each application are confidential

• The blockchain ledger is formed as a directed acyclic graph

• Each application maintains only its own view of the ledger
• including its internal and all cross-application transactions.

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain, 
The 45th International Conference on Very Large Data Bases (VLDB), 2019.
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Confidentiality of Cross-Application Transactions
• In CAPER:

• Internal transactions read both private and public data and write on private data

• Cross-application transactions read/write only public data

• What if a cross-application transaction read/write private data?

• How to validate private transactions without revealing any information?

• Cryptography techniques are needed!

• Quorum uses zero knowledge proof

• Fabric defines Private data collections



https://www.hyperledger.org/

https://www.hyperledger.org/




From Cryptocurrencies to 
Global Asset Management

Victor Zakhary, Mohammad Amiri, Sujaya Maiyya, Divyakant Agrawal,  
Amr El Abbadi
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From Cryptocurrencies to Global Assets

• So far, Mining Node:
• Store cryptocurrency units

• Store ownership

• Execute Transactions (transfer ownership of currency units)

• Mining Nodes → The new public cloud

• Store:
• General Assets (e.g., cars, houses, etc)

• Transact on:
• General Assets (e.g., buy a house, rent a car etc)
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Smart Contracts

• Alice registers her car
• Make: Honda

• Model: Civic

• Year: ..

• VIN: …

• Owner: Alice

• Price: x ethers

Buy () {

// transfer ownership code

}
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Challenges

• Asset Authenticity

• Double Spending
• Deploy two smart contracts for the same car

• On the same blockchain or different blockchains

• Legality
• Implementing taxation laws



Permissioned and Permissionless Unite!

• Permissioned Blockchains
• Requires trust

• Trust can be distributed among several organizations
• Banks

• Governments

• NGOs
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Permissioned Blockchain
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Challenges Revisited

• Asset Authenticity
• Authenticated by the permissioned blockchain

• Double Spending
• Permissioned blockchain:

• Allows the deployment of one contract per asset at a time

• Enables moving the asset from one Permissionless blockchain to another

• Legality
• Encode the Taxation law in the smart contract code



Open research questions

• Scalability

• Identity theft

• Flexibility of asset marketing



Blockchain: Panacea for all our data problems?

• Resource cost:
• Proof-of-work consumes resources at 

the planetary scale

• Mythical notion of democratization:
• Handful of miners control the progress 

of Bitcoin blockchain

• False notion of security:
• An Individual vulnerable to the 

security of his/her key

• Extreme distribution:
• is it really worth it?

• Extreme redundancy:
• is it really necessary?

• Social consequences:
• Are we comfortable if this technology 

is used for dark causes?


