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* |dentities and Signatures
* You are your signature [ID, username and password] | ... Kuctea Mcloilimes < 52
’;F’(i'tg one and “Foo s
* Ledger TS
* The balance of each identity (saved in a DB) ST S — 2 55 &

* Transactions
* Move money from one identity to another
e Concurrency control to serialize transactions (prevent double spending)

* Typically backed by a transactions log
* Logis persistent
* Logisimmutable and tamper-free (end-users trust this)
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Bitcoin: A Peer-to-Peer Electronic Cash System

* From Database and Distributed Computing Perspective

* |dentities and Signatures
* Public/Private key pair

* Ledger

* The balance of each identity (saved in the blockchain)

* Transactions
* Move bitcoins from one identity to another
* Concurrency control to serialize transactions (Mining and PoW)

» Typically backed by a transactions log (blockchain)
* Log is persistent (replicated across the network nodes)
* Logis immutable and tamper-free (PoW and Hash pointers)
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* Unique to the sighed document
* Mathematically hard to forge
* Mathematically easy to verify

Document q Signature
LSign()

> Verify() -

Signature Valid Invalid
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* Signatures and public keys are combined using Hashing
* Takes any string x of any length as input

* Fixed output size (e.g., 256 bits)

* Efficiently computable.

e Satisfies:
e Collision Free: no two x, y s.t. H(x) = H(y)
* Message digest.
* Hiding: Given H(x) infeasible to find x (one-way hash function)
* Commitment: commit to a value and reveal later

* Puzzle Friendly: Given a random puzzle ID and a target set Y it is hard to find x such
that: H(ID | x) e Y
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Bitcoin uses SHA-256 [ Pk_Diana
stazse( (e || B -

256-bit (32-byte) unique string

SHA256(abc) =
ba7816bf8f01cfead414140de5dae2223b00361a396177a9cb410ff61f20015ad

SHA256(abC) =
0a2432a1e349d8fdb9bfcad1bbade9f2836990fe937193d84deef26c6f3b8F76
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* Spending the same digital cash asset more than once
* Impossible to do in physical cash
* Prevented in traditional banking systems through concurrency control

igenature,, P, .. Sk-Bob .
[ Signature;...gob - Signatureg,, piana

> Sign()

> Sign()
: Signature o-
Slgnatu € Alice-Bob } Sob-Marty
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* Spending the same digital cash asset more than once
* Impossible to do in physical cash

* Prevented in traditional banking systems through concurréncy control
| took her car
. S )
[ SignatureBob-Diana X
> Sign()
> Sign()
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e Centralized
* Transactions on coins go through a trusted 3™ party (Trent)

50 BTC 30 BTC 20 BTC

SIgnatureTrent—Bob

O
| want to transfer 20
coins to Diana

Same old, same old!

Wasn’t spent
before? Good
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e Decentralized
* A network of nodes maintains a ledger

* Network nodes work to agree on transactions order
 Serializing transactions on every coin prevents double spending

 What is the ledger?
 How to agree on transaction order? L
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e Decentralized
* A network of nodes maintains a ledger

Network nodes work to agree on transactions order
 Serializing transactions on every coin prevents double spending

 What is the ledger?

* How to agree on transaction order? NS

* What incentives network nodes to maintain the ledger?
N
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* Transactions are grouped into blocks
* Blocks are chained to each other through pointers (Hence blockchain)
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* Where is the ledger stored?
* Each network node maintains its copy of the ledger

* How is the ledger tamper-free?

1. Blocks are connected through hash-pointers
e Each block contains the hash of the previous block
* This hash gives each block its location in the blockchain
 Tampering with the content of any block can easily be detected (is this enough? NO)

Hash()

Hash()
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* How is the ledger tamper-free?

1. Blocks are connected through hash-pointers
* Each block contains the hash of the previous block
* This hash gives each block its location in the blockchain
 Tampering the content of any block can easily be detected (is this enough? NO)
2. Replacing a consistent blockchain with another tampered consistent block
chain should be made very hard, How?
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* The ledger is fully replicated to all network nodes

* To make progress:

* Network nodes group new transactions into a block
e Blocks are fixed in size (1MB)
* Network nodes validate new transactions to make sure that:

* Transactions on the new block do not conflict with each other
* Transactions on the new block do not conflict with previous blocks transactions

* Network nodes need to agree on the next block to be added to the blockchain

Consensus
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* Types of systems: synchronous and asynchronous

* Problem statement: given n processes and one leader:
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

* Types of failure:
* Crash
* Malicious (or Byzantine)

* Important Impossibility Results:
* FLP, in asynchronous systems:
* With even 1 crash failure, termination isn’t guaranteed (no liveness)

* Synchronous systems:
* Termination is guaranteed if number of failed malicious processes (f) is at most 1/3 n
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* Paxos is a consensus algorithm
* Processes want to agree on a value (e.g., the next block to be added to the chain)

e Paxos is currently used to manage local data in global-scale systems
* Spanner [OSDI'12, SIGMOD’17], Megastore [CIDR’11], etc

* Multi-Paxos, simplified:
* |nitially, a leader is elected by a majority quorum
* Replication: Leader replicates new updates to a majority quorum

* Leader Election: If the leader fails, a new leader is elected
A

Leader Replication Replication

Election

Majority
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* All participants should be known a priori
* Permissioned vs Permissionless settings
* Permissionless setting:
* Network nodes freely join or leave the network at anytime
* Tolerates only Crash failures
* However, network nodes can be Malicious
* To make progress, at least 1/2 of the participants should be alive
* Progress is not guaranteed (FLP impossibility)

* Also, Paxos has high network overhead
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Practical Byzantine Fault Tolerance (PBFT)

* Goal: Implement a deterministic replication service with arbitrary
malicious faults in an asynchronous environment

* No assumptions about faulty behavior
* No bounds on delays

* Provides safety in asynchronous system and assume eventual time bounds
for liveness

* Assumptions: . .
* 3f+1 replicas to tolerate f Byzantine faults (optimal) quordm quorum

e quorums have at least 2f+1 replicas
e quorums intersect in f+1, hence have at least one correct replica
» Strong cryptography

* Only for liveness: eventual time bounds 3f+1 replicas
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The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(3) Backups multicast PREPARE message

Request Pre-prepare Prepare Commit Reply
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The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

Request Pre-prepare Prepare Commit Reply
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The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(4) If a replica receives at least 2f matching PREPARE message, multicasts a COMIMIT message

Request Pre-prepare Prepare Commit Reply

lica O
N L
replica 2 \ A’ A‘:\
e\ N\ N\

replica 3
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The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(5) If a replica receives at least 2f COMMIT messages, reply the result to the client

Request Pre-prepare Prepare Commit Reply

replica O
(Primary)

replica 1

replica 2

replica 3
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The algorithm has three main phases: (1) pre-prepare picks order of requests (2) prepare ensures
order within views, (3) commit ensures order across views

(6) The client waits for f+1 replies from different replicas with the same result

Request Pre-prepare Prepare Commit Reply

replica O
(Primary)

replica 1

replica 2

replica 3
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PBFT Consensus

* Tolerates Byzantine (Malicious) failures
* To make progress, at least 2/3 of the participants should be correct
* Progress is not guaranteed (FLP impossibility)

* However, PBFT is Permissioned
 All participants should be known a priori

* Also, PBFT has high network overhead O(N?) [number of messages]
* Every node multi-casts their responses to every other node
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Nakamoto’s Consensus

* Intuitively, network nodes race to solve a puzzle
* This puzzle is computationally expensive

* Once a network node finds (mines) a solution:
* |t adds its block of transactions to the blockchain
* |t multi-casts the solution to other network nodes
* Other network nodes accept and verify the solution
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e D: dynamically adjusted difficulty

256 bits

| ]
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* Difficulty is adjusted every 2016 blocks (almost 2 weeks)
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Difficulty

* Adjust difficulty every 2016 blocks

* Expected 20160 mins to mine (10 mins per block)

e Actual time = timestamp of block 2016 — time stamp of block 1
* New_difficulty = old_difficulty * expected/actual

* Difficulty decreases if actual > expected, otherwise, increases
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* Find a nonce that results in SHA256(block) < Difficulty
* The solution space is a set. Once a solution is found, a block is mined
* Easily verified by network nodes

e Cannot be precomputed
* Depends on current block transactions and previous blocks

* Cannot be stolen
* Reward Transaction is signed to the public key of the miner

* Network nodes accept the first found block:
* The problem is difficult, there is no guaranteed bound to find another block

* What happens when 2 nodes concurrently mine a block? Fork
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* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)| 02000000

25F947B7C18A1E4E2DF96D0D4368DFC24

Previous Block Hash (32B)] \aqcaecacapessia4cag35409D58FED

AE04D109A3A7A0460AD2DFD95A4FOFAA
Merkle Tree Root Hash (32B
erkle Tree Root Hash (3 )145F3249BEE9F371F8204D16C01D4921

Time Stamp (4B)|] 5C9F3E20

Current Target Bits (4B)| 172E6117

Nonce (4B)

X reward
X,

X

n

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)

POOOOOOOOOOOOOOOOO’cf?:620d570d08d 1799alcafbbfae512fdba2124665ecal

Y
18 zeros

SHA256(V,P,M,T,C,0) =
BD72804EE251889F9013C100767999B57E92EC5B6ADBDBF64F2DF1B032429C72



Dol at UCSE

Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)
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* Find a nonce that results in SHA256(block) < Difficulty

Difficulty is a function of Current Target Bits (Largest possible Target/Current Target)
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* Find a nonce that results in SHA256(block) < Difficulty
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SHA256(V,P,M,T,C,1) = AR

DF64342507E785FDCOD4C776D7142BB2BC6467FO9EO040A3E9F65E38872 ¥ =+



DSL at LCSB
Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
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Mining Details

* Find a nonce that results in SHA256(block) < Difficulty

Version (4B)

Previous Block Hash (32B)

Merkle Tree Root Hash (32B)

Time Stamp (4B)
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Mining Details

* Find a nonce that results in SHA256(block) < Difficulty
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Forks

™, X,
™%, X,
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X,
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X,
X,

X

Transactions in the forked blocks might have conflicts

Could lead to double spending
Forks have to be eliminated
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* Miners join the longest chain to resolve forks
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* Transactions in this block have to be resubmitted




DSL at LICSB
Forks

!
2 3
< X

23

23

El

1 1 1
2 2 2
TX" Txn Txn
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* If 51% of the computation (hash) power are malicious:
* They can cooperate to fork the chain at any block

* Can lead to double spending
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Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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X,
* Block found, yay! .
X,

* Don’t immediately announce it

* Let honest miners waste their mining a
power on an obsolete block

e Start mining the next block (Advantage)

* Two possible outcomes

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.



DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

™ X, X,

R X, TX,

TX, X, ™ -
TX,
TX,

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.




DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

R

™ ™ TX,
R X, TX,
T)I(“ X, T).(n T,
X,
* First Outcome _
X,

R

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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DSL at UCSE
Selfish Mining

Honest Miner

¥\

e

%, X, X,
™%, X, %,
TX“ TXn Txn TXl TXl
X, X,
e First Outcome . _
X, X,

* Selfish miner finds the following

block first ‘R

* Once an honest miner finds a block . .
Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.



DSL at UCSE
Selfish Mining

Honest Miner

¥\

e

%, X, X,
™%, X, %,
TX“ TXn Txn TXl TXl
X, X,
e First Outcome . _
X, X,

* Selfish miner finds the following
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Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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Honest Miner
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e
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e First Outcome . _
X, X,

* Selfish miner finds the following
block first
* Once an honest miner finds a block
* Selfish miner announces 2 blocks
 Honest miner loses the reward

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.

R

Selfish Miner




DSL at UCSB
Se|f|Sh M|n|ng Honest Miner

™ X, X,

R X, TX,

TX, X, ™ -
TX,
TX,

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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* |f selfish miner successfully splits honest .
miners: =
* The probability of finding the next ‘R

red block is 2/3 (secures the reward
of the previously found block)

Selfish Miner

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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e Also, _
* The probability of selfish miner to =
find the next red block is 1/2 even if ‘R

selfish miner has 1/3 of the mining

Selfish Miner
resources (Advantage)

Eyal, Ittay, and Emin Gin Sirer. "Majority is not enough: Bitcoin mining is vulnerable." Communications of the ACM 61.7 (2018): 95-102.
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Limitations of Bitcoin

* High transaction-confirmation latency
* Probabilistic consistency guarantees

* VVery low TPS ( Transactions per second) - average of 3 to 7 TPS

 New block added every 10 minutes.
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* Two obvious options for increasing Bitcoin’s transaction throughput:

increase the size of blocks, or decrease the block interval
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* Why they don’t work?

* Decreases fairness - giving large miners an advantage

* Requires more storage space (1 =2 10 = 100 MB/ 10 mins)
* Requires more Network bandwidth

* Requires more verification time
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1MB/10 mins 1MB/5 mins 1MB/1 min
1MB = 4200 Txns 1IMB =4200 Txns 1MB = 4200 Txns
7 Txns/ second 14 Txns/ second 70 Txns/ second
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* Requires to mining decrease difficulty
* Leads to more forks
e Results on network instability (many branches)
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* Increase throughput by reducing consensus from all nodes to smaller set

Mine once, publish txns many times m
Form a committee to vouch for new block ByzCoin

Shard txns across different committees m
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BitcoinNG (Next Generation)

Observation: In Bitcoin,
blocks provide two Keyblocks:
purpose: Used for Leader

Microblocks:
Contains txns and is

generated by the epoch
leader, signed by
leader's private key

Election and created

consensus and ,
o using Proof-of-work

txn verification

- Key-block miner = leader till next key-block is mined
- Leader publishes micro-blocks while in tenure

Allowing one miner to be a leader, even for a brief interval, presents many
concerns!!
Eyal, Ittay, et al. "Bitcoin-NG: A Scalable Blockchain Protocol." NSDI. 2016.
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ByZCOi N PBFT + CoSi =2

next microblock
» Uses key-blocks and micro-blocks

» Key-block miner (PoW) in window
becomes a trustee
* Micro-block decided by trustees

* Trustees use PBFT to reach consensus on next
micro-block

* Each block is sighed using Collective Signing
approach

Kogias, Eleftherios Kokoris, et al. "Enhancing bitcoin security and performance with strong consistency via collective
signing." 25th USENIX Security Symposium (USENIX Security 16). 2016.
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* Key idea: split all servers into smaller sized
groups, committees

* Each committee processes a disjoint shard
of txns

* Each committee runs any BFT to reach
consensus on a block

)

v

(

(

/

(o
(o

\\(. ‘\

11/
‘r.
A

BFT

-

|
\

otocol

0
&

e -

(o

"



DSL at LCSB
Elastico

* Key idea: split all servers into smaller sized
groups, committees
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* Each committee processes a disjoint shard
of txns / BFT
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* Key idea: split all servers into smaller sized
groups, committees

(o
(o
(o

* Each committee processes a disjoint shard
of txns / BFT ;iotocol \

* Each committee runs any BFT to reach o2 - -
consensus on a block %gﬂ; %% %;g}

* A special Final committee aggregates all - - -
chosen shards and publishes next block in ﬁ i i
the chain
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Elastico ——1—
* Key idea: split fall servers into smaller sized - o
roups, committees ——1—
g s, - e’
* Each committee processes a disjoint shard
of txns BFT piotocol
* Each committee runs any BFT to reach 2! - .
consensus on a block =S =N =
- - -

* A special Final committee aggregates all
chosen shards and publishes next block in i i

the chain

Luu, Loi, et al. "A secure sharding protocol for open blockchains." Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016.
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Requires Atomic Cross-Shard Commitment Protocol

Y S Tl Cross-Shard Transactions [ — T
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Cryptocurrencies: 2225 « Markets: 18851 « Market Cap: $257,486,187,861 « 24h Vol: $66,548,083,112 « BTC Dominance: 55.4%

@ Coianrkethp Rankings Tools Resources Blog °** Search

Top 100 Cryptocurrencies by Market Capitalization

Cryptocurrencies ~ Exchanges ~ Watchlist USD~  Next100 —  View All
# Name Market Cap Price Volume (24h) Circulating Supply Change (24h) Price Graph (7d)

1 Bitcoin $142,627,334,795 $8,036.77 $19,138,268,181 17,746,837 BTC 3.15%
2 4 Ethereum $26,732,290,299 $251.25 $8,364,736,132 106,397,463 ETH 1.70%
3 X XRP $17,876,222,703 $0.423217 $1,658,461,942 42,238,947,941 XRP * 1.25%
4 @ Litecoin $7,281,728,951 $117.21  $5,141,138,982 62,124,551 LTC 6.28%
5 [@] Bitcoin Cash $7,157,820,741 $401.55 $1,572,103,916 17,825,688 BCH 2.02%

Source: coinmarketcap.com on June 7t at 5:00pm PST
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* Thousands of Blockchains

* Tens of thousands of markets

e Exchanges to trade tokens for USD

* Direct token transactions in one blockchain

* Direct token transactions across blockchains, how?
* Cross-chain transactions
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Smart Contracts

* Like classes in Object Oriented Programming Languages

* Allow end-users to:
» Store generic data objects in the blockchain
* Define the functions that manipulate these data objects

* Have attributes (e.g., represents a car)
* Have functions (e.g., rent, buy, etc)

* Can be used to implement generic transaction logic:
* Conditionally lock assets in the blockchain
* Transfer asset ownership on some condition
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class AtomicSwap {
sender: s // Alice
recipient: r // Bob
asset: a // X bitcoins
secretHash: h
constructor() {

}

redeem (secret srt) {
if(hash(srt) == h)
transfer ato r
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e Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bitcoin blockchain

SC, Move X bitcoins to Bob if
Bob provides secret s | h = H(s)
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=9 sandh

Bob Alice
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e Alice wants to trade X Bitcoin for Y Ethereum with Bob

Bitcoin blockchain

oo 2~ SC,
P

/
e
SC, Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

2 g

=9 sandh

Bob Alice
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* Now, h is announced in Bitcoin blockchain and made public

Bitcoin blockchain
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Alice’s X bitcoins are locked in
the smart contract SC,
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* Now, h is announced in Bitcoin blockchain and made public

Ethereum blockchain Bitcoin blockchain
* - - - < - - - < SCl
SC, Move Y Ethereum to Alice if Alice’s X bitcoins are locked in
Alice provides secret s | h = H(s) the smart contract SC,

<=9s

Alice
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Atomic Swap[Nolan’13, Herlihy’18]

* Now, h is announced in Bitcoin blockchain and made public

Ethereum blockchain

oo «—— » SC,

/

SC, Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Bitcoin blockchain

- 1 SC,

Alice’s X bitcoins are locked in
the smart contract SC,

<=9s

Alice
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* Now, for Alice to execute SC, and redeem Y Ethereum, she reveals s

Ethereum blockchain Bitcoin blockchain
N — SC, ] — 5
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

<=9s

Alice
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* Now, for Alice to execute SC, and redeem Y Ethereum, she reveals s

Ethereum blockchain Bitcoin blockchain

1 sc, 4. — SC,

~

Bob’s Y Ethereum are locked in ~ < _ Alice’s X bitcoins are locked in
smart contract SC, Emar\t\contract SC,
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* Now, for Alice to execute SC, and redeem Y Ethereum, she reveals s

Ethereum blockchain Bitcoin blockchain

— 50,8 — SC,

~

Bob’s Y Ethereum are locked in ~ < _ Alice’s X bitcoins are locked in
smart contract SC, Emar\t\contract SC,
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* Revealing s, executes SC,. Now s is public in Ethereum’s blockchain

Ethereum blockchain Bitcoin blockchain
. _— O N — SC,
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

Alice
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* Now, Bob uses s to execute SC, and redeem his Bitcoins

Ethereum blockchain Bitcoin blockchain
S 5 S -] > SC,
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

¢

Bob Alice
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* Now, Bob uses s to execute SC, and redeem his Bitcoins

Ethereum blockchain Bitcoin blockchain
e__..
- - -1 < @ S - — - - = @15
Bob’s Y Ethereum are locked in Alice’s X bitcoins are locked in
smart contract SC, smart contract SC,

¢

Bob Alice




DSL at LCSB
Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,



DSL at LCSB
Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,
* Bob sees SC, but refuses to publish SC,



Dol at UCSE

Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,
* Bob sees SC, but refuses to publish SC,

* Now, Alice’s Bitcoins are locked for good
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Atomic Swap Example: What can go wrong?

* Alice locks her X Bitcoins in Bitcoin’s blockchain through SC,
* Bob sees SC, but refuses to publish SC,

* Now, Alice’s Bitcoins are locked for good

* A conforming party (Alice) ends up worse off because Bob doesn’t follow the
protocol

* Prevention
* Use timelocks to expire a contract
» Specify that an expired contract is refunded to the creator of this contract
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2 g

a Alice

Bob



DSL at LICSB

Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

2 g

Bob

Refund SC, to Alice if Bob does
not execute SC, before 48 hours

SC;: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)

a Alice
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Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Refund SC, to Bob if Alice does
not execute SC, before 24 hours

SC,: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Refund SC, to Alice if Bob does
not execute SC, before 48 hours

SC,: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)
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Atomic Swap[Nolan’13, Herlihy’18]: Timelocks

Refund SC, to Bob if Alice does
not execute SC, before'hours

SC,: Move Y Ethereum to Alice if
Alice provides secret s | h = H(s)

Refund SC, to Alice if Bob does
not execute SC, befor-‘hours

SC,: Move X bitcoins to Bob if
Bob provides secret s | h = H(s)
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Bob-Alice in Ethereum | - : ‘ :

| | |
Alice-Bob in Bitcoin [} | | | o
| | |
|

Y ethers

g.\ ) e.g., A=12hr

X bitcoins
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|
Bob-Alice in Ethereum | - : ‘ :

| | |
Alice-Bob in Bitcoin [} | | | o
| | |
|

Y ethers
30

g.\ ) e.g., A=12hr

X bitcoins
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I A I A I A I
. ) ) ) | |
Alice-Bob in Bitcoin - | | ‘
I I I I
) . I I I
Bob-Alice in Ethereum - ; |
- |
Alice reveals the secret to Bob’s
contract and claims the Y ether
Y ethers

g\ } e.g., A =12hr

X bitcoins
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| A | A
Alice-Bob in Bitcoin - :
| |

Bob-Alice in Ethereum : -

Alice reveals the secret to Bob’s
contract and claims the Y ether
Y ethers

Supposedly, Bob takes the secret, GE‘:OOg/ —

reveals it to Alice’s contract and
~ e.g., A=12hr

claims the X bitcoins
X bitcoins
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I A I A I
. ) ) ) | |
Alice-Bob in Bitcoin - ; ;
I I I
) . I I
Bob-Alice in Ethereum - ;
- |
Alice reveals the secret to Bob’s
contract and claims the Y ether
Y ethers
Supposedly, Bob takes the secret, — T

reveals it to Alice’s contract and g
claims the X bitcoins N e.g.’ A = 12hr

X bitcoins
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| A | A
Alice-Bob in Bitcoin - :
| |

Bob-Alice in Ethereum : -

Y ethers
@ — T~

g\ ) e.g., A=12hr

X bitcoins
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What can go wrong?

A

Alice-Bob in Bitcoin -

|
Bob-Alice in Ethereum :

If Bob fails or suffers a network
denial of service attack for a A,
Alice’s contract will expire and
Bob will lose his X bitcoins

~&

\ Y ethers

X bitcoins

e.g., A=12hr
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X bitcoins are refunded to
Alice any time after the
A A A A Y tim
contract expires

|
Alice-Bob in Bitcoin -

Bob-Alice in Ethereum : -

\ Y ethers

~&

If Bob fails or suffers a network
denial of service attack for a A,
Alice’s contract will expire and

Bob will lose his X bitcoins

) e.g., A=12hr

X bitcoins
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What can go wrong?

X bitcoins are refunded to
Alice any time after the
A .
I contract expires

| A | A
Alice-Bob in Bitcoin - :
| |

Bob-Alice in Ethereum : -

If Bob fails or suffers a network ® s
denial of service attack for a A, Ato I I l I C I

Alice’s contract will expire and \

Bob will lose his X bitcoins

ty Violation

) e.g., A=12hr

Y ethers

X bitcoins
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Atomicity Violation

* Using timelocks leads to Atomicity violation

* Our Atomicity-based Approach:

* The decision of both transactions should be made atomic
* Once the decision is taken, both transactions either commit or abort
e A transaction cannot commit unless a commit decision is reached

* A transaction cannot abort unless an abort decision is reached
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Atomic Commitment Across
Blockchains

Victor Zakhary, Divyakant Agrawal, Amr El Abbadi
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Building block: Cross-Chain Verification

* How can miners of one blockchain:
 Verify a transaction in another blockchain?
* Without maintaining a copy of this other blockchain.
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Need to verify that TX; is actually
in verified blockchain

Verified Blockchain

Verifier Blockchain

Current head

SC{
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}

1
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Need to verify that TX; is actually
in verified blockchain
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\
\Currenthead  Transaction TX,
\ of interest
\
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Current head
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5
£—<— - — > - ——J TX1 Evidence
1
X

Need to verify that TX; is actually
in verified blockchain

Verified Blockchain —  [—1 [ M[7 { X, |- D

\Currenthead  Transaction TX,
\ of interest
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\2
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Current head
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5
£—<— - — > - ——J TX1 Evidence
1
X

Need to verify that TX; is actually
in verified blockchain

Verified Blockchain —  [—1 [ M[7 { X, |- D

\Currenthead  Transaction TX,

1 evidence

\ of interest
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5
{—«- - — I« > : ——J '|')(1 Evidence
1

Need to verify that TX; is actually
in verified blockchain

VerifiedBlockchain —1 I —1 "1 N[~ { D

X

1 evidence

\
\Currenthead  Transaction TX,
\ of interest \\
*\2 M6
sc{ SC {
Verifier Blockchain [— [— [~~"""1 [~ - S g fz L

Current head
81
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* Verification process:
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* Verification process:
e Each header includes the hash of the previous header
* The proof of work of each header is correct
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. —
o o . TXl
* Verification process: X
e Each header includes the hash of the previous header mm
* The proof of work of each header is correct

* TX, is correct
* TX, is buried under d blocks

1 evidence
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Building block: Cross-Chain Verification

. —
o o . Txl
* Verification process: X
e Each header includes the hash of the previous header mm
* The proof of work of each header is correct

* TX, is correct
* TX, is buried under d blocks

* The cost of generating evidence:
* Choose d to make this cost > the value transacted in TX,
* |f true, a malicious user has no incentive to create a fake evidence

1 evidence

82
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Atomic Commitment Across Blockchains

* Use another blockchain to witness the Atomic Swap
* The witness blockchain decides the commit or the abort of a swap

e Once a decision is made:

* All sub-transactions in the swap must follow the decision
* Achieves atomicity, either all committed or all aborted

* Cross chain verification is leveraged twice

* Miners of the witness network verify the publishing of contracts in asset
blockchains

* Miners of assets’ blockchains verify the decision made in the witness network
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Protocol Sketch

* Deploy a contract SC,, in the witness network with state Published (P)

* SC,, has a header of a

Witness Blockchain ’7

Verifier

Bitcoin Blockchain

Verified

Ethereum Blockchain

Verified

L

Current head

Y __dblocks 2

olock at depth d of all blockchains in the swap

84
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* Participants deploy their contracts in the corresponding blockchains

Witness Blockchain ’7

Verifier

Bitcoin Blockchain

Verified

Ethereum Blockchain

Verified
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* Participants deploy their contracts in the corresponding blockchains
* Participants add the header of SC, to their contracts

SC
Witness Blockchain ’— R s=v|;}=\ e
Verifier ' NN '
\ '\
e \ i
. ) N |sc,
Bitcoin Blockchain S—— N S S=I19P-
Verified ‘.\
P “’
Ethereum Blockchain o R 25;;:-
Verified
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Protocol Sketch Cont’d

Witness Blockchain

Verifier

Bitcoin Blockchain
Verified

Ethereum Blockchain
Verified

’7

— SC,{__

5=P}
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Witness Blockchain

Verifier

Bitcoin Blockchain
Verified

Ethereum Blockchain
Verified

’7

5=P}

. sc | ...
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Witness Blockchain

Verifier

Bitcoin Blockchain
Verified

Ethereum Blockchain
Verified

’7
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* Participants submit evidence of publishing the smart contracts in Assets

Blockchains
Witness Blockchain ’7 R ] — B
Verifier s
— N
Bitcoin Blockchain R D :S::}L T ,/'/
Verified -/
—
Ethereum Blockchain Rl Rl ng,;— -----------
Verified N\ —

The Evidence hﬂm
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* Participants submit evidence of publishing the smart contracts in Assets
Blockchains

* If all contracts are published and correct, SC s state is altered to redeem (RD)

Witness Blockchain ’7 R ] — B Gl
Verifier s
— N
Bitcoin Blockchain AR D :S::}L T ,/'/
Verified -/
[
Ethereum Blockchain Rl Rl 25;;- -----------
Verified \C —/

The Evidence hﬂm
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Protocol Sketch Cont’d

* Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

Witness Blockchain ’7

Verified

Bitcoin Blockchain

Verifier

Ethereum Blockchain

Verifier

O

SC,{__ ~._ Tl
) R N . e, =

S=P} e N,

~
~
N, .
\ 3
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Protocol Sketch Cont’d

* Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

Witness Blockchain ’7

Verified

Bitcoin Blockchain

Verifier

Ethereum Blockchain

Verifier

¢ o~

-~
L
~,
~,
~.
~.

SC, {
S=RD}
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Protocol Sketch Cont’d

* Participants submit evidence of Redeem State (RD) from the Witness
Blockchain to the Assets Blockchains.

» After evidence verification, participants redeem their assets from the

Assets Blockchains.

Witness Blockchain ’7 --------- [
Verified
[
Bitcoin Blockchain —H  +H—H  }-----
Verifier
]
Ethereum Blockchain+—  —— = }-----1

Verifier

-~
L
~,
~,
~.
~.

SC, {
S=RD}

IO I S8 |

S=RD}
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Atomic Commitment Across Blockchains

* SC,’s state determines the commit (RD) or the abort (RF) decision

* Once SC, s state is altered and the block is buried under d blocks:
e All sub-transactions must follow this decision
* None of the sub-transactions can decide on a different decision

* Even if a participant fails or faces a network denial of service:
* When the participant recovers, the evidence of the decision still exists
* This evidence can be used to redeem or refund the contracts

* The only way to violate atomicity is to fork the witness blockchain
* Economic incentives prevent this attack
* Any protocol is prone to fork attacks
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Supply Chain Management:

Tracking Fish from Ocean to Table

* Ocean fishing represents more than S70B in worldwide trade!
e Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction
are ever inspected?.
* Nearly one in three fish were mislabeled by sellers3
* 87% of snapper and 59% of tuna were mislabelled*
* 95% of all sushi restaurants were serving mislabeled fish*

! Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.

2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.
3 Miguel ¢ngel Pardo, Elisa JimZnez, Bego—a PZrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277—-283.

4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.
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Supply Chain Management:

Tracking Fish from Ocean to Table

* Ocean fishing represents more than S70B in worldwide trade!

* Estimates suggest at least 20% of all fish are caught illegally—yet only a tiny fraction are ever
inspected?.

* Nearly one in three fish were mislabeled by sellers3

* 87% of snapper and 59% of tuna were mislabelled*

* 95% of all sushi restaurants were serving mislabeled fish*

* Challenges:
 Many different paths from ocean to table
* Lack of global authority for tracing
* Proprietary tracing systems do not scale
* Most existing processes are paper-based
* The supply chain is extremely complex and includes many participants from different industries

! Food and Agriculture Organization, United Nations. 2016. The State of World Fisheries and Aquaculture 2016.

2 Stolen Seafood: The Impact of Pirate Fishing on Our Oceans. Oceana. 2013.

3 Miguel ¢ngel Pardo, Elisa JimZnez, Bego—a PZrez-Villarreal. Misdescription incidents in seafood sector. 2016. Food Control 62 pages 277—-283.
4 Oceana Study Reveals Seafood Fraud Nationwide. 2013.
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Breeder/Hatchery Seafood is caught by fishermen
and physically tagged with IOT
enabled sensors

Subsistence Fishing/Farming

Commercial Fishing Vessel

Recreational Fishing

Source: Advancing Traceability in
the Seafood Industry, FishWise

Subsistence Fishin i ishi : . : . o
ubsi Ishi g» Recreational Flshlng> Aquaculture> Wild Capture Flsherleg Processing and D|str|but|on>




BBhfnddCSBpply Chain a Seafood Supply Chain

in the real world in Blockchain

Fish Meal Plant Feed Mill Breeder/Hatchery Seafood is ca ught by fishermen
\ . / and physically tagged with IOT

enabled sensors
E@ 7 Commercialishing Vessel _@

Wild Fish Ranch Farm

Transshipment \ E Sensors continuously
ﬂ f/- - transmit data about time ‘
ort

and location to Blockchain
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Recreational Fishing

Source: Advancing Traceability in
the Seafood Industry, FishWise
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Chain?!
In Supply Chain Participants are known and ldentified

.

Traditional Consensus Protocols can be used
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Permissioned Blockchain

* Run a blockchain among a set of known, identified participants

* Provides a way to secure the interactions among a group of entities that have a common goal but
which do not fully trust each other

* The ledger is distributed among all the nodes

Permissionless Permissioned
Participants Anonymous, Could be malicious Known, Identified
Consensus Mechanisms Proof of Work, Proof of Stake, ... Byzantine fault tolerance
Consensus, e.g., PBFT
* Large energy consumption e Lighter
* No finality * Faster
* 51% attack * Low energy consumption
* Enable finality
Transaction Approval time | Long (Bitcoin: 10 min or more) Short (100x msec)
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Consensus Protocols in Permissioned

Networks

* Types of systems: synchronous and asynchronous

* Problem statement: given NV processes (one of them is the /eader):
* Agreement: all correct processes agree on the same value
* Validity: If initiator does not fail, all correct processes agree on its value

* Types of failure:
* Crash
* Malicious (or Byzantine)

* Important impossibility result:

* FLP, in asynchronous systems:
* With even one crash failure, termination is not guaranteed (no liveness)
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* Clients multicasts their requests
* Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

e The lucky node who solves the puzzle first ~ “ie"t P P Ps Pa Ps Ps
multicasts the block W, = -
e Each node validates the transactions within I I I I I I

the block L;\QQ\J

@ Validation @ Ordering @ Execution @ Append
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Bitcoin review

* Clients multicasts their requests
Nodes validate the transactions, put them into the blocks, and try to solve the puzzle

e The lucky node who solves the puzzle first ~ “ie"t P P2 Ps Ps Ps Ps
multicasts the block e — .

* Each node validates the transactions within I I I I I I
the block

* Transactions are deterministically executed
by every node and appended to the ledger I I J I I I

@ Validation @ Ordering @ Execution @ Append
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* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

* Each node then executes the transactions and updates the ledger.
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* Limitations of Order-Execute
* Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)
* Non-deterministic code: any non-deterministic execution results in “fork” in
the distributed ledger
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Order-execute Architecture

* A set of nodes (might be all of them) orders transactions, puts them into blocks,
multicasts them to all the nodes.

* Each node then executes the transactions and updates the ledger.

XX - . = g

e Limitations of Order-Execute

* Sequential execution: Transactions are sequentially executed on all peers
(performance bottleneck)

* Non-deterministic code: any non-deterministic execution results in “fork” in
the distributed ledger

* Confidentiality of execution: all smart contracts run on all peers!
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* Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

* A separate set of nodes (orderers) orders the transactions, puts them
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Execute-Order-Validate Architecture

* Each transaction (of an application) is first executed by a subset of
nodes (endorsers of the application)

* A separate set of nodes (orderers) orders the transactions, puts them
into blocks, and multicasts them to all the nodes.

* Each node validates the transactions within a block and updates the
ledger
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Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.
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Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.
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Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.
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Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.
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Execute-Order-Validate Architecture: Transactions are first executed, then
ordered, and finally, validated

Non-deterministic Execution: smart contracts can be written in general-
purpose languages instead of domain specific languages

Confidential transactions: Exposes only the data you want to share to the
parties you want to share it with.

Pluggable architecture: Tailors the blockchain to industry needs with a
pluggable architecture rather than a one size fits all approach

{Parallel Execution: Transactions of different applications can be executed in }
parallel

Androulaki, E., et al., Hyperledger fabric (2018) a distributed operating system for permissioned blockchains.
EuroSys, ACM.
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* Three types of Nodes: Clients, Endorsers, and Orderers
* Clients send transactions to be executed.

* Endorsers execute transaction proposals and validate transactions.
* All endorsers maintain the blockchain ledger
* Each application has its own set of endorsers

2803
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Hyperledger Fabric

* Three types of Nodes: Clients, Endorsers, and Orderers
* Clients send transactions to be executed.

* Endorsers execute transaction proposals and validate transactions.
* All endorsers maintain the blockchain ledger
* Each application has its own set of endorsers
* Orderers stablish the total order of all transactions using a consensus protocol
* Do not maintain the blockchain ledger or smart contracts
* The consensus protocol is pluggable

\ Endors  Endors  Endors Order Order Order
‘ er er er er er er

Clients (of different applications)  Endorsers (of different applications) Orderers
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A block might contains multiple transactions from the same application
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Three Applications (Green, Blue, Vellow)

. Three Clients (Alice, Bob, Charlie)
H y p e rl e d ge r Fa b rl C Green and Blue have two Endorsers, /=!low
(v

has four Endorsers
There are totally six Orderers
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Charlle

In the validation phase, Endorsers check: (1) validity of transactions, (2) read-write conflicts
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* A dependency graph exposes conflicts between transactions to give a
partial order of transactions.

T, T Ts || Tal| T || T>
T2
T, b that is by T,
Tl T5
T, | _I/\ T e that is by T
T LESJRE: T, d that is by T
T4
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e Each transaction (of an application) is then validated and executed by a subset
of nodes (executors of the application) following the dependency graph
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Order-Parallel Execute (OXIl) Architecture

* A separate set of nodes (orderers) orders the transactions, puts them
into blocks, generates a dependency graph for the block, and multicasts
it to all the nodes.

e Each transaction (of an application) is then validated and executed by a subset
of nodes (executors of the application) following the dependency graph

* The nodes multicast the results of execution and append the block
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ParBlockchain

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
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Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.




DSL at LICSB i

ParBlockchain I

[Order-Execute Architecture: Transactions are first ordered, and then executed }

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.
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[Order-Execute Architecture: Transactions are first ordered, and then executed J

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

|

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.
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[Order-Execute Architecture: Transactions are first ordered, and then executed J

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.
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[Order-Execute Architecture: Transactions are first ordered, and then executed }

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Pluggable architecture, Confidential transaction, non-deterministic execution
similar to Hyperledger Fabric, Parblockchain has these three properties

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in

Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.
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[Order-Execute Architecture: Transactions are first ordered, and then executed }

Parallel Execution: non-conflicting transactions of the same or different
applications are executed in parallel

Conflict detection: any conflict (contention) between transaction is detected
in the ordering phase and considered in the execution phase

Pluggable architecture, Confidential transaction, non-deterministic execution
similar to Hyperledger Fabric, Parblockchain has these three properties

Non-deterministic Execution: inconsistent execution results can be detected in
the last phase (results in decreasing the performance)

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, ParBlockchain: Leveraging Transaction Parallelism in
Permissioned Blockchain Systems, The 39th IEEE International Conference on Distributed Computing Systems (ICDCS), 2019.
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Each application has a set of Executors
Each Executor stores a copy of ledger and Data
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Executors of each application execute the
corresponding transactions following the
dependency graph and multicast the results
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Blockchain Scalability

* Scalability is one of the main roadblocks to business adoption of blockchains
* Two classes of solutions for Scalability:

1) Off-chain (layer two): built on top of the main chain, move a portion of the
transactions off the chain, e.g. lightning networks

2) On-chain (layer one): increase the throughput of the main chain
* \ertical techniques: more power is added to each node to perform more tasks
* Horizontal techniques: increase the number of nodes in the network

7
Sharding (as a horizontal technique): Partitioning the data into F =
multiple shards that are maintained by different subsets of nodes // \
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presence of f malicious nodes)
* How to form clusters such that each cluster includes at most f faulty nodes?
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e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)
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 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)

* How to form clusters such that each cluster includes at most f faulty nodes?
* Assign nodes to clusters in a random manner (uniform distribution): works if fis very large
e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

e Shard the data
e Shard the application data and assign shards to clusters
* Each data shard is replicated across nodes of a cluster
» Different clusters process the transactions of their corresponding shard in parallel
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Sharding Blockchains

 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)

* How to form clusters such that each cluster includes at most f faulty nodes?
* Assign nodes to clusters in a random manner (uniform distribution): works if fis very large
e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

e Shard the data
* Shard the application data and assign shards to clusters
* Each data shard is replicated across nodes of a cluster
» Different clusters process the transactions of their corresponding shard in parallel

* The Blockchain ledger is also sharded
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Sharding Blockchains

 Partition the nodes into clusters of 3f+1 nodes (to guarantee safety in each cluster in the
presence of f malicious nodes)

* How to form clusters such that each cluster includes at most f faulty nodes?
* Assign nodes to clusters in a random manner (uniform distribution): works if fis very large
e Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)

e Shard the data
* Shard the application data and assign shards to clusters
* Each data shard is replicated across nodes of a cluster
» Different clusters process the transactions of their corresponding shard in parallel
* The Blockchain ledger is also sharded

* Cross-Shard transactions
* Need the participant of all (and only) involved clusters

i) E@ §o) 50| E0 B Bo) Ew) En Eew Eou Eow| o B Bo Eo
(@] @ @) @) @) @) @) (&) @) @) @) @) @) (@] @) G@J
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Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)
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* The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

* Each block includes a single transaction

* The total order is captured by chaining the transactions (blocks) together
* Each transaction includes the cryptographic hash of the previous transaction

* Cross-chain transactions include the hash of the previous transactions of a//
involved shards.
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SharPer: Sharding Permissioned Blockchains

* The blockchain ledger is generalized from a linear chain to a directed acyclic
graph (DAG)

* Each block includes a single transaction

* The total order is captured by chaining the transactions (blocks) together
* Each transaction includes the cryptographic hash of the previous transaction

* Cross-chain transactions include the hash of the previous transactions of a//
involved shards.

* The entire blockchain ledger is not maintained by any node

* Each node only maintains its own view of the blockchain ledger
* including the transactions that access the data shard of the cluster

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. Sharding Permissioned Blockchains, IEEE International Conference on Blockchain, 2019

Amiri, Mohammad Javad, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned Blockchains Over Network Clusters. (In submission)
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SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

e Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple
hash pointers
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The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

e Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple
hash pointers
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SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

* Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple

hash pointers
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SharPer Ledger

The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

* Cross-shard transactions with non-
overlapping clusters are processed in parallel

e Across-shard transaction includes multiple

td s

hash pointers
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The Blockchain Ledger and the view of clusters P, P,, P;, and P,

* Intra-shard transactions of different clusters
are processed in parallel

* Cross-shard transactions with non-
overlapping clusters are processed in parallel
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The Blockchain Ledger and the view of clusters P, P,, P;, and P,

 Intra-shard transactions of different clusters

are processed in parallel t37 ty7 Lz
e Cross-shard transactions with non- U b |515 26 364|
overlapping clusters are processed in parallel
* Across-shard transaction includes multiple t tsc tyc
hash pointers
* All clusters might be involved in a cross-shard Y4300 ﬁﬁﬂ Iﬁ..?&.ﬂ
transaction t t, t,
t222 L4 L3242
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* Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT
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* Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT

* |f nodes follow crash failure model, use crash fault-tolerant protocol, e.g., Paxos

Request  Pre-Prepare Prepare , Commit . Reply

l Request , Accept , Accepted gg?l;niﬂ
replica O
(Primary) .
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Consensus in SharPer

* Intra-Shard Consensus: using any Byzantine fault-tolerant protocols, e.g. PBFT
* |f nodes follow crash failure model, use crash fault-tolerant protocol, e.g., Paxos

* Cross-Shard Consensus: needs the participation of all the involved clusters
* |In each step 2f+1 nodes of every involved cluster must participate

Request  Pre-Prepare Prepare , Commit . Reply

l Request , Accept , Accepted gg?l;niﬂ
replica O
(Primary)
replica 1 replica 0
\\ (Primary)

replica 1

replica2 \ \ N
replica 3 —=¢ replica 2 =
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Cross-Shard Consensus in SharPer

Non-overlapping cross-shard transactions can be processed in parallel c,C, P, P, P, P,

Clients (c, and ¢,) send requests to the (pre-elected) primary nodes w
Primary nodes multicast messages including the hash of their

previous transactions to every node of all involved partitions

Each node multicasts message including the hash of its previous
transaction to every node of all involved partitions

Upon receiving 2f+1 matching message from each cluster, each
node collects hashes of all clusters and multicasts commit message to

every node of all involved partitions
Upon receiving 2f+1 matching commit message from each cluster, each

node executes the transaction and appends it to the ledger
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 They do not trust each other
* The blockchain system should support both cross-application and internal transactions

* Internal data of each party is confidential
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Collaborative Workflow: Supply Chain

Management

* Different parties (applications) need to communicate across organizations to provide services
 The communication follows Service Level Agreements (agreed upon by all participants)

 They do not trust each other
* The blockchain system should support both cross-application and internal transactions

* Internal data of each party is confidential

Place Order

Bulk Buyer Carrier Supplier
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Collaborative Workflows using Blockchain

First Solution: Deploy all applications on the same blockchain system
* Similar to Hyperledger Fabric
* Smart contracts are confidential
* Transactions data and blockchain ledger are replicated on every application

‘Confidentiality issue ‘

Second Solution: Deploy each application on a separate blockchain system
* Use another blockchain system for the cross-application transactions

‘ Data Integrity issue ‘

Third Solution: Deploy each application on a separate blockchain system
e Use cross-chain operation

‘ Performance issue ‘
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* Distributed applications collaborate with each other following SLAs
* Two types of transactions: internal and cross-application

e Cross-application transactions are visible to all applications

* Internal transactions of each application are confidential
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* Distributed applications collaborate with each other following SLAs
* Two types of transactions: internal and cross-application

e Cross-application transactions are visible to all applications

* Internal transactions of each application are confidential

* The blockchain ledger is formed as a directed acyclic graph
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CAPER: A Cross-Application Permissioned Blockchain

* Distributed applications collaborate with each other following SLAs
* Two types of transactions: internal and cross-application

e Cross-application transactions are visible to all applications

* Internal transactions of each application are confidential

* The blockchain ledger is formed as a directed acyclic graph

* Each application maintains only its own view of the ledger
* including its internal and all cross-application transactions.

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, CAPER: A Cross-Application Permissioned Blockchain,
The 45th International Conference on Very Large Data Bases (VLDB), 2019.
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Each application has its own internal transactions
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Cross-application transactions are maintained by every application
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Confidentiality of Cross-Application Transactions

* |n CAPER:
* Internal transactions read both private and public data and write on private data
* Cross-application transactions read/write only public data

* What if a cross-application transaction read/write private data?
* How to validate private transactions without revealing any information?

e Cryptography techniques are needed!
* Quorum uses zero knowledge proof
(<=7 * Fabric defines Private data collections

~
Transaction verification in Bitcoin Transaction verification in Zcash
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Case Study on
Change Healthcare’s
use of Hyperledger
Fabric

Change Healthcare turned to Hyperledger

Fabric to begin blockchain-enabling its
Intelligent Healthcare Network, which now
processes 50 million transactions a day.

LEARN MORE IN THE BLOG

READ THE CASE STUDY

Members

Projects Community Resources News & Events

Join Hyperledger as
a Member

Hyperledger Member Summit is coming
up July 30-31in Tokyo, Japan. Now is a
great time to consider joining Hyperledger
as a member so you can attend this
annual event to discuss the current and
future state of Hyperledger technologies.

LEARN MORE

https://www.hyperledger.or

Blog About v f

Hyperledger
Transact Now
Available

Announcing our latest project to jointhe
Hyperledger Greenhouse. Hyperledger
Transact provides a platform-agnostic
library that handles the execution of smart
contracts, including all aspects of
scheduling, transaction dispatch, and state
management.

LEARN MORE IN THE BLOG

START CONTRIBUTING
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From Cryptocurrencies to Global Assets

* So far, Mining Node:
* Store cryptocurrency units
* Store ownership
e Execute Transactions (transfer ownership of currency units)

* Mining Nodes = The new public cloud

* Store:
* General Assets (e.g., cars, houses, etc)

* Transact on:
* General Assets (e.g., buy a house, rent a car etc)
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Smart Contracts

* Alice registers her car
* Make: Honda
* Model: Civic
* Year: ..
* VIN: ...
* Owner: Alice
* Price: x ethers

Buy () {
// transfer ownership code

}
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Challenges

e Asset Authenticity
* Double Spending

* Deploy two smart contracts for the same car
* On the same blockchain or different blockchains

* Legality
* Implementing taxation laws
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Permissioned and Permissionless Unite! 0,'
‘A

* Permissioned Blockchains
* Requires trust

e Trust can be distributed among several organizations
* Banks
* Governments
* NGOs
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Challenges Revisited

e Asset Authenticity
* Authenticated by the permissioned blockchain

* Double Spending

* Permissioned blockchain:
* Allows the deployment of one contract per asset at a time
* Enables moving the asset from one Permissionless blockchain to another

* Legality

e Encode the Taxation law in the smart contract code
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Open research questions

* Scalability
* |dentity theft
* Flexibility of asset marketing
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Blockchain: Panacea for all our data problems?

e Resource cost: e Extreme distribution:

* Proof-of-work consumes resources at * is it really worth it?
the planetary scale

* Extreme redundancy:

* Mythical notion of democratization: .
* is it really necessary?

* Handful of miners control the progress
of Bitcoin blockchain ,
* Social consequences:
* Are we comfortable if this technology

 False notion of security: is used for dark causes?

* An Individual vulnerable to the
security of his/her key



