
Declarative Smart Contracts
A declarative domain-specific language for smart contracts

Smart contracts

• are programs stored and executed
on blockchains.

• typical applications: tokens (digital
money), auctions, financing, etc.

2

Smart contracts
• Billions $ worth of tokens being

traded everyday [1].

• Bugs in smart contracts have cost
significant financial loss [2,3].

• Important to ensure smart contract
correctness.

[1] Etherscan. ERC-20 Top Tokens. https://etherscan.io/tokens
[2] David Siegel. 2016. Understanding The DAO Attack.
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
[3] Parity Technologies. 2017. Parity Security Alert. https://www.parity.io/blog/security-alert-2/ 3

https://etherscan.io/tokens
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://www.parity.io/blog/security-alert-2/

Smart contracts today
contract Wallet {

address private _owner;
mapping(address => int) private _balanceOf;
int private _totalSupply;

function mint(address account, int amount)
public {
require(msg.sender == _owner);
require(account != address(0));
_totalSupply += amount;
_balanceOf[account] += amount;

}

function balanceOf(address account)
public view returns(int) {

return _balanceOf[account];
}

// Other functions ...
}

Solidity: an object-oriented programing
language.
A contract is like a class in Java.
Contract deployment is like class
instantiation.

4

Smart contracts today
contract Wallet {

address private _owner;
mapping(address => int) private _balanceOf;
int private _totalSupply;

function mint(address account, int amount)
public {
require(msg.sender == _owner);
require(account != address(0));
_totalSupply += amount;
_balanceOf[account] += amount;

}

function balanceOf(address account)
public view returns(int) {

return _balanceOf[account];
}

// Other functions ...
}

Solidity: an object-oriented programing
language.
A contract is like a class in Java.

Contract states declaration.

5

Smart contracts today
contract Wallet {

address private _owner;
mapping(address => int) private _balanceOf;
int private _totalSupply;

function mint(address account, int amount)
public {
require(msg.sender == _owner);
require(account != address(0));
_totalSupply += amount;
_balanceOf[account] += amount;

}

function balanceOf(address account)
public view returns(int) {

return _balanceOf[account];
}

// Other functions ...
}

Transactions are public functions that
alter the contract states.

Solidity: an object-oriented programing
language.
A contract is like a class in Java.

Contract states declaration.

6

Smart contracts today
contract Wallet {

address private _owner;
mapping(address => int) private _balanceOf;
int private _totalSupply;

function mint(address account, int amount)
public {
require(msg.sender == _owner);
require(account != address(0));
_totalSupply += amount;
_balanceOf[account] += amount;

}

function balanceOf(address account)
public view returns(int) {

return _balanceOf[account];
}

// Other functions ...
}

Views are public functions that do not
alter contract states.

Transactions are public functions that
alter the contract states.

Solidity: an object-oriented programing
language.
A contract is like a class in Java.

Contract states declaration.

7

Why a new language?

- Existing smart contract verification work focus on generic, low-level
properties.

- e.g., re-entrancy attack (leads to losing money), integer overflow, etc.

- But not so much on contract-specific, high-level properties.
- e.g., do account balances add up to total supply of tokens?

- We need a high-level, yet executable language.
- Ease specification and implementation.

8

DeCon

We present DeCon, a declarative language for smart contracts

that brings the following benefits:

• Safety property run-time verification

• Executable code generation

• Debugging interface via data provenance

9

Why a declarative language?

Observation 1: smart contracts are managing relational databases.

Transaction records are stored as relational tables on block chain:
- every row is a transaction
- each column is a transaction parameter

receiver amount

0x1234 100

account amount sender receiver amount

mint burn transfer

10

Why a declarative language?

Observation 2: smart contract operations and contract-level properties
can be naturally expressed as relational constraints, e.g.:
• Balance is the sum of income subtracted by sum of expense.

sender receiver amount

0x01 0x02 100

...

0x01 0x03 200

0x01 0x04 120

...

transfer

sender receiver amount

...

0x05 0x01 500

...

0x06 0x01 120

0x07 0x01 400

transfer

11

Why a declarative language?

Observation 2: Smart contract operations and contract-level properties
can be naturally expressed as relational constraints, e.g.:
• Balance is the sum of income subtracted by sum of expense.

sender receiver amount

0x01 0x02 100

...

0x01 0x03 200

0x01 0x04 120

...

transfer

sender receiver amount

...

0x05 0x01 500

...

0x06 0x01 120

0x07 0x01 400

transfer

Sum: income of 0x01 Sum: expense of 0x01 12

Why a declarative language?

Observation 2: Smart contract operations and contract-level properties
can be naturally expressed as relational constraints, e.g.:
• Property: all account balances add up to total supply of tokens. It can be

specified as the following query:

account amount

... ...

balance

amount

n

totalSupply

Sum of amount = n ?

13

Why a declarative language?

Observation 1: smart contracts are managing relational databases.

Observation 2: smart contract operations and contract-level properties
can be naturally expressed as relational constraints.

Smart contracts can be implemented declaratively, the same way as
Database queries are specified in Datalog.

14

Declarative smart contracts

1. How to specify smart contracts in DeCon
2. Executable code generation (paper)
3. Data provenance (paper)
4. Evaluation

15

Example: Wallet

Wallet is a smart contract that manages digital tokens:
- Supports three kinds of transactions: mint, burn, and transfer.
- Each kind of transaction records are stored in a relational table.

receiver amount

0x1234 100

account amount sender receiver amount

mint burn transfer

Each call of mint / burn / transfer function will append an entry to the corresponding table.

16

Example: Wallet

DeCon consists of two major components:
1. Declare relations (table schema)
2. Specify transactions and views (in rules)

17

Example: Wallet
1. Declare relations (table schema):

table name column names followed by types

18

Example: Wallet
1. Declare relations (table schema):

Relations with “recv_” prefix are transaction event triggers.

19

Example: Wallet

function mint(address p, int amount) public returns Bool
function burn(address p, int amount) public returns Bool
function transfer(address from, address to, int amount) public returns Bool

1. Declare relations (table schema):

Each relation declaration with “recv_” prefix is compiled into a transaction interface:

function arguments are the relation schema returns a Bool indicating the success of
the transaction. 20

Example: Wallet
Other special relation annotations:

The first field (p) is the primary key.

Declare public interfaces

* annotates singleton relation, which only has one row.

Primary keys uniquely identify a row: inserting a row will update the row with the same
primary key.

21

Example: Wallet

function totalSupply() public view returns int
function balanceOf(address p) public view returns int

1. Declare relations (table schema):

Public relations are compiled into smart contract view functions:

function argument is the primary key(s)
return values are the remaining fields

22

Example: Wallet

DeCon consists of two major components:
1. Declare relations (table schema)
2. Specify transactions and views (in rules)

23

Example: Wallet

1. Receive a function call.

Receive a transaction to mint n
tokens to address p.

A transaction rule is a rule with transaction event trigger (“recv_” prefix)

It specifies the transaction processing logic:

24

Example: Wallet

1. Receive a function call
2. Check parameters against internal states.

The message sender is contract owner. The transaction amount n > 0.

A transaction rule is a rule with transaction event trigger (“recv_” prefix)

It specifies the transaction processing logic:

25

Example: Wallet

1. Receive a function call
2. Check parameters against internal states.
3. If checks are OK. Commit the transaction by adding a new row to the relational

table.

Add a row (p,n) into mint table.

A transaction rule is a rule with transaction event trigger (“recv_” prefix)

It specifies the transaction processing logic:

26

Example: Wallet
View rules: rules other than transaction rules.

sum of all mint transaction amounts. sum of all burn transaction amounts.

totalSupply is allMint - allBurn

27

Example: Wallet
View rules: rules other than transaction rules.

sum of all mint transaction amounts. sum of all burn transaction amounts.

receiver amount

0x1234 100

account amount

mint burn

totalSupply is allMint - allBurn

28

Example: Wallet
View rules: rules other than transaction rules.

receiver amount

0x1234 100

account amount

mint burn

29

Example: Wallet

30

Example: Wallet

31

Transaction rules are only triggered
when a transaction is received.

Example: Wallet

32

Each rule’s derivation result add
entries to the relational table.

Example: Wallet

33

Views are updated when any
relation in the body is updated.

The chain of updates continue until no new tuples
can be inserted.

Property specification

Properties are specified in the same way as views, but with a violation annotation.

Safety means that violation relations are empty after every transaction commit.

34

Monitoring properties in run-time

Generates the following instrumentation block:

function checkViolations() {
if negativeBalance is not empty:

revert("Negative balance.")
// check other violations...

}

35

Evaluation

Measure overhead in two ways:
1. compared to reference Solidity implementation.
2. introduced by run-time verification.

Gas: a metric used by Ethereum smart contract to measure the
execution cost. Reading or writing to memory consumes most gas.

36

Execution overhead

37

Run-time verification overhead

38

Summary

• DeCon shows that smart contracts can be naturally expressed as
relational queries.

• DeCon can:
• automatically generate Solidity code from declarative rules.
• verify safety properties during run-time.
• support data-provenance for intuitive debugging.

• DeCon has moderate overhead over reference Solidity
implementation.

39

Future work

• Static verification of DeCon contracts:
Could we exploit the high-level abstraction of DeCon to perform
efficient static verification?

• Gas optimization.
Could the DeCon compiler generate more efficient code?

Checkout DeCon at:
https://github.com/HaoxianChen/declarative-smart-contracts

40

https://github.com/HaoxianChen/declarative-smart-contracts

