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Abstract—Permissioned Blockchain systems rely mainly on
Byzantine fault-tolerant protocols to establish consensus on the
order of transactions. While Byzantine fault-tolerant proto-
cols mostly guarantee consistency (safety) in an asynchronous
network using 3f+1 machines to overcome the simultaneous
malicious failure of any f nodes, in many systems, e.g., blockchain
systems, the number of available nodes (resources) is much
more than 3f + 1. To utilize such extra resources, in this paper
we introduce a model that leverages transaction parallelism by
partitioning the nodes into clusters (partitions) and processing
independent transactions on different partitions simultaneously.
The model also shards the blockchain ledger, assigns different
shards of the blockchain ledger to different clusters, and includes
both intra-shard and cross-shard transactions. Since more than
one cluster is involved in each cross-shard transaction, the ledger
is formed as a directed acyclic graph.

Index Terms—Permissioned Blockchain, Scalability, Data
Sharding, Directed Acyclic Graph

I. INTRODUCTION

Blockchain, originally devised for the Bitcoin cryptocur-

rency [27], is a distributed data structure for recording trans-

actions maintained by nodes without a central authority [9].

Nodes in a blockchain system agree on their shared states

across a large network of untrusted participants. Blockchain

has unique features such as transparency, provenance, fault

tolerance, and authenticity that are used by many systems

to deploy a wide range of distributed applications such as

healthcare [5], IoT [18], and supply chain management [20]

in permissioned settings. Unlike permissionless settings, e.g.,

Bitcoin [27], where the network is public, and anyone can par-

ticipate without a specific identity, a permissioned blockchain

consists of a set of known, identified nodes that still do not

fully trust each other.
In a permissioned blockchain system, every node maintains

a copy of the blockchain ledger and a consensus protocol is

used to ensure that the nodes agree on a unique order in which

entries are appended to the blockchain ledger. To establish con-

sensus among the nodes, asynchronous fault-tolerant protocols

have been used. Fault-tolerant protocols use the state machine

replication algorithm [23] where nodes agree on an ordering

of incoming requests. Since nodes in a blockchain do not trust

each other and might behave maliciously, a Byzantine fault-

tolerant protocol is needed. Byzantine fault-tolerant protocols,

e.g. PBFT [10], mainly guarantee safety (consistency) in an

asynchronous network using 3f+1 nodes to overcome the

simultaneous malicious failure of any f nodes.
In many systems especially blockchains, the number of

available nodes is much more than 3f+1. In such systems, us-

ing all the nodes to establish consensus degrades performance

since more messages are being exchanged without providing

improved resiliency, e.g., in PBFT, the number of message

exchanges is quadratic in terms of the number of nodes.

To tackle that issue, one solution is to use the active/passive

replication technique [17] by relying on only 3f + 1 active
replicas to establish consensus on the order of requests. When

the requests are ordered and executed, the active replicas send

the execution results to the passive replicas, so that their copies

of the ledger become up to date. The active replicas might be

either a fixed set or a rotating set where at some predefined

times a different set of replicas become active. While this

approach reduces the cost of establishing consensus among

all nodes by relying on only the required number of nodes

(3f + 1), it does not utilize the extra replicas.

An alternative solution is to employ the extra replicas to en-

hance the performance of the protocol by reducing one phase

of communication, e.g., Byzantine fault-tolerant protocol FaB

[26] uses 5f + 1 replicas to establish consensus on the order

of requests in two phases instead of three as in PBFT. This

approach improves the performance of the system by using

some of the extra nodes, e.g., 2f extra nodes in FaB, however,

if the number of extra nodes is more than 2f , they cannot be

utilized and in the best case scenario the extra nodes become

passive replicas.

Partitioning the data into multiple shards that are maintained

by different subsets of nodes is a proven approach to enhance

the scalability of databases [12]. In such an approach the

performance of the database scales horizontally with the

number of nodes. Databases are sharded such that the resulting

shards are as independent as possible, i.e., each transaction

accesses the records within only a single shard. An appropriate

sharding usually needs to be workload-aware, i.e. has prior

knowledge of the data and how it is accessed by different

transactions. Data sharding strategies mainly try to improve the

performance of systems in terms of throughput and latency by

reducing the number of cross-shard transactions (transactions

that access more than one shard).

In this paper, we present a model for permissioned

blockchain systems which is designed specifically for net-

works with a large number of nodes (� 3f + 1). The

blockchain model utilizes the extra resources by clustering

(partitioning) the nodes into clusters where each cluster in-

cludes 3f+1 nodes. Furthermore, the data is sharded and data

shards are assigned to the clusters. Each cluster then is respon-

sible to process the transactions that access its correspond-
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ing shard. Each cluster orders and executes its intra-shard

transactions locally. Since intra-shard transactions of different

clusters are independent of each other, they can be ordered

and executed in parallel. However, the ordering of cross-shard

transactions requires agreement among all involved clusters.

Since the ordering of intra-shard transactions in different

clusters is performed in parallel and the system includes

cross-shard transactions, the blockchain ledger is formed as

a directed acyclic graph. For the sake of performance, the

blockchain ledger is not maintained by any node and each

partition maintains its own view of the ledger including its

intra-shard transactions and the cross-shard transactions that

the cluster is involved in. This model can be used by permis-

sioned blockchain systems to enhance the performance of the

system by leveraging transaction parallelism in the presence

of extra resources (nodes).

The rest of this paper is organized as follows. Section II dis-

cusses related work. The blockchain architecture is introduced

in Section III. Section IV presents the blockchain ledger, and

Section V concludes the paper.

II. RELATED WORK

A permissioned blockchain consists of a set of known,

identified nodes but which do not fully trust each other. In per-

missioned blockchains, since the nodes are known and identi-

fied, traditional consensus protocols can be used to order the

requests [8]. Existing permissioned blockchains differ mainly

in their ordering routines. The ordering protocol of Tendermint

[22] is different from the original PBFT in two ways: first,

only a subset of nodes participate in the consensus protocol

and second, the leader is changed after the construction of

every block (leader rotation). Quorum [11] is an Ethereum-

based [1] permissioned blockchain that introduces a consensus

protocol based on Raft [28]: a well-known crash fault-tolerant

protocol. Hyperledger Fabric [3] is a permissioned blockchain

that leverages parallelism by executing the transactions of dif-

ferent applications simultaneously. Fabric presents a modular

design with pluggable fault-tolerant protocols, policy-based

endorsement, and non-deterministic transaction execution for

the first time in the context of permissioned blockchains.

Fabric, however, performs poorly on workloads with high-

contention, i.e., many conflicting transactions in a block. To

support conflicting transactions, ParBlockchain [2] follows the

order-(parallel)execute paradigm and generates a dependency

graph in the ordering phase. Transactions then execute in

parallel following the generated dependency graph.

Byzantine fault tolerance refers to servers that behave

arbitrarily after the seminal work by Lamport, et al. [24].

Practical Byzantine fault tolerance protocol (PBFT) [10] is

one of the first and probably the most instructive state machine

replication protocol to deal with Byzantine failures. Numerous

approaches have been proposed to explore a spectrum of trade-

offs between the number of phases/messages (latency), number

of processors, the activity level of participants (replicas and

clients), and types of failures. On latency, FaB [26], Bosco

[29], and Zyzzyva5 [21], use 2f additional replicas to reduce

the delay of request processing. These protocols differ mainly

in their execution techniques (e.g., speculative execution).

Data sharding techniques are commonly used in distributed

databases in the presence of non-malicious failures [12]

[15] [6]. Using data sharding techniques for permissionless

blockchains is presented in Elastico [25] and Omniledger

[19] where the mining network is uniformly partitioned into

smaller committees and each committee processes a disjoint

set of shards. While Elastico does not support the cross-

shard transaction, Omniledger proposes an atomic protocol

for cross-shard transactions using a locking-based method. In

the permissioned settings, Fabric also addresses sharding by

deploying different shards on different channels. In Fabric

cross-shard transactions are handled using a trusted entity

[4] [3]. In RSCoin [14] distributed sets of authorities collect

valid transactions and send them to the central bank. The

central bank collects the transactions of different authorities,

constructs blocks and adds the blocks to the blockchain. Using

the central bank, RSCoin is able to provide a scalable system

and also avoid double-spending attacks.

III. INFRASTRUCTURE

In this section, we introduce an infrastructure for blockchain

systems where the nodes are partitioned into clusters and

the application data including transactions and the ledger is

sharded over clusters. The blockchain consists of a set of

nodes in an asynchronous distributed system where nodes

are connected by a network. We use a Byzantine failure

model where faulty nodes may exhibit arbitrary, potentially

malicious, behavior. We assume that a strong adversary can

coordinate malicious nodes and delay communication to com-

promise the replicated service. However, the adversary cannot

subvert standard cryptographic assumptions about collision-

resistant hashes, encryption, and signatures, e.g., the adversary

cannot produce a valid signature of a non-faulty node.

Nodes are connected by point-to-point bi-directional com-

munication channels. Network channels are pairwise authenti-

cated, which guarantees that a malicious node cannot forge a

message from a correct node, i.e., if node i receives a message

m in the incoming link from node j, then node j must have

already sent message m to i.
Byzantine fault-tolerant protocols mainly guarantee consis-

tency (safety) in an asynchronous network using 3f+1 nodes

[7] to overcome the simultaneous malicious failure of any f
nodes. As discussed earlier, we assume that the number of

nodes, N , is much larger than 3f+1. Therefore, to utilize the

extra nodes we partition the nodes into clusters where each

cluster includes 3f + 1 nodes (the last cluster might include

more nodes). Nodes are assigned to the clusters either using

their ids, e.g. n0, n1, ..., n3f are assigned to the first cluster,

or based on their geographical distance. We denote the set of

clusters by P = {p1, p2, ...} where |P | = N
3f+1 .

The application data is sharded over different clusters. We

assume prior knowledge of the data and how it is accessed

by different transactions. Hence, this knowledge is used in

data sharding to increase the probability of maintaining the
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Fig. 1. The Blockchain Architecture with Three Clusters and Three Shards

records which are accessed by a single transaction in the

same shard [13]. Nevertheless, there might still be a portion

of transactions that access records from different shards. As a

result, the blockchain supports two types of transactions: intra-
shard and cross-shard. An intra-shard transaction accesses the

records within a single shard whereas a cross-shard transaction

accesses records in at least two different shards.

Since there are |P | clusters, the data is also sharded into

|P | shards, thus each cluster maintains a shard of the data.

Within each cluster, the data is replicated over the nodes of

that cluster. We denote shards by d1, ..., d|P | where each shard

di is replicated over the nodes of cluster pi.
Figure 1 presents the architecture of a blockchain system

consisting of 12 nodes where f = 1. Thus, we have three

clusters (|P | = 12
4 ) where each shard is replicated on the 4

nodes of its cluster.

IV. BLOCKCHAIN LEDGER

The blockchain ledger is an append-only data structure

recording transactions in the form of a hash chain where each

block contains a batch of transactions. Batching transactions

into blocks is a reason for the low performance of blockchains.

Transactions were originally batched into blocks, first, to

amortize the cost of cryptography, e.g., solving proof-of-

work, and second, to make data transfers more efficient in

a large geo-distributed setting [16]. However, in permissioned

blockchains, since proof-of-work is not required and nodes

are physically close to each other, batching transactions into

blocks decreases performance. Thus, in our model, each block

consists of a single transaction. To support both types of intra-

and cross-shard transactions, we generalize the notion of a

blockchain ledger from a linear chain to a directed acyclic
graph (DAG) where the nodes of the graph are blocks and

edges enforce the order of blocks.

Within each cluster, since transactions have access to the

same data shard which is replicated over all nodes of the

cluster, a total order between all the transactions that the

cluster is involved in (both intra- and cross-shard) is enforced

to ensure consistency. To capture the total order of transactions

in the blockchain ledger, blocks are chained together, i.e., each

block includes the cryptographic hash of the previous block.

Since more than one cluster is involved in each cross-shard

transaction, the ledger is formed as a directed acyclic graph.

In addition to intra- and cross-shard transactions, a unique

initialization block, called genesis, is considered for the

blockchain.

Fig. 2. (a): A blockchain ledger consisting of three shards, (b), (c), and (d):
The views of the blockchain from different shards

Fig. 2(a) shows a blockchain ledger consisting of three

clusters p1, p2, and p3 (data shards d1, d2, and d3) created

in the model. In this figure, λ is the genesis block of the

blockchain. Intra- and cross-shard transactions are also spec-

ified. For example, t10, t11, t13, t14, and t16 are the intra-

shard transactions of cluster p1. Note that each cross-shard

transaction is labeled with to1,..,ok where k is the number of

involved clusters and oi indicates the order of the transaction

among the transactions of the ith involved cluster. For example,

t12,22, t24,33, and t15,26,35 are cross-shard transactions where

t12,22 accesses data shards d1 and d2 (clusters p1 and p2),
t24,33 accesses data shards d2 and d3, and t15,26,35 accesses

all three d1, d2, and d3. As can be seen, transactions that

access a data shard are chained together, e.g., t10, t11, t12,22,
t13, t14, t15,26,35, and t16.

We denote the set of blocks (transactions) by T , the genesis

block by λ, intra-shard transactions by Ti, and cross-shard

transactions by Tc where T = λ ∪ Ti ∪ Tc. We also define

a function ρ : T �→ 2P to specify the involved clusters

(data shards) for each transaction where for an intra-shard

transaction t ∈ Ti, ρ(t) returns a single cluster (singleton set)

and for a cross-shard transaction t ∈ Tc, ρ(t) returns a set of

(at least two) clusters.

Definition: A blockchain ledger is a directed acyclic graph

G = (λ, T,E) where

• λ is the unique initialization block of the blockchain,

• T is the set of transactions (blocks), and

• E is the set of edges between blocks.

In addition to the data, the blockchain ledger is partitioned

between different clusters. In fact, the entire blockchain ledger

is not maintained by any cluster and each cluster only main-

tains its own view of the ledger including the transactions that

access the data shard of the cluster. The blockchain ledger is

indeed the union of all these physical views.
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Definition: Given a blockchain ledger G = (λ, T,E), let p
be a cluster in the blockchain. The view of p is a linear graph
Gp = (λ, Tp, Ep) where

• λ is the unique initialization block of the blockchain,

• Tp = λ ∪ {t | p ∈ ρ(t)} is a set of transactions, and

• Ep = {(t, t′) ∈ E | t, t′ ∈ Tp} is a set of edges.

Fig. 2(b)-(d) show the views of the blockchain ledger for

clusters p1, p2, and p3 respectively. As can be seen, each

cluster pi maintains only the part of the ledger consisting of

the transactions that access data shard di. Those transactions

(blocks) are chained together.
Nodes within a cluster follow the Byzantine failure model

where faulty nodes may exhibit arbitrary, potentially ma-

licious, behavior. Therefore, to achieve consensus on the

order of the intra-shard transactions, a Byzantine fault-tolerant

protocol, e.g., PBFT [10], is needed. However, achieving

consensus on the order of the cross-shard transactions needs

the participation of the nodes of all the involved clusters. Such

a protocol might rely on a separate set of nodes, i.e. orderers,

to establish consensus [3]. The protocol design is considered

as a future work and a step towards developing a permissioned

blockchain system.

V. CONCLUSION

In this paper, we proposed a model for a permissioned

blockchain system which is designed specifically for networks

with a large number of nodes (� 3f +1). The model utilizes

the extra resources by partitioning the nodes into clusters

of size 3f + 1 and processing the transactions on different

clusters in parallel. Since the model supports both intra- and

cross-shard transactions, the blockchain ledger is formed as a

directed acyclic graph. Each cluster, however, maintains only

a shard of the ledger that includes its intra-shard transactions

and the cross-shard transactions that the cluster is involved in.

As future work, we will develop a consensus protocol for this

model to order intra- and cross-shard transactions.
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