Modern Large-Scale Data Management Systems
after 40 Years of Consensus

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi
University of California Santa Barbara
Santa Barbara, California
{amiri, agrawal, amr} @cs.ucsb.edu

Abstract—Modern large-scale data management systems uti-
lize consensus protocols to provide fault tolerance. Consensus
protocols are extensively used in the distributed database in-
frastructure of large enterprises such as Google, Amazon, and
Facebook as well as permissioned blockchain systems like IBM’s
Hyperledger Fabric. In the last four decades, numerous consensus
protocols have been proposed to cover a broad spectrum of
distributed database systems. On one hand, distributed networks
might be synchronous, partially synchronous, or asynchronous,
and on the other hand, infrastructures might consist of crash-
only nodes, Byzantine nodes or both. In addition, a consensus
protocol might follow a pessimistic or optimistic strategy to
process transactions. Furthermore, while traditional consensus
protocols assume a priori known set of nodes, in permissionless
blockchains, nodes are assumed to be unknown. Finally, consen-
sus protocols have explored a variety of performance trade-offs
between the number of phases/messages (latency), the number
of required nodes, message complexity, and the activity level of
participants. In this tutorial, we discuss consensus protocols that
are used in modern large-scale data management systems, classify
them into different categories based on their assumptions on
network synchrony, failure model of nodes, etc., and elaborate
on their main advantages and limitations.

Index Terms—TFault Tolerance, Consensus, Data Management

I. INTRODUCTION

On April 1980, Pease, Shostak, and Lamport addressed the
problem of consensus in the presence of faults for the first time
in the domain of distributed systems [52]. In this fundamental
problem, a set of distributed nodes need to reach agreement
on a single value [40]. Modern large-scale data management
systems such as cloud and blockchain rely on consensus
protocols to provide robustness and performance. In cloud
data management systems, such as Google’s Spanner [21],
Amazon’s Dynamo [24], and Facebook’s Tao [14], consensus
protocols are extensively used to enhance fault tolerance.
Consensus is also the core component of the most recent
large-scale data management system, Blockchain. In particular,
permissioned blockchain systems, such as IBM Hyperledger
[7], Quorum [17], Fast Fabric [29], SharPer [5], ResilientDB
[33], and Caper [3], use consensus protocols to establish
agreement on the order of transaction blocks among a set of
known, identified nodes that might not fully trust each other. In
the last four decades, numerous consensus protocols have been
designed to satisfy the two main requirements of large-scale
data management systems, robustness and performance, using
State Machine Replication (SMR) [39] techniques. Robustness

is the ability to ensure availability (liveness) and one-copy
semantics (safety) despite failures, while performance deals
with the response time of requests (latency) and the number
of processed requests per time unit (throughput) [8].

In this tutorial, we study consensus protocols in the domain
of large-scale data management systems based on five aspects:
(1) synchrony mode, (2) failure model, (3) processing strategy,
(4) participants type, and (5) performance metrics.

Synchronous distributed systems assume known bounds on
message delays and process speeds [46]. In synchronous sys-
tems, all communication proceeds in rounds. In one round, a
process may send all the messages it requires, while receiving
all messages from other processes. In this manner, no message
from one round may influence any messages sent within the
same round. On the other hand, in asynchronous distributed
systems, there are no bounds on the amount of time a node
might take to complete its work and then respond with a
message [46]. In such systems, there is no global clock
nor consistent clock rate, each node processes independently
of others, and coordination is achieved via events such as
message arrival. As shown by Fischer et al. [28], in an
asynchronous system, where nodes can fail, consensus has no
solution that is both safe and live. Based on that impossibility
result, most fault-tolerant protocols satisfy safety in an asyn-
chronous network that can drop, delay, corrupt, duplicate, or
reorder messages, however, consider a synchrony assumption
to satisfy liveness. Finally, partially synchronous systems take
the position between asynchronous systems where delays can
be arbitrarily large and synchronous systems where there is
a bound on message transmission and processing delays. A
partially synchronous model assumes that among the nodes,
there is a subset that can communicate in a timely manner and
only a limited number of nodes are perceived as arbitrarily
slow, due to either message transmission or processing delays
[30]. This assumption indeed is reasonable in data centers
which are more predictable and controllable than an open
Internet environment.

Each node in a distributed system follows either the crash
or malicious failure model. In the crash failure model, nodes
operate at arbitrary speed, may fail by stopping, and may
restart, however, they may not collude, lie, or otherwise
attempt to subvert the protocol. Whereas, in the malicious
failure model, faulty nodes may exhibit arbitrary, potentially
malicious, behavior. Crash fault-tolerant protocols, e.g., Paxos



[41], guarantee safety in an asynchronous network using 2 f+1
nodes to overcome the simultaneous crash failure of any f
nodes while in Byzantine fault-tolerant protocols, e.g., PBFT
[16], 3f+1 nodes are needed to provide the safety property in
the presence of f malicious nodes [12]. A hybrid failure model
admits both crash and malicious failures. Indeed, in a hybrid
network, some nodes might crash whereas some others behave
maliciously. Hybrid fault-tolerant protocols, e.g. UpRight [19]
and SeeMoRe [6], assume a known bound on the maximum
number of crash and malicious failures.

Consensus protocols might optimistically assume that the
nodes are well-behaved. As a result, nodes speculatively
execute requests without running an agreement protocol to
definitively establish the order. Such an assumption while
reducing the processing time, might result in diverge states
of correct nodes that need to be detected and resolved.
Pessimistic consensus protocols, on the other hand, are robust
and designed to tolerate the maximum number of possible
concurrent failures f (where f is defined based on the failure
model of nodes).

Traditional consensus protocols assume that the participants
are known and identified and make an assumption on the
maximum number of failures, f, in the system. In permis-
sionless blockchain systems, e.g., Bitcoin [50], however, the
set of participants is assumed to be unknown. As a result, none
of the existing protocols can be used, thus, mining has been
proposed to solve the consensus problem.

Finally, consensus protocols explore a spectrum of perfor-
mance trade-offs between the number of required participants,
number of phases/messages (latency), and message complex-
ity. On the required number of participants, while it is known
that in the presence of crash-only (malicious) nodes, 2f + 1
(3f+1) is needed to overcome the simultaneous failure of any
f nodes, some approaches assume nodes are well-behaved (ei-
ther optimistically or using techniques like trusted hardware)
and reduce the number of required nodes. On the other hand
and to decrease the number of required communication phases,
increasing the number of required nodes is proposed for both
crash-only [42] and malicious nodes [47]. Finally, to decrease
the message complexity of Byzantine fault-tolerant protocols,
increasing the number of communication phases and using
advanced encryption techniques have been presented [63].

In this tutorial, our goal is to present to the database com-
munity an in-depth understanding of state-of-the-art solutions
to design efficient consensus protocols that can be used by
large-scale data management systems. We progress towards
this goal by starting from a detailed description of techniques
underlying the design of existing consensus protocols.

II. TUTORIAL OUTLINE

Many practical large-scale data management systems such
as ISIS [10], Eternal [49], Google’s Spanner [21], Amazon’s
Dynamo [24], and Facebook’s Tao [14], use consensus pro-
tocols to provide fault tolerance. Consensus algorithms are a
form of State Machine Replication [39]. SMR regulates the
deterministic execution of client requests on multiple copies
of a server, called replicas, such that every non-faulty replica

must execute every request in the same order [55] [39]. The
SMR algorithm has to satisfy safety and liveness properties.
Safety means all correct nodes receive the same requests in the
same order whereas liveness means all correct client requests
are eventually ordered.

Several approaches [55] [41] [51] generalize SMR to sup-
port crash failures among which Paxos [41] is the most
well-known asynchronous protocol. Paxos guarantees safety
in an asynchronous network using 2f-+1 nodes despite the
simultaneous crash failure of any f nodes. In Paxos, clients
send signed requests to the primary (a pre-elected node that
initiates consensus) and the primary multicasts an accept
message including the transaction to every node within the
system. Upon receiving a valid accept message from the
primary, a node sends an accepted message to the primary.
The primary waits for f accepted messages from different
nodes (plus itself becomes f+1), multicasts a commit message
to every node, and sends a reply to the client.

Many protocols have been proposed to either reduce the
number of phases, e.g., Multi-Paxos which assumes the leader
is relatively stable or Fast Paxos [42] and Brasileiro et al.
[13] which add f more nodes, or reduce the number of nodes,
e.g., Cheap Paxos [43] which tolerates f failures with f+1
active and f passive nodes. Finally, Raft [51] is a leader
based crash fault-tolerant protocol that was meant to be more
understandable than Paxos.

Byzantine fault tolerance refers to nodes that behave arbi-
trarily after the seminal work by Lamport, et al. [44]. Early
Byzantine fault-tolerant protocols (SecureRing [36] and Ram-
part [54]) were synchronous where a round based algorithm
is developed to exclude faulty nodes from the group. Such
systems are vulnerable to denial-of-service attack where an
attacker may compromise the safety of service by delaying
non-faulty nodes or the communication between them until
they are tagged as faulty and excluded from the group.

Practical Byzantine fault tolerance (PBFT) protocol [16] is
one of the first and the most known state machine replication
protocol to deal with malicious failures in an asynchronous
network. PBFT requires 3f+1 nodes to guarantee safety in
the presence of at most f malicious nodes. PBFT consists
of agreement and view change routines where the agreement
routine orders requests for execution by the nodes, and the
view change routine coordinates the election of a new primary
when the current primary is faulty. The nodes move through
a succession of configurations called views [26] [27] where
in each view, one node, which initiates the protocol, is the
primary and the others are backups.

Although practical, the cost of implementing PBFT is quite
high, requiring at least 3f+1 nodes, 3 communication phases,
and a quadratic number of messages in terms of the number
of nodes. Thus, numerous approaches have been proposed
to explore a spectrum of trade-offs between the number of
phases/messages (latency), number of nodes, the activity level
of participants (nodes and clients), and types of failures.

FaB [47] and Bosco [58] reduce the communication phases
by adding more nodes. Speculative protocols, e.g., Zyzzyva



[37], HQ [23], and Q/U [1], also reduce the communication
by executing requests without running any agreement between
nodes and optimistically rely on clients to detect inconsisten-
cies between nodes. To reduce the number of nodes, some
approaches rely on a trusted component (a counter in A2M-
PBFT-EA [18] or a whole operating-system instance [22]) that
prevents a faulty node from sending conflicting (i.e., asymmet-
ric) messages to different nodes without being detected. SBFT
[31] and Hotstuff [63] attain linear communication overhead
by increasing the number of communication phases and using
advanced encryption techniques, e.g., signature aggregation
[11]. Finally, MultiBFT [32] uses multiple parallel primary
nodes to parallelize transaction processing.

Optimistic approaches reduce the required number of nodes
during the normal-case operation by either utilizing the Cheap
Paxos [43] solution and keeping f nodes in a passive mode
(REPBFT [25]), or by separating agreement from execution
[62]. In ZZ [61] both passive nodes and separating agreement
from execution are employed. Note that all these approaches
need 3f + 1 nodes upon occurrence of failures. REMINBFT
[25] and CheapBFT [34] use a trusted component to reduce
the network size to 2f + 1 and then utilize an optimistic
approach by keeping f of those nodes passive during the
normal-case operation. In contrast to optimistic approaches,
robust protocols (Prime [2], Aardvark [20], Spinning [60],
RBFT [9]) consider the system to be under attack by a very
strong adversary and try to enhance the performance of the
protocol during periods of failures.

Consensus with multiple failure modes were initially ad-
dressed in synchronous protocols [59] [48] [35] [57]. Recent
protocols such as VFT [53], XFT [45], and SBFT [30]
have focused on partial synchrony, a technique that defines
a threshold on the number of slow (partitioned) processes.
VFT is similar to PBFT regarding the number of phases
and massage exchanges, however, it optimistically assumes
that an adversary cannot fully control the malicious nodes
and as a result, reduces the phases of communication and
message exchanges. SBFT also reduces the number of message
exchanges by assuming the adversary controls only crash
failures. Scrooge [56], as an asynchronous hybrid protocol,
uses a speculative technique to reduce the latency. UpRight
[19] also utilizes the agreement routines of PBFT [16], Aard-
vark [20], and Zyzzyva [37] and, similar to [62], separates
agreement from execution. SeeMoRe [6] is an asynchronous
hybrid protocol that takes advantage of being aware of where
the crash or malicious faults may occur and either reduces
the number of communication phases and message exchanges
by placing the primary in the crash-only private cloud, or
decreases the number of required nodes by placing the primary
in the untrusted public cloud.

Since permissioned blockchain systems consist of a set
of known, identified nodes that might not fully trust each
other, traditional Byzantine consensus protocols can be used
to order the transaction blocks [15]. In Tendermint [38], only
a subset of nodes, called validators, participates in a PBFT-
like consensus protocol. Validators are users with accounts that

have coins locked in a bond deposit and have voting power
equal to the amount of the bonded coins. Quorum [17] uses
a Raft-like [51] protocol to order transactions. In Hyperledger
Fabric [7] and ParBlockchain [4] fault-tolerant protocols are
pluggable and depending on the failure model of nodes a crash
or a Byzantine fault-tolerant protocol can be used.

While traditional consensus protocols assume a priori
known set of participants, in permissionless blockchain sys-
tem the set of participants is assumed to be unknown. A
permissionless setting allows participants to freely join and
leave the system without maintaining any global knowledge
of the number of participants. Since the participants are
unknown, none of the existing protocols can be used to
establish consensus on the order of transactions. To solve this
problem, Bitcoin introduces mining where nodes need to solve
a computationally challenging Proof of Work (PoW) puzzle
before they can add any block of transactions to the replicated
blockchain. Since the PoW puzzle is computationally hard,
very few miners can successfully solve the puzzle, and hence
a successful miner can add a block to the blockchain and be
guaranteed, with very high probability, to be unique.

ITII. TUTORIAL INFORMATION

This is a three hours tutorial targeting researchers, design-
ers, and practitioners interested in consensus and its appli-
cations in large-scale data management systems. The target
audience with basic background about distributed systems
should benefit the most from this tutorial. For the general
audience and newcomers, the tutorial explains the design space
of consensus in large-scale data management systems.

IV. BIOGRAPHICAL SKETCHES

Mohammad Javad Amiri is a PhD student at the Uni-
versity of California at Santa Barbara. His research mostly
lies at the intersection of Data Management and Distributed
Systems. The focus of his current research is on managing data
in distributed infrastructures such as cloud and blockchain.

Divyakant Agrawal is a Professor of Computer Science
at the University of California at Santa Barbara. His current
interests are in the area of scalable data management and
data analysis in cloud computing environments, security and
privacy of data in the cloud, scalable analytics over big data,
and Blockchain. Prof. Agrawal is an ACM Distinguished
Scientist (2010), an ACM Fellow (2012), an IEEE Fellow
(2012), and an AAAS Fellow (2016).

Amr El Abbadi is a Professor of Computer Science at the
University of California, Santa Barbara. Prof. El Abbadi is an
ACM Fellow, AAAS Fellow, and IEEE Fellow. He was Chair
of the Computer Science Department at UCSB from 2007 to
2011. He has served as a journal editor for several database
journals and has been Program Chair for multiple database and
distributed systems conferences. Prof. El Abbadi was also the
co-recipient of the Test of Time Award at EDBT/ICDT 2015.
He has published over 400 articles in databases and distributed
systems and has supervised over 35 PhD students.

ACKNOWLEDGEMENT

This work is funded by NSF grants CNS-1703560 and CNS-

1815733.



[1]
[2]
[3]
[4]

[5]

[6]

(10]

(1]
[12]
[13]

[14]

[15]
[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

REFERENCES

M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie.
Fault-scalable byzantine fault-tolerant services. OSR, 39(5):59-74, 2005.
Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine replication
under attack. IEEE TDSC, 8(4):564-577, 2011.

M. J. Amiri, D. Agrawal, and A. E. Abbadi. Caper: a cross-application
permissioned blockchain. VLDB, 12(11):1385-1398, 2019.

M. J. Amiri, D. Agrawal, and A. E. Abbadi. Parblockchain: Leveraging
transaction parallelism in permissioned blockchain systems. In ICDCS,
pages 1337-1347. IEEE, 2019.

M. J. Amiri, D. Agrawal, and A. E. Abbadi.
ing permissioned blockchains over network clusters.
arXiv:1910.00765, 2019.

M. J. Amiri, S. Maiyya, D. Agrawal, and A. El Abbadi. Seemore: A
fault-tolerant protocol for hybrid cloud environments. /CDE, 2020.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned
blockchains. In EuroSys, page 30. ACM, 2018.

P. Aublin, R. Guerraoui, N. KneZevi¢, V. Quéma, and M. Vukoli¢. The
next 700 bft protocols. TOCS, 32(4):12, 2015.

P. Aublin, S. B. Mokhtar, and V. Quéma. Rbft: Redundant byzantine
fault tolerance. In ICDCS, pages 297-306. IEEE, 2013.

K. P. Birman, T. A. Joseph, T. Raeuchle, and A. El Abbadi. Implement-
ing fault-tolerant distributed objects. Trans. on Software Engineering,
(6):502-508, 1985.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil
pairing. Journal of cryptology, 17(4):297-319, 2004.

G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM), 32(4):824-840, 1985.

F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. Consensus in
one communication step. In PaCT, pages 42-50. Springer, 2001.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, et al. Tao: Facebook’s
distributed data store for the social graph. In USENIX ATC, pages 49-60,
2013.

C. Cachin. Architecture of the hyperledger blockchain fabric. In DCCL
Workshop, volume 310, 2016.

M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173-186, 1999.

J. M. Chase. Quorum white paper, 2016.

B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-
only memory: Making adversaries stick to their word. In OSR, volume
41-6, pages 189-204. ACM, 2007.

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, et al. Upright
cluster services. In SOSP, pages 277-290. ACM, 2009.

A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making byzantine fault tolerant systems tolerate byzantine faults. In
NSDI, volume 9, pages 153-168, 2009.

J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s globally
distributed database. TOCS, 31(3):8, 2013.

M. Correia, N. F. Neves, and P. Verissimo. How to tolerate half less
one byzantine nodes in practical distributed systems. In SRDS, pages
174-183. 1IEEE, 2004.

J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq
replication: A hybrid quorum protocol for byzantine fault tolerance. In
OSDI, pages 177-190, 2006.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, et al. Dynamo:
amazon’s highly available key-value store. In OSR, volume 41, pages
205-220. ACM, 2007.

T. Distler, C. Cachin, and R. Kapitza. Resource-efficient byzantine fault
tolerance. Trans. on Computers, 65(9):2807-2819, 2016.

A. El Abbadi, D. Skeen, and F. Cristian. An efficient, fault-tolerant
protocol for replicated data management. In ACM SIGACT-SIGMOD
symp. on Principles of database systems, pages 215-229. ACM, 1985.
A. El Abbadi and S. Toueg. Availability in partitioned replicated
databases. In SIGMOD, pages 240-251. ACM, 1985.

M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed
consensus with one faulty process. JACM, 32(2):374-382, 1985.

C. Gorenflo, S. Lee, L. Golab, and S. Keshav. Fastfabric: Scaling
hyperledger fabric to 20,000 transactions per second. In Int. Conf. on
Blockchain and Cryptocurrency (ICBC), pages 455-463. IEEE, 2019.
G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D. Seredinschi, O. Tamir, and A. Tomescu. Sbft: a scalable and
decentralized trust infrastructure. In DSN, pages 568-580. IEEE, 2019.

Sharper: Shard-
arXiv preprint

[32]

[33]
[34]

(35]

[36]

[37]

(38]
[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]
[47]

(48]
[49]
[50]
[51]
(52]

[53]

[54]
[55]

[56]

(571
(58]
[59]

[60]

[61]

[62]

[63]

G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K.
Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu. Sbft: a scalable
decentralized trust infrastructure for blockchains. 1In Int. Conf. on
Dependable Systems and Networks, pages 568-580. IEEE/IFIP, 2019.
S. Gupta, J. Hellings, and M. Sadoghi. Scaling blockchain
databases through parallel resilient consensus paradigm. arXiv preprint
arXiv:1911.00837, 2019.

S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. Resilientdb: Global
scale resilient blockchain fabric. VLDB, 13(6):868-883, 2020.

R. Kapitza, J. Behl, C. Cachin, et al. Cheapbft: resource-efficient
byzantine fault tolerance. In EuroSys, pages 295-308. ACM, 2012.

R. M. Kieckhafer and M. H. Azadmanesh. Reaching approximate
agreement with mixed-mode faults. Trans. on Parallel and Distributed
Systems, 5(1):53-63, 1994.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The securering
protocols for securing group communication. In Hawaii Int. Conf. on
System Sciences, volume 3, pages 317-326. IEEE, 1998.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative byzantine fault tolerance. OSR, 41(6):45-58, 2007.

J. Kwon. Tendermint: Consensus without mining. Draft v. 0.6, 2014.
L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

L. Lamport. The part-time parliament. Trans. on Computer Systems
(TOCS), 16(2):133-169, 1998.

L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18-25, 2001.
L. Lamport. Fast paxos. Distributed Computing, 19(2):79-103, 2006.
L. Lamport and M. Massa. Cheap paxos. In Int. Conf. on Dependable
Systems and Networks (DSN), pages 307-314. IEEE, 2004.

L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
Trans. on Programming Languages and Systems (TOPLAS), 4(3):382—
401, 1982.

S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic. Xft: Practical
fault tolerance beyond crashes. In OSDI, pages 485-500, 2016.

N. A. Lynch. Distributed algorithms. Elsevier, 1996.

J.-P. Martin and L. Alvisi. Fast byzantine consensus. IEEE Trans. on
Dependable and Secure Computing, 3(3):202-215, 2006.

F. J. Meyer and D. K. Pradhan. Consensus with dual failure modes.
Trans. on Parallel & Distributed Systems, (2):214-222, 1991.

L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. A. Tewksbury,
and V. Kalogeraki. The eternal system: An architecture for enterprise
applications. In EDOC, pages 214-222. IEEE, 1999.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
D. Ongaro and J. K. Ousterhout. In search of an understandable
consensus algorithm. In USENIX ATC, pages 305-319, 2014.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228-234, 1980.
D. Porto, J. Leitdao, C. Li, A. Clement, A. Kate, F. Junqueira, and
R. Rodrigues. Visigoth fault tolerance. In EuroSys, page 8. ACM,
2015.

M. K. Reiter. The rampart toolkit for building high-integrity services. In
Theory and Practice in Distributed Sys., pages 99—110. Springer, 1995.
F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. CSUR, 22(4):299-319, 1990.

M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri. Scrooge:
Reducing the costs of fast byzantine replication in presence of unre-
sponsive replicas. In DSN, pages 353-362. IEEE, 2010.

H.-S. Siu, Y.-H. Chin, and W.-P. Yang. A note on consensus on dual
failure modes. IEEE TPDS, 7(3):225-230, 1996.

Y. J. Song and R. van Renesse. Bosco: One-step byzantine asynchronous
consensus. In DISC, pages 438-450. Springer, 2008.

P. Thambidurai, Y. Park, et al. Interactive consistency with multiple
failure modes. In SRDS, pages 93-100. IEEE, 1988.

G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s
wheels? byzantine fault tolerance with a spinning primary. In SRDS,
pages 135-144. IEEE, 2009.

T. Wood, R. Singh, A. Venkataramani, and P. Shenoy. Zz and the art of
practical bft execution. In EuroSys, pages 123-138. ACM, 2011.

J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating
agreement from execution for byzantine fault tolerant services. ACM
SIGOPS Operating Systems Review, 37(5):253-267, 2003.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Symp. on Principles
of Distributed Computing, pages 347-356. ACM, 2019.



