
Distributed Transaction Processing in Untrusted Environments
Mohammad Javad Amiri

Stony Brook University
Stony Brook, USA

amiri@cs.stonybrook.edu

Divyakant Agrawal
University of California Santa Barbara

Santa Barbara, USA
agrawal@cs.ucsb.edu

Amr El Abbadi
University of California Santa Barbara

Santa Barbara, USA
amr@cs.ucsb.edu

Boon Thau Loo
University of Pennsylvania

Philadelphia, USA
boonloo@seas.upenn.edu

ABSTRACT
Byzantine Fault-Tolerant (BFT) protocols have recently been ex-
tensively used by distributed and decentralized data management
systems with non-trustworthy infrastructures to establish consen-
sus on the order of transactions. BFT protocols cover a broad spec-
trum of design dimensions from infrastructure settings, such as
the communication topology, to more technical features, such as
commitment strategy and even fundamental social choice proper-
ties like order-fairness. The proliferation of different protocols has
made it difficult to navigate the BFT landscape, let alone determine
the protocol that best meets application needs. In this tutorial, we
discuss BFT protocols that are used in modern large-scale data
management systems, present a design space consisting of a set
of design dimensions and explore several design choices that cap-
ture the trade-offs between different design space dimensions. The
presented design space and its design choices will help develop-
ers analyze BFT protocols, understand how different protocols are
related to each other, and find the protocol that best fits their needs.

CCS CONCEPTS
• Information systems→ Distributed database transactions;
• Computer systems organization→ Fault-tolerant network
topologies; • Networks → Network protocol design.

KEYWORDS
Distributed Transactions, Consensus, Byzantine Failure, Partial
Synchrony, BFT protocols

ACM Reference Format:
Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, and Boon
Thau Loo. 2024. Distributed Transaction Processing in Untrusted Environ-
ments. In Companion of the 2024 International Conference on Management of
Data (SIGMOD-Companion ’24), June 9–15, 2024, Santiago, AA, Chile. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3626246.3654684

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0422-2/24/06
https://doi.org/10.1145/3626246.3654684

1 INTRODUCTION
Distributed data management systems [37, 46, 50, 71, 79, 111, 145]
rely on crash fault-tolerant protocols, e.g., Paxos [126] and Raft
[153], to provide robustness and high availability and establish con-
sensus on the order of transactions. However, today’s large-scale
distributed data management systems need to deal with untrust-
worthy environments where multiple mutually distrustful entities
communicate with each other, and maintain data on untrusted in-
frastructure. By relying on Byzantine fault-tolerant (BFT) protocols,
distributed databases have enabled a large class of applications rang-
ing from contact tracing [156], crowdworking [22], supply chain
assurance [24, 177], and federated learning [157].

Fault tolerance in large-scale systems is often achieved by repli-
cating the data on multiple servers. The critical challenge is to
execute all client transactions in the same order on all replicas.
Formally, this approach is referred to as State Machine Replication
(SMR) [125, 165] and BFT protocols are used to ensure that all non-
faulty replicas execute all transactions in the same order despite 𝑓
Byzantine (adversarial) servers. The ability to tolerate arbitrary fail-
ures makes BFT protocols a key component in various distributed
data management systems with non-trustworthy infrastructures,
e.g., permissioned blockchains [1–3, 18, 21, 23, 24, 27, 38, 54, 67, 97–
99, 105, 124, 158, 164, 167, 184, 186], permissionless blockchains [51,
117, 119, 132, 190], distributed file systems [8, 61, 69], locking ser-
vice [70], firewalls [44, 92, 93, 163, 173, 188], certificate authority
systems [193], SCADA systems [35, 116, 152, 192], key-value datas-
tores [43, 83, 96, 108, 163], and key management [137].

BFT SMR protocols differ along several dimensions, such as the
number of replicas, processing strategy (i.e., optimistic, pessimistic,
or robust), and the number of communication phases. While a large
number of BFT protocols have been proposed [16, 25, 59, 101, 112,
120, 134, 189], there is no one-size-fits-all solution [185]. The perfor-
mance trade-offs offered by BFT protocols vary significantly based
on client workloads, network configurations, and application needs.
Dependencies and trade-offs among different design dimensions of
BFT protocols lead to several design choices. For example, proto-
cols that reduce message complexity by increasing communication
phases exhibit better throughput but worse latency (e.g., unsuitable
for geo-replicated databases). In addition, adversarial behaviors in
the system also affect the best-performing protocol choice. The
lack of a clear “winner” among BFT protocols makes it difficult
for application developers to choose one. It is, therefore, critical to

https://doi.org/10.1145/3626246.3654684
https://doi.org/10.1145/3626246.3654684


SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, & Boon Thau Loo

study and analyze the various BFT protocols’ design dimensions
and their trade-offs in a unified manner.

Inspired by our Bedrock platform [26], this tutorial presents
a unified framework to analyze partially synchronous SMR BFT
protocols. We envision that this tutorial will provide an in-depth
understanding of existing BFT protocols, highlight the trade-offs
among dimensions, and will enable data management application
designers to find the protocol that best fits their needs.

Our goal is to present to the database community an in-depth
understanding of state-of-the-art solutions to design efficient BFT
consensus protocols for large-scale fault-tolerant data management
systems. We start with a design space to characterize BFT proto-
cols based on different dimensions that capture the environmental
settings, protocol structure, QoS features, and performance opti-
mizations. Within the design space, we then discuss a set of design
choices demonstrating trade-offs between different dimensions.

2 TUTORIAL OUTLINE
A BFT protocol runs on a network consisting of a set of nodes that
may exhibit arbitrary, potentially malicious, behavior. BFT proto-
cols use the State Machine Replication (SMR) algorithm [125, 165]
where the system provides fault tolerance by replicating a service
whose state is mirrored across different deterministic replicas. At a
high level, the goal of a BFT SMR protocol is to assign each client
transaction an order in the global service history and execute it
in that order across all replicas[170]. In a BFT SMR protocol, all
non-faulty replicas execute the same transactions in the same or-
der (safety) and all correct transactions are eventually executed
(liveness). In an asynchronous system, where replicas can fail, no
consensus solutions guarantee both safety and liveness (FLP re-
sult) [89]. As a result, asynchronous consensus protocols rely on
techniques such as randomization [41, 57, 91, 159], failure detectors
[65, 135], hybridization/wormholes [72, 151] and partial synchrony
[84, 85] to circumvent the FLP impossibility.

In this tutorial, we focus on the partial synchrony model as it is
used in most practical BFT protocols [59, 101, 120, 189]. In the par-
tial synchrony model, there exists an unknown global stabilization
time (GST), after which all messages between correct replicas are
received within some known bound Δ. BFT protocols follow several
standard assumptions. First, while there is no upper bound on the
number of faulty clients, the maximum number of concurrent mali-
cious replicas is assumed to be 𝑓 . Second, replicas are connected via
an unreliable network that might drop, corrupt, or delay messages.
Third, the network uses point-to-point bi-directional communica-
tion channels to connect replicas. Fourth, the failure of replicas
is independent of each other, where a single fault does not lead
to the failure of multiple replicas. This can be achieved by either
diversifying replica implementation (e.g., n-version programming)
[34, 90] or placing replicas at different geographic locations (e.g.,
datacenters) [42, 86, 172, 180]. Finally, a strong adversary can coor-
dinate malicious replicas and delay communication. However, the
adversary cannot subvert cryptographic assumptions.

2.1 Basics
BFT protocols structure. In a BFT protocol, as presented in Fig-
ure 1, clients communicate with a set of replicas that maintain a

Figure 1: Different stages of replicas in a BFT protocol

copy of the application state (i.e., database). A replica’s lifecycle
consists of ordering, execution, view-change, checkpointing, and
recovery stages. The goal of ordering is to establish agreement on
a unique order among requests executing on the application state.
In leader-based consensus protocols, a designated leader replica
proposes the order to all backup replicas and, to ensure fault toler-
ance, needs to get agreement from a subset of the replicas, referred
to as a quorum. In the execution stage, requests are executed (i.e.,
applied to the replicated state machine). The view-change stage
replaces the current leader due to failures. Checkpointing is used
to garbage-collect data and enable trailing replicas to catch up, and
finally, the recovery stage recovers replicas from faults.
The PBFT Protocol. To better illustrate the design space of BFT
protocols, we give an overview of the PBFT protocol [59, 61] as
a driving example. PBFT, as shown in Figure 2, is a leader-based
protocol that operates in a succession of configurations called views
[87, 88]. Each view is coordinated by a stable leader (primary), and
the protocol pessimistically processes requests. In PBFT, the number
of replicas, 𝑛, is at least 3𝑓 + 1 and the ordering stage consists of pre-
prepare, prepare, and commit phases. The pre-prepare phase assigns an
order to the request, the prepare phase guarantees the uniqueness
of the assigned order, and the commit phase guarantees that the
next leader can safely assign the order.

During a normal (no failure) case execution of PBFT, clients
send their signed request messages (including the transaction to be
executed) to the leader. In the pre-prepare phase, the leader assigns
a sequence number to the request to determine the execution order
of the request and multicasts a pre-prepare message to all backups.
Upon receiving a valid pre-prepare message from the leader, each
backup replica multicasts a preparemessage to all replicas and waits
for preparemessages from 2𝑓 different replicas (including the replica
itself) that match the pre-prepare message. The goal of the prepare
phase is to guarantee safetywithin the view, i.e., 2𝑓 replicas received
matching pre-prepare messages from the leader replica and agree
with the order of the request. Each replica then multicasts a commit
message to all replicas. Once a replica receives 2𝑓 + 1 valid commit
messages from different replicas, including itself, that match the
pre-prepare message, it commits the request. The goal of the commit
phase is to ensure safety across views, i.e., the request has been
replicated on a majority of non-faulty replicas and can be recovered
after (leader) failures. The second and third phases of PBFT follow
the clique topology, i.e., have 𝑂 (𝑛2) message complexity. If the
replica has executed all requests with lower sequence numbers, it
executes the request and sends a reply to the client. The client waits
for 𝑓 +1 matching results from different replicas.

In the view change stage, upon detecting the failure of the leader
of view 𝑣 using timeouts, replicas exchange view-change messages
including requests that have been received by the replicas. After
receiving 2𝑓 +1 view-changemessages, the designated leader of view



Distributed Transaction Processing in Untrusted Environments SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

Figure 2: Different stages of PBFT protocol

𝑣 + 1 proposes a new view message, including the list of requests
that should be processed in the new view.

In PBFT, replicas periodically generate checkpoint messages and
send them to all replicas. If a replica receives 2𝑓 + 1 matching check-
point messages, the checkpoint is stable. PBFT includes a proactive
recovery mechanism that periodically rejuvenates replicas one by
one. PBFT uses either signatures [59] or MACs [61] for authentica-
tion. Using MACs, replicas need to send view-change-ack messages
to the leader after receiving view-change messages. Since new view
messages are not signed, these view-change-ack messages enable
replicas to verify the authenticity of new view messages.

2.2 Design Space
Each BFT protocol can be analyzed along several dimensions. These
dimensions (and values associatedwith each dimension) collectively
help to define the overall design space of BFT protocols. The dimen-
sions are categorized into four main families: protocol structure and
environmental settings that present the core dimensions of BFT pro-
tocols, two optional QoS features including order-fairness and load
balancing that a BFT protocol might support, and a set of perfor-
mance optimizations, such as request pipelining, parallel execution,
and trusted hardware, for tuning BFT protocols. In this tutorial,
we focus on the first three families. In the rest of this section, we
describe these families of dimensions in greater detail.

2.2.1 Protocol Structure.
P 1. Commitment strategy. BFT protocols process transactions
in either an optimistic, pessimistic, or robust manner. Optimistic
BFT protocols make optimistic assumptions on failures, synchrony,
or data contention and might execute requests without necessarily
establishing consensus. An optimistic BFT protocol might make a
subset of the following assumptions:

𝑎1. The leader is non-faulty, assigns a correct order to requests
and sends it to all backups, e.g., Zyzzyva [120],

𝑎2. The backups are non-faulty and actively and honestly partic-
ipate in the protocol, e.g., CheapBFT [112],

𝑎3. All non-leaf replicas in a tree topology are non-faulty, e.g.,
Kauri[149],

𝑎4. The workload is conflict-free and concurrent requests update
disjoint sets of data objects, e.g., Q/U [4],

𝑎5. The clients are honest, e.g., Quorum [31], and
𝑎6. The network is synchronous (in a time window), and mes-

sages are not lost or delayed, e.g., Tendermint [52].
Optimistic protocols are either speculative or non-speculative. In

non-speculative protocols, e.g., CheapBFT [112] and SBFT [101],
replicas execute a transaction only if the optimistic assumption
holds. Speculative protocols, e.g., Zyzzyva [120] and PoE [103], on

the other hand, optimistically execute transactions. If the assump-
tion is not fulfilled, replicas might have to rollback the executed
transactions. Optimistic BFT protocols improve performance in
fault-free situations. If the assumption does not hold, the replicas,
e.g., SBFT [101], or clients, e.g., Zyzzyva [120], detect the failure and
use a fallback protocol. Pessimistic BFT protocols, on the other hand,
do not make any optimistic assumptions about failures, synchrony,
or data contention. In pessimistic BFT protocols, replicas communi-
cate to agree on the order of requests. Finally, robust protocols, e.g.,
Prime [16], Aardvark [70], R-Aliph [31], Spinning [179] and RBFT
[32], go one step further and consider scenarios where the system
is under attack by a very strong adversary.
P 2. Number of commitment phases. The number of commit-
ment (ordering) phases or good-case latency [7] of a BFT SMR pro-
tocol is the number of phases needed for all non-faulty replicas
to commit when the leader is non-faulty, and the network is syn-
chronous. We consider the number of commitment phases from
the first time a replica (typically the leader) receives a request to
the first time any participant (i.e., leader, backups, client) learns the
commitment of the request, e.g., PBFT executes in 3 phases.
P 3. View-change. BFT protocols follow either the stable leader
or the rotating leader mechanism to replace the current leader. The
stable leader mechanism [59, 101, 120, 140] replaces the leader when
the leader is suspected to be faulty by other replicas. In the rotating
leader mechanism [13, 54, 62–64, 70, 95, 107, 118, 124, 179, 180,
189], the leader is replaced periodically, e.g., after a single attempt,
insufficient performance, or an epoch (multiple requests).

Using the stable leader mechanism, the view-change stage be-
comes more complex. However, the routine is only executed when
the leader is suspected to be faulty. On the other hand, the ro-
tating leader mechanism requires ensuring view synchronization
frequently (whenever the leader is rotated). Rotating the leader has
several benefits, such as balancing load across replicas [39, 40, 179],
improving resilience against slow replicas [70], and minimizing
communication delays between clients and the leader [86, 139, 180].
P 4. Checkpointing. Checkpointing is used to first, garbage-
collect data of completed consensus instances to save space and
second, restore in-dark replicas (due to network unreliability or
leader maliciousness) to ensure all non-faulty replicas are up-to-
date [59, 80, 103]. Checkpointing is typically initiated after a fixed
window in a decentralized manner without relying on a leader [59].
P 5. Recovery. When there are more than 𝑓 failures, BFT pro-
tocols, apart from some exceptions [68, 130], completely fail and
do not give any guarantees on their behavior [80]. BFT protocols
perform recovery using reactive or proactivemechanisms (or a com-
bination [173]). Reactive recovery mechanisms detect faulty replica
behavior [106] and recover the replica by applying software rejuve-
nation techniques [76, 109] where the replica reboots, reestablishes
its connection with other replicas and clients, and updates its state.
On the other hand, proactive recovery mechanisms recover replicas
in periodic time intervals. Proactive mechanisms do not require
any fault detection techniques; however, they might unnecessarily
recover non-faulty replicas [80]. During recovery, a replica is un-
available. A BFT protocol can rely on 3𝑓 +2𝑘 +1 replicas to improve
resilience and availability during recovery where 𝑘 is the maximum
number of servers that rejuvenate concurrently [173].



SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, & Boon Thau Loo

P 6. Types of clients. BFT protocols might have three types of
clients: requester, proposer, and repairer. Requester clients perform
a basic functionality and communicate with replicas by sending
requests and receiving replies. A requester client may need to verify
the results by waiting for a number of matching replies, e.g., 𝑓 +1
in PBFT [59], 2𝑓 +1 in PoE [103] and PBFT (for read-only requests)
[61], or 3𝑓 +1 is Zyzzyva [120]. Using trusted components, e.g.,
Troxy [129], or threshold signatures, e.g., SBFT [101], the client
does not even need to wait for and verify multiple results from
replicas. Clients might also play the proposer role by proposing a
sequence number (acting as the leader) for its request [4, 100, 136,
138]. Repairer clients, on the other hand, detect the failure of replicas,
e.g., Zyzzyva [120], and even change the protocol configuration,
e.g., Scrooge[166], Abstract [31], and Q/U[4].

2.2.2 Environmental Settings.
E 1. Number of replicas. The first dimension concerns selecting
BFT protocols based on the number of replicas used in a deployment.
In the presence of 𝑓 malicious failures, BFT protocols require at least
3𝑓 +1 replicas to guarantee safety [47, 48, 74, 85, 127]. Using trusted
hardware, the malicious behavior of replicas is restricted and safety
can be guaranteed using 2𝑓 +1 replicas [68, 73, 75, 161, 180, 180, 181].
Similarly, leveraging new hardware capabilities or using message-
and-memorymodels the required number of replicas can be reduced
to 2𝑓 + 1 [9–11]. On the other hand, the number of communication
phases can be reduced by increasing the number of replicas to 5𝑓 +1
[140] (its proven lower bound, 5𝑓 − 1 [7, 123]) or 7𝑓 + 1 [171]. A
BFT protocol might also optimistically assume the existence of a
set of 2𝑓 + 1 active non-faulty replicas, which participate in every
quorum to establish consensus (and 𝑓 passive replicas, which are
informed about the decisions and become active if any active replica
fails) [81, 112]. Using both trusted hardware and active/passive
replication, the quorum size is further reduced to 𝑓 + 1 during
failure-free situations [81, 82, 112].
E 2. Communication topology. BFT protocols follow different
communication topologies, including: (1) the star topology where
communication is strictly from a designated replica, e.g., the leader,
to all other replicas and vice-versa, resulting in linear message com-
plexity [120, 189], (2) the clique topology where all (or a subset of)
replicas communicate directly with each other (quadratic message
complexity) [59], (3) the tree topology where the replicas are orga-
nized in a tree with the leader placed at the root, and at each phase,
a replica communicates with either its child replicas or its parent
replica (logarithmic message complexity) [117, 118, 149], or (4) the
chain topology where replicas construct a pipeline and each replica
communicates with its neighbor replicas [31].
E 3. Authentication. Participants authenticate their messages to
enable other replicas to verify a message’s origin. BFT protocols
either use signatures, e.g., RSA [162], or authenticators [59], i.e.,
MACs [178]. Constant-sized threshold signatures [57, 168] have
also been used to reduce the size of a set (quorum) of signatures.
A protocol might even use different techniques (i.e., signatures,
MACs) in different stages to authenticate messages sent by clients
and sent by replicas in the ordering or view-change stage.
E 4. Responsiveness, synchronization, and timers. A BFT pro-
tocol is responsive if its normal case commit latency depends only

on the actual network delay needed for replicas to process and ex-
change messages rather than any (usually much larger) predefined
upper bound on message transmission delay [30, 154, 155, 169].
Responsiveness might be sacrificed in different ways. First, rotating
the leader, the new leader might need to wait for a predefined time
before initiating the next request to ensure that it receives the de-
cided value from all non-faulty but slow replicas, e.g., Tendermint
[124] and Casper [55]. Second, assuming all replicas are non-faulty,
replicas (or clients) need to wait for a predefined time to receive
messages of all replicas, e.g., SBFT [101] and Zyzzyva [120].

BFT protocols need to guarantee that all non-faulty replicas will
eventually be synchronized to the same view with a non-faulty
leader, thus enabling the leader to collect the decided values in
previous views and making progress in the new view [49, 146,
147]. This is needed because a quorum of 2𝑓 + 1 replicas might
include 𝑓 Byzantine replicas and the remaining 𝑓 "slow" non-faulty
replicas might stay behind (i.e., in-dark) and not even advance
views at all. View synchronization can be achieved by integrating
the functionality with the core consensus protocol, e.g., PBFT [59],
or assigning a distinct synchronizer component, e.g., Pacemaker in
HotStuff [189], and hardware clocks [5].

Depending on the environment, network characteristics, and
processing strategy, a BFT protocol uses a subset of the following
timers to ensure responsiveness and synchronization.

𝜏1. Waiting for reply messages, e.g., Zyzzyva [120],
𝜏2. Triggering (consecutive) view-change, e.g., PBFT [59],
𝜏3. Detecting backup failures, e.g., SBFT [101],
𝜏4. Quorum construction in an ordering phase, e.g., prevote and

precommit timeouts in Tendermint [52],
𝜏5. View synchronization, e.g., Tendermint [52],
𝜏6. Finishing a (preordering) round, e.g., Themis [113],
𝜏7. Performance check (heartbeat), e.g., Aardvark [70], and
𝜏8. Atomic recovery (watchdog timer) to periodically hand con-

trol to a recovery monitor [60], e.g., PBFT [61].

2.2.3 Quality of Service.
Q 1. Order-fairness. Order-fairness deals with preventing ad-
versarial manipulation of request ordering [36, 58, 113, 114, 121,
122, 191]. Order-fairness is defined as: "if a large number of repli-
cas receives a request 𝑡1 before another request 𝑡2, then 𝑡1 should
be ordered before 𝑡2" [114]. Order-fairness has been partially ad-
dressed using different techniques: (1) monitoring the leader to
ensure it does not initiate two new requests from the same client
before initiating an old request of another client, e.g., Aardvark
[70], (2) adding a preordering phase, e.g., Prime [16], where repli-
cas order the received requests locally and share their orderings
with each other, (3) encrypting requests and revealing the contents
only once their ordering is fixed [29, 56, 141, 174], (4) reputation-
based systems [29, 78, 119, 128] to detect unfair censorship of
specific client requests, and (5) providing opportunities for ev-
ery replica to propose and commit its requests using fair election
[6, 29, 95, 115, 128, 154, 187].
Q 2. Load balancing. The performance of fault-tolerant protocols
is usually limited by the computing and bandwidth capacity of the
leader [12, 14, 45, 66, 143, 144, 149, 183]. The leader coordinates the
consensus protocol and multicasts/collects messages to all other
replicas in different protocol phases. Load balancing is defined as



Distributed Transaction Processing in Untrusted Environments SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

distributing the load among the replicas of the system to balance
the number of messages any single replica has to process.

Load balancing can be partially achieved using the rotating leader
mechanism, multi-layer, or multi-leader protocols. Using leader
rotation, one replica (leader) is still highly loaded in each consensus
instance. In multi-layer protocols [17, 105, 131, 148, 150], the load
is distributed between the leaders of different clusters. However,
the system still suffers from load imbalance between the leader
and backups in each cluster. In multi-leader protocols [15, 28, 33,
104, 175, 182], all replicas can initiate consensus to partially order
requests in parallel. However, slow replicas still affect the global
ordering of requests.

2.3 Design Choices Landscape
Given a set of specified dimension values in Section 2.2, each pro-
tocol represents a point in the design space. In this section, using
PBFT and our design dimensions as a baseline, we illustrate a series
of design choices that expose different trade-offs BFT protocols
need to make. Each design choice acts as a one-to-one function
that maps each valid input point (i.e., a protocol) to another valid
output point in the design space.
Design Choice 1. (Linearization). This function explores a trade-
off between communication topology and communication phases.
The function takes a quadratic phase, e.g., prepare or commit in PBFT,
and splits it into two linear phases: one phase from all replicas to
a collector (typically the leader) and one phase from the collector
to all replicas, e.g., SBFT [101], HotStuff [189] and HotStuff-2 [134].
The output protocol requires (threshold) signatures for authentica-
tion. The collector collects a quorum of (typically 𝑛 − 𝑓 ) signatures
from replicas and broadcasts its message, including the signatures,
as a certificate of having received the required signatures. Using
threshold signatures [56, 57, 160, 168] the collector message size
becomes constant. Some BFT protocols [94, 110, 176] use linear
communication during the ordering phase but follow the quadratic
view-change routine of PBFT.
Design Choice 2. (Phase reduction through redundancy). This
function explores a trade-off between the number of ordering
phases and the number of replicas. The function transforms a pro-
tocol with 3𝑓 + 1 replicas and 3 ordering phases (i.e., one linear, two
quadratic), e.g., PBFT, to a fast protocol with 5𝑓 + 1 replicas and 2
ordering phases (one linear, one quadratic), e.g., FaB [140]. In the
second phase of the protocol, matching messages from a quorum
of 4𝑓 + 1 replicas are required. Recently, 5𝑓 − 1 has been proven
as the lower bound for two-step Byzantine consensus [7, 123]. The
intuition behind the 5𝑓 − 1 lower bound is that in an authenti-
cated model, when replicas detect leader equivocation and initiate
view-change, they do not include view-change messages coming
from the malicious leader, reducing the maximum number of faulty
messages to 𝑓 − 1 [7, 123].
Design Choice 3. (Leader rotation). This function replaces the
stable leader with the rotating leader mechanism, e.g., HotStuff
[189], where the rotation happens after each request or epoch or due
to low performance (as discussed in P 3). This function eliminates
the view-change stage and adds a quadratic phase or two linear
phases (the linearization function) to the ordering stage to ensure
that the new leader is aware of the correct state of the system.

Design Choice 4. (Non-responsive leader rotation). This func-
tion replaces the stable leader mechanism with the rotating leader
mechanism without adding a new ordering phase (in contrast to
design choice 3) while sacrificing responsiveness. The new leader
assumes that the network is synchronous (after GST) and waits
for a predefined known upper bound Δ (Timer 𝜏5) before initiating
the next request. This is needed to ensure that the new leader is
aware of the highest assigned order to the requests, e.g., Tendermint
[53, 124] and Casper [55]. As an optimization, if the new leader
is aware of the highest assigned order (the leader was part of the
quorum), it can initiate the next request right after receiving 2𝑓 + 1
votes (without necessarily waiting for Δ [134]).
Design Choice 5. (Optimistic replica reduction). This function
reduces the number of involved replicas in consensus from 3𝑓 +1 to
2𝑓 +1 while optimistically assuming all 2𝑓 +1 replicas are non-faulty
(assumption P 1, 𝑎2). In each phase of a BFT protocol, matching
messages from a quorum of 2𝑓 + 1 replicas is needed. If a quorum
of 2𝑓 + 1 non-faulty replicas is identified, they can order (and exe-
cute) requests without the participation of the remaining 𝑓 replicas.
Those 𝑓 replicas remain passive and are needed if any of the active
replicas become faulty [81, 112]. Note that 𝑛 is still 3𝑓 + 1.
Design Choice 6. (Optimistic phase reduction). Given a linear
BFT protocol, this function optimistically eliminates two linear
phases (i.e., the equivalence of a single quadratic prepare pahse)
assuming all replicas are non-faulty, e.g., SBFT [101]. The leader
(collector) waits for signed messages from all 3𝑓 + 1 replicas in the
second phase of ordering, combines signatures and sends a signed
message to all replicas. Upon receiving the signed message from
the leader, each replica ensures that all non-faulty replicas have
received the request and agreed with the order. As a result, the third
phase of communication can be omitted and replicas can directly
commit the request. If the leader has not received 3𝑓 + 1 messages
after a predefined time (timer 𝜏3), the protocol fallbacks to its slow
path and runs the third phase of ordering.
Design Choice 7. (Speculative phase reduction). This function,
similar to the previous one, optimistically eliminates two linear
phases of the ordering stage, assuming that non-faulty replicas
can construct a quorum of responses, e.g., PoE [103]. The main
difference is that the leader waits for signed messages from only
2𝑓 + 1 replicas in the second phase of ordering and sends a signed
message to all replicas. Upon receiving a message signed by 2𝑓 + 1
replicas from the leader, each replica speculatively executes the
transaction, optimistically assuming that either (1) all 2𝑓 + 1 signa-
tures are from non-faulty replicas or (2) at least 𝑓 + 1 non-faulty
replicas received the signed message from the leader. If (1) does
not hold, other replicas receive and execute transactions during the
view-change. However, if (2) does not hold, the replica might have
to rollback the executed transaction.
Design Choice 8. (Speculative execution). This function elimi-
nates the prepare and commit phases while optimistically assuming
that all replicas are non-faulty (assumptions P 1, 𝑎1 and 𝑎2), e.g.,
Zyzzyva [120]. Replicas speculatively execute transactions upon
receiving them from the leader. If the client does not receive 3𝑓 + 1
matching replies after a predefined time (timer 𝜏1) or it receives
conflicting messages, the (repairer) client detects the failure and
communicates with replicas to receive 2𝑓 + 1 commit messages.



SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, & Boon Thau Loo

Design Choice 9. (Optimistic conflict-free). If requests of differ-
ent clients are conflict-free (assumption P 1, 𝑎4), there is no need
for a total order among all transactions. This function eliminates
all ordering phases while optimistically assuming that requests are
conflict-free and all replicas are non-faulty. The client becomes the
proposer and sends its request to all (or a quorum of) replicas where
replicas execute the requests without any communication [4, 77].
Design Choice 10. (Resilience). This function increases the num-
ber of replicas by 2𝑓 , enabling the protocol to tolerate 𝑓 more failure
with the same safety guarantees. In particular, optimistic BFT pro-
tocols that assume all 3𝑓 + 1 replicas are non-faulty (quorum size
is also 3𝑓 + 1) tolerate zero failures. By increasing the number of
replicas to 5𝑓 + 1 replicas, such BFT protocols can provide the same
safety guarantees with quorums of size 4𝑓 + 1 while tolerating 𝑓

failures, e.g., Zyzzyva5 [120], Q/U [4]. Similarly, a protocol with
the network size of 5𝑓 + 1 can tolerate 𝑓 more faulty replicas by
increasing the network size to 7𝑓 + 1 [171].
Design Choice 11. (Authentication). This function replaces
MACs with signatures for a given stage. Signatures are typically
more costly than MACs. However, in contrast to MACs, signatures
provide non-repudiation and are not vulnerable to MAC-based
attacks from malicious clients. If a protocol follows the star com-
munication topology where a replica needs to include a quorum of
signatures as a proof of its messages, e.g., HotStuff [189], 𝑘 signa-
tures can be replaced with a threshold signature. In such protocols,
MACs cannot be used since MACs do not provide non-repudiation.
Design Choice 12. (Robust). This function makes a pessimistic
protocol robust by adding a preordering stage to the protocol, e.g.,
Prime [16]. In the preordering stage and, upon receiving a request,
each replica locally orders and broadcasts the request to all other
replicas. All replicas then acknowledge the receipt of the request
in an all-to-all communication phase and add the request to their
local request vector. Replicas periodically share their vectors with
each other. The robust function provides (partial) fairness as well.
Robustness has also been addressed in other ways, e.g., using the
leader rotation and a blacklisting mechanism in Spinning [179] or
isolating the incoming traffic of different replicas, and checking the
performance of the leader in Aardvark [70].
Design Choice 13. (Fair). This function transforms an unfair
protocol, e.g., PBFT, into a fair protocol by adding a preordering
phase to the protocol. In the preordering phase, clients send requests
to all replicas, and once a round ends (timer 𝜏6), each replica sends
a batch of requests in the received order to the leader. The leader
then initiates consensus on the requests following the order of
requests in the received batches. Depending on the order-fairness
parameter𝛾 (0.5<𝛾≤1) that defines the fraction of replicas receiving
the requests in that specific order, at least 4𝑓 + 1 replicas (𝑛> 4𝑓

2𝛾−1 )
replicas are needed to provide order-fairness [113, 114] 1.
Design Choice 14. (Tree-based LoadBalancer). This function
explores a trade-off between the communication topology and load
balancing where load balancing is supported by organizing replicas
in a tree topology, with the leader at the root, e.g., Kauri [149]. This
function splits a linear communication phase into ℎ phases where
ℎ is the tree’s height and each replica uniformly communicates

1With 3𝑓 +1 replicas, as shown in [113], order-fairness requires a synchronized clock
[191] or does not provide censorship resistance [121].

with its child/parent replicas in the tree. The protocol optimistically
assumes all non-leaf replicas are non-faulty (assumption P 1, 𝑎3).
Otherwise, the tree is reconfigured (i.e., view change).

3 TUTORIAL INFORMATION
This is a three hours tutorial targeting researchers, designers, and
practitioners interested in consensus protocols and their applica-
tions in distributed transaction processing systems. The target
audience with a basic background in distributed systems should
benefit the most from this tutorial. For the general audience and
newcomers, the tutorial explains the design space of consensus
protocols in large-scale data management systems.

This tutorial differs from previous tutorials on the same topic
in database conferences. The tutorial presented by Amiri et al. at
ICDE 2020 [19] was mainly on a small subset of design dimensions,
e.g., synchrony mode, failure model, and participant types. This
tutorial focuses on partial synchrony protocols with the Byzantine
failure model and explores many dimensions. This tutorial is also
different from the tutorial presented by Gupta et al. [102] at VLDB
2020 where the focus of that tutorial was on designing consensus
protocols for permissioned blockchains and the blockchain tutorials
[20, 133, 142] presented in the DB community.

4 BIOGRAPHICAL SKETCHES
Mohammad Javad Amiri is an Assistant Professor in the Depart-
ment of Computer Science at Stony Brook University. Before joining
Stony Brook, he was a postdoctoral researcher in the Computer and
Information Science department at the University of Pennsylvania.
He received his Ph.D. in Computer Science at the University of
California, Santa Barbara.
Divyakant Agrawal is a Distinguished Professor of Computer
Science at the University of California at Santa Barbara. Over the
course of his career, he has publishedmore than 400 research articles
and has mentored approximately 50 PhD students. He served as a
journal editor for several database journals and is currently serving
as the Chair of ACM Special Interest Group onManagement of Data
(SIGMOD). He is a Fellow of the ACM, the IEEE, and the AAAS.
Amr El Abbadi is a Distinguished Professor of Computer Science
at the University of California, Santa Barbara. Prof. El Abbadi is an
ACM Fellow, AAAS Fellow, and IEEE Fellow. He has served as a
journal editor for several database journals and has been Program
Chair for multiple databases and distributed systems conferences.
He has published over 400 articles in databases and distributed
systems and has supervised over 40 Ph.D. students.
Boon Thau Loo is an RCA Professor at the Computer and In-
formation Science department with a secondary appointment in
Electrical and Systems Engineering. He has graduated 16 Ph.D. stu-
dents including five winners of dissertation awards. He received his
Ph.D. degree in Computer Science from the University of California
at Berkeley in 2006. He was awarded the 2006 David J. Sakrison
Memorial Prize for the most outstanding dissertation research in
the Department of EECS at the University of California-Berkeley,
and the 2007 ACM SIGMOD Dissertation Award.

ACKNOWLEDGMENTS
This work is funded by NSF grant CNS-2104882.



Distributed Transaction Processing in Untrusted Environments SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

REFERENCES
[1] [n. d.]. Chain. http://chain.com.
[2] [n. d.]. Corda. https://github.com/corda/corda.
[3] [n. d.]. Hyperledger Iroha. https://github.com/hyperledger/iroha.
[4] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter,

and Jay J Wylie. 2005. Fault-scalable Byzantine fault-tolerant services. Operating
Systems Review (OSR) 39, 5 (2005), 59–74.

[5] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.
2019. Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected
𝑂 (𝑛2 ) Communication, and Optimal Resilience. In Int. Conf. on Financial Cryp-
tography and Data Security. Springer, 320–334.

[6] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegel-
man. 2017. Solida: A Blockchain Protocol Based on Reconfigurable Byzantine
Consensus. In Int. Conf. on Principles of Distributed Systems (OPODIS). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[7] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-case
Latency of Byzantine Broadcast: a Complete Categorization. In Symposium on
Principles of Distributed Computing (PODC). ACM, 331–341.

[8] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,
John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P
Wattenhofer. 2002. 𝐹𝐴𝑅𝑆𝐼𝑇𝐸: Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. In Symposium on Operating Systems Design
and Implementation (OSDI). USENIX Association.

[9] Marcos K Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez
Petrank, and Sam Toueg. 2018. Passing messages while sharing memory. In
Symposium on Principles of Distributed Computing (PODC). ACM, 51–60.

[10] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe,
and Igor Zablotchi. 2019. The impact of RDMA on agreement. In Symposium on
Principles of Distributed Computing (PODC). 409–418.

[11] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Dalia Papuc, Athana-
sios Xygkis, and Igor Zablotchi. 2021. Frugal Byzantine Computing. In Int.
Symposium on Distributed Computing.

[12] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019. Dissecting
the performance of strongly-consistent replication protocols. In SIGMOD Int.
Conf. on Management of Data. ACM, 1696–1710.

[13] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. 2005. BAR fault tolerance for cooperative services. In
Symposium on Operating Systems Principles (SOSP). ACM, 45–58.

[14] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun
Xiang, and Haibin Zhang. 2022. Balanced byzantine reliable broadcast with
near-optimal communication and improved computation. In Symposium on
Principles of Distributed Computing (PODC). ACM, 399–417.

[15] Salem Alqahtani and Murat Demirbas. 2021. BigBFT: A Multileader Byzantine
Fault Tolerance Protocol for High Throughput. In Int. Performance Computing
and Communications Conf. (IPCCC). IEEE, 1–10.

[16] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine
replication under attack. Transactions on Dependable and Secure Computing 8, 4
(2011), 564–577.

[17] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina
Nita-Rotaru, Josh Olsen, and David Zage. 2008. Steward: Scaling Byzantine fault-
tolerant replication to wide area networks. IEEE Transactions on Dependable
and Secure Computing 7, 1 (2008), 80–93.

[18] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:
a cross-application permissioned blockchain. Proc. of the VLDB Endowment 12,
11 (2019), 1385–1398.

[19] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2020. Modern
Large-Scale Data Management Systems after 40 Years of Consensus. In Int. Conf.
on Data Engineering (ICDE). IEEE, 1794–1797.

[20] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. Per-
missioned Blockchains: Properties, Techniques and Applications. In SIGMOD
Int. Conf. on Management of Data. ACM, 2813–2820.

[21] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. In SIGMOD Int.
Conf. on Management of Data. ACM, 76–88.

[22] Mohammad Javad Amiri, Joris Duguépéroux, Tristan Allard, Divyakant Agrawal,
and Amr El Abbadi. 2021. SEPAR: Towards Regulating Future of Work Multi-
Platform Crowdworking Environments with Privacy Guarantees. In Proceedings
of The Web Conf. (WWW). 1891–1903.

[23] Mohammad Javad Amiri, Ziliang Lai, Liana Patel, Boon Thau Loo, Eric Lo,
and Wenchao Zhou. 2023. Saguaro: An Edge Computing-Enabled Hierarchical
Permissioned Blockchain. In Int. Conf. on Data Engineering (ICDE). IEEE, 259–
272.

[24] Mohammad Javad Amiri, Boon Thau Loo, Divyakant Agrawal, and Amr El Ab-
badi. 2022. Qanaat: A ScalableMulti-Enterprise Permissioned Blockchain System
with Confidentiality Guarantees. Proc. of the VLDB Endowment 15, 11 (2022),
2839–2852.

[25] Mohammad Javad Amiri, Sujaya Maiyya, Divyakant Agrawal, and Amr El Ab-
badi. 2020. SeeMoRe: A fault-tolerant protocol for hybrid cloud environments.

In Int. Conf. on Data Engineering (ICDE). IEEE, 1345–1356.
[26] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi,

Boon Thau Loo, and Mohammad Sadoghi. 2024. The Bedrock of Byzantine
Fault Tolerance: A Unified Platform for BFT Protocols Analysis, Implementa-
tion, and Experimentation. In Symposium on Networked Systems Design and
Implementation (NSDI). USENIX Association.

[27] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, and Yacov Manevich. 2018. Hyperledger Fabric: a distributed operating
system for permissioned blockchains. In European Conf. on Computer Systems
(EuroSys). ACM, 30:1–30:15.

[28] Balaji Arun, Sebastiano Peluso, and Binoy Ravindran. 2019. ezbft: Decentralizing
byzantine fault-tolerant state machine replication. In Int. Conf. on Distributed
Computing Systems (ICDCS). IEEE, 565–577.

[29] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,
Ronen Tamari, and David Yakira. 2018. A fair consensus protocol for transaction
ordering. In Int. Conf. on Network Protocols (ICNP). IEEE, 55–65.

[30] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1994.
Bounds on the time to reach agreement in the presence of timing uncertainty.
Journal of the ACM (JACM) 41, 1 (1994), 122–152.

[31] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. 2015. The next 700 BFT protocols. Transactions on Computer
Systems (TOCS) 32, 4 (2015), 12.

[32] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. 2013. Rbft: Redun-
dant byzantine fault tolerance. In Int. Conf. on Distributed Computing Systems
(ICDCS). IEEE, 297–306.

[33] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, Laurent Vanbever, Roger
Wattenhofer, and Patrick Wintermeyer. 2023. FnF-BFT: A BFT protocol with
provable performance under attack. In Int. Colloquium on Structural Information
and Communication Complexity (SIROCCO). Springer, 165–198.

[34] Algirdas Avizienis. 1985. The N-version approach to fault-tolerant software.
IEEE Transactions on Software Engineering 12 (1985), 1491–1501.

[35] Amy Babay, John Schultz, Thomas Tantillo, Samuel Beckley, Eamon Jordan,
Kevin Ruddell, Kevin Jordan, and Yair Amir. 2019. Deploying intrusion-tolerant
SCADA for the power grid. In Int. Conf. on Dependable Systems and Networks
(DSN). IEEE, 328–335.

[36] Leemon Baird. 2016. The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep
(2016).

[37] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing scalable, highly available storage for interactive
services. In Conf. on Innovative Data Systems Research (CIDR).

[38] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garil-
lot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino.
2019. State machine replication in the libra blockchain. The Libra Assn., Tech.
Rep (2019).

[39] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2015. Consensus-oriented
parallelization: How to earn your first million. In Annual Middleware Conf.
(Middleware). 173–184.

[40] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on steroids:
SGX-based high performance BFT. In European Conf. on Computer Systems
(EuroSys). 222–237.

[41] Michael Ben-Or. 1983. Another Advantage of Free Choice: Completely Asyn-
chronous Agreement Protocols (Extended Abstract).. In Symposium on Principles
of Distributed Computing (PODC). ACM, 27–30.

[42] Christian Berger, Hans P Reiser, João Sousa, and Alysson Bessani. 2019. Re-
silient wide-area Byzantine consensus using adaptive weighted replication. In
Symposium on Reliable Distributed Systems (SRDS). IEEE, 183–18309.

[43] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa. 2013. DepSky: dependable and secure storage in a cloud-of-clouds.
Transactions on Storage (TOS) 9, 4 (2013), 12.

[44] Alysson Neves Bessani, Paulo Sousa, Miguel Correia, Nuno Ferreira Neves, and
Paulo Verissimo. 2008. The CRUTIAL way of critical infrastructure protection.
IEEE Security & Privacy 6, 6 (2008), 44–51.

[45] Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. 2012. S-paxos:
Offloading the leader for high throughput state machine replication. In Sympo-
sium on Reliable Distributed Systems (SRDS). IEEE, 111–120.

[46] Kenneth P Birman, Thomas A Joseph, Thomas Raeuchle, and Amr El Abbadi.
1985. Implementing fault-tolerant distributed objects. Trans. on Software Engi-
neering 6 (1985), 502–508.

[47] Gabriel Bracha. 1984. An asynchronous [(n-1)/3]-resilient consensus protocol.
In Symposium on Principles of Distributed Computing (PODC). ACM, 154–162.

[48] Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM) 32, 4 (1985), 824–840.

[49] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2020. Making Byzantine
consensus live. In Int. Symposium on Distributed Computing (DISC). Schloss



SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, & Boon Thau Loo

Dagstuhl-Leibniz-Zentrum für Informatik.
[50] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, and Harry Li. 2013.
TAO: Facebook’s Distributed Data Store for the Social Graph. InAnnual Technical
Conf. (ATC). USENIX Association, 49–60.

[51] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. 2016. Corda:
an introduction. R3 CEV, August 1, 15 (2016), 14.

[52] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph. D. Dissertation.

[53] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT
consensus. arXiv preprint arXiv:1807.04938 (2018).

[54] Yehonatan Buchnik and Roy Friedman. 2020. FireLedger: a high throughput
blockchain consensus protocol. Proceedings of the VLDB Endowment 13, 9 (2020),
1525–1539.

[55] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget.
arXiv preprint arXiv:1710.09437 (2017).

[56] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure
and efficient asynchronous broadcast protocols. In Annual Int. Cryptology Conf.
Springer, 524–541.

[57] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in
Constantinople: Practical asynchronous Byzantine agreement using cryptogra-
phy. Journal of Cryptology 18, 3 (2005), 219–246.

[58] Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. 2022. Quick Order
Fairness. In Int. Conf. on Financial Cryptography and Data Security (FC). Springer,
1–18.

[59] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault tolerance. In
Symposium on Operating Systems Design and Implementation (OSDI). USENIX
Association, 173–186.

[60] Miguel Castro and Barbara Liskov. 2000. Proactive Recovery in a Byzantine-
Fault-Tolerant System. In Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association.

[61] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance
and proactive recovery. Transactions on Computer Systems (TOCS) 20, 4 (2002),
398–461.

[62] Benjamin Y Chan and Elaine Shi. 2020. Streamlet: Textbook streamlined
blockchains. In Conf. on Advances in Financial Technologies (AFT). ACM, 1–
11.

[63] TH Hubert Chan, Rafael Pass, and Elaine Shi. 2018. Pala: A simple partially
synchronous blockchain. Cryptology ePrint Archive (2018).

[64] TH Hubert Chan, Rafael Pass, and Elaine Shi. 2018. PiLi: An Extremely Simple
Synchronous Blockchain. Cryptology ePrint Archive (2018).

[65] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM) 43, 2 (1996), 225–267.

[66] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2021. PigPaxos:
Devouring the communication bottlenecks in distributed consensus. In SIGMOD
Int. Conf. on Management of Data. ACM, 235–247.

[67] JP Morgan Chase. 2016. Quorum white paper.
[68] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.

Attested append-only memory: Making adversaries stick to their word. In Oper-
ating Systems Review (OSR), Vol. 41-6. ACM SIGOPS, 189–204.

[69] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi,
Mike Dahlin, and Taylor Riche. 2009. Upright cluster services. In Symposium on
Operating Systems Principles (SOSP). ACM, 277–290.

[70] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco
Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine
Faults.. In Symposium on Networked Systems Design and Implementation (NSDI),
Vol. 9. USENIX Association, 153–168.

[71] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, and Peter Hochschild. 2013. Spanner: Google’s globally distributed
database. Transactions on Computer Systems (TOCS) 31, 3 (2013), 8.

[72] Miguel Correia, Nuno Ferreira Neves, Lau Cheuk Lung, and Paulo Veríssimo.
2005. Low complexity Byzantine-resilient consensus. Distributed Computing 17,
3 (2005), 237–249.

[73] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. 2004. How to tolerate
half less one Byzantine nodes in practical distributed systems. In Int. Symposium
on Reliable Distributed Systems (SRDS). IEEE, 174–183.

[74] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2006. From con-
sensus to atomic broadcast: Time-free Byzantine-resistant protocols without
signatures. Comput. J. 49, 1 (2006), 82–96.

[75] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. 2013. Bft-to: Intru-
sion tolerance with less replicas. Comput. J. 56, 6 (2013), 693–715.

[76] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo.
2014. A survey of software aging and rejuvenation studies. ACM Journal on
Emerging Technologies in Computing Systems (JETC) 10, 1 (2014), 1–34.

[77] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba
Shrira. 2006. HQ replication: A hybrid quorum protocol for Byzantine fault
tolerance. In Symposium on Operating Systems Design and Implementation (OSDI).

USENIX Association, 177–190.
[78] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: a secure,

fair and scalable open blockchain. In Symposium on Security and Privacy (SP).
IEEE.

[79] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
Operating Systems Review (OSR) 41, 6 (2007), 205–220.

[80] Tobias Distler. 2021. Byzantine fault-tolerant state-machine replication from a
systems perspective. ACM Computing Surveys (CSUR) 54, 1 (2021), 1–38.

[81] Tobias Distler, Christian Cachin, and Rüdiger Kapitza. 2016. Resource-efficient
Byzantine fault tolerance. Transactions on Computers 65, 9 (2016), 2807–2819.

[82] Tobias Distler, Ivan Popov, Wolfgang Schröder-Preikschat, Hans P Reiser, and
Rüdiger Kapitza. 2011. SPARE: Replicas on Hold. In Network and Distributed
System Security Symposium (NDSS).

[83] Dan Dobre, Ghassan Karame, Wenting Li, Matthias Majuntke, Neeraj Suri, and
Marko Vukolić. 2013. PoWerStore: Proofs of writing for efficient and robust
storage. In Conf. on Computer and communications security (CCS). ACM, 285–
298.

[84] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. 1987. On the minimal
synchronism needed for distributed consensus. Journal of the ACM (JACM) 34,
1 (1987), 77–97.

[85] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.

[86] Michael Eischer and Tobias Distler. 2018. Latency-aware leader selection for
geo-replicated Byzantine fault-tolerant systems. In Int. Conf. on Dependable
Systems and Networks Workshops (DSN-W). IEEE, 140–145.

[87] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. 1985. An efficient, fault-tolerant
protocol for replicated data management. In SIGACT-SIGMOD symposium on
Principles of database systems. ACM, 215–229.

[88] Amr El Abbadi and Sam Toueg. 1986. Availability in partitioned replicated
databases. In SIGACT-SIGMOD symposium on Principles of database systems.
ACM, 240–251.

[89] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM)
32, 2 (1985), 374–382.

[90] Stephanie Forrest, Anil Somayaji, and David H Ackley. 1997. Building diverse
computer systems. InWorkshop on Hot Topics in Operating Systems. IEEE, 67–72.

[91] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Efficient asynchronous byzantine agreement without private setups. In
Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 246–257.

[92] Miguel Garcia, Nuno Neves, and Alysson Bessani. 2013. An intrusion-tolerant
firewall design for protecting SIEM systems. In Conf. on Dependable Systems
and Networks Workshop (DSN-W). IEEE, 1–7.

[93] Miguel Garcia, Nuno Neves, and Alysson Bessani. 2016. SieveQ: A layered bft
protection system for critical services. IEEE Transactions on Dependable and
Secure Computing 15, 3 (2016), 511–525.

[94] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-
man, and Zhuolun Xiang. 2022. Jolteon and ditto: Network-adaptive efficient
consensus with asynchronous fallback. In Int. Conf. on Financial Cryptography
and Data Security. Springer, 296–315.

[95] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Symposium on Operating Systems Principles (SOSP). ACM, 51–68.

[96] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. 2004.
Efficient Byzantine-tolerant erasure-coded storage. In Int. Conf. on Dependable
Systems and Networks (DSN). IEEE, 135–144.

[97] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2020. XOX Fabric:
A hybrid approach to transaction execution. In Int. Conf. on Blockchain and
Cryptocurrency (ICBC). IEEE, 1–9.

[98] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
Fastfabric: Scaling hyperledger fabric to 20,000 transactions per second. In Int.
Conf. on Blockchain and Cryptocurrency (ICBC). IEEE, 455–463.

[99] Gideon Greenspan. 2015. MultiChain private blockchain-White paper. URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf (2015).

[100] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2010.
The next 700 BFT protocols. In European conf. on Computer systems (EuroSys).
ACM, 363–376.

[101] GuyGolan Gueta, Ittai Abraham, Shelly Grossman, DahliaMalkhi, Benny Pinkas,
Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu.
2019. SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains. In
Int. Conf. on Dependable Systems and Networks (DSN). IEEE/IFIP, 568–580.

[102] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2020.
Building high throughput permissioned blockchain fabrics: challenges and
opportunities. Proc. of the VLDB Endowment 13, 12 (2020), 3441–3444.

[103] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2021.
Proof-of-execution: Reaching consensus through fault-tolerant speculation. In
Int. Conf. on Extending Database Technology (EDBT). 301–312.



Distributed Transaction Processing in Untrusted Environments SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

[104] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. Rcc: Resilient
concurrent consensus for high-throughput secure transaction processing. In
Int. Conf. on Data Engineering (ICDE). IEEE, 1392–1403.

[105] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proceedings of the VLDB
Endowment 13, 6 (2020), 868–883.

[106] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2006. The Case for
Byzantine Fault Detection.. In HotDep.

[107] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. Dfinity tech-
nology overview series, consensus system. arXiv preprint arXiv:1805.04548
(2018).

[108] James Hendricks, Gregory R Ganger, and Michael K Reiter. 2007. Low-overhead
byzantine fault-tolerant storage. ACM SIGOPS Operating Systems Review 41, 6
(2007), 73–86.

[109] Yennun Huang, Chandra Kintala, Nick Kolettis, and N Dudley Fulton. 1995.
Software rejuvenation: Analysis, module and applications. In Int. Symposium on
fault-tolerant computing. Digest of papers. IEEE, 381–390.

[110] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai. 2020. Fast-
hotstuff: A fast and resilient hotstuff protocol. arXiv preprint arXiv:2010.11454
(2020).

[111] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,
and Yang Zhang. 2008. H-store: a high-performance, distributed main memory
transaction processing system. Proc. of the VLDB Endowment 1, 2 (2008), 1496–
1499.

[112] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel.
2012. CheapBFT: resource-efficient byzantine fault tolerance. In European Conf.
on Computer Systems (EuroSys). ACM, 295–308.

[113] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.
2022. Themis: Fast, Strong Order-Fairness in Byzantine Consensus. The Science
of Blockchain Conf. (SBC) (2022).

[114] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-
fairness for byzantine consensus. In Annual Int. Cryptology Conf. Springer,
451–480.

[115] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Annual Int. Cryptology Conf. Springer, 357–388.

[116] Jonathan Kirsch, Stuart Goose, Yair Amir, Dong Wei, and Paul Skare. 2013.
Survivable SCADA via intrusion-tolerant replication. IEEE Transactions on
Smart Grid 5, 1 (2013), 60–70.

[117] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing bitcoin security and performance
with strong consistency via collective signing. In Security Symposium. USENIX
Association, 279–296.

[118] Eleftherios Kokoris-Kogias. [n. d.]. Robust and Scalable Consensus for Sharded
Distributed Ledgers. ([n. d.]).

[119] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized
ledger via sharding. In Symposium on Security and Privacy (SP). IEEE, 583–598.

[120] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. Operating Systems
Review (OSR) 41, 6 (2007), 45–58.

[121] Klaus Kursawe. 2020. Wendy, the good little fairness widget: Achieving order
fairness for blockchains. In Conf. on Advances in Financial Technologies (AFT).
ACM, 25–36.

[122] Klaus Kursawe. 2021. Wendy Grows Up: More Order Fairness. In Int. Conf. on
Financial Cryptography and Data Security (FC). Springer, 191–196.

[123] Petr Kuznetsov, Andrei Tonkikh, and Yan X Zhang. 2021. Revisiting Optimal
Resilience of Fast Byzantine Consensus. In Symposium on Principles of Distributed
Computing (PODC). ACM, 343–353.

[124] Jae Kwon. 2014. Tendermint: Consensus without mining. (2014).
[125] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.
[126] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
[127] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine gen-

erals problem. Transactions on Programming Languages and Systems (TOPLAS)
4, 3 (1982), 382–401.

[128] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. 2019.
FairLedger: A Fair Blockchain Protocol for Financial Institutions. In Int. Conf. on
Principles of Distributed Systems (OPODIS). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[129] Bijun Li, Nico Weichbrodt, Johannes Behl, Pierre-Louis Aublin, Tobias Distler,
and Rüdiger Kapitza. 2018. Troxy: Transparent access to byzantine fault-tolerant
systems. In Int. Conf. on Dependable Systems and Networks (DSN). IEEE, 59–70.

[130] Jinyuan Li and David Maziéres. 2007. Beyond One-Third Faulty Replicas in
Byzantine Fault Tolerant Systems.. In Symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association.

[131] Wenyu Li, Chenglin Feng, Lei Zhang, Hao Xu, Bin Cao, and Muhammad Ali
Imran. 2020. A scalable multi-layer PBFT consensus for blockchain. Transactions
on Parallel and Distributed Systems 32, 5 (2020), 1146–1160.

[132] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In
SIGSAC Conf. on Computer and Communications Security (CCS). ACM, 17–30.

[133] Sujaya Maiyya, Victor Zakhary, Mohammad Javad Amiri, Divyakant Agrawal,
and Amr El Abbadi. 2019. Database and distributed computing foundations of
blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 2036–2041.

[134] Dahlia Malkhi and Kartik Nayak. 2023. HotStuff-2: Optimal Two-Phase Respon-
sive BFT. Cryptology ePrint Archive (2023).

[135] Dahlia Malkhi and Michael Reiter. 1997. Unreliable intrusion detection in
distributed computations. In Computer Security Foundations Workshop. IEEE,
116–124.

[136] Dahlia Malkhi and Michael Reiter. 1998. Byzantine quorum systems. Distributed
computing 11, 4 (1998), 203–213.

[137] Dahlia Malkhi and Michael K Reiter. 1998. Secure and scalable replication in
Phalanx. In Symposium on Reliable Distributed Systems (SRDS). IEEE, 51–58.

[138] Dahlia Malkhi and Michael K Reiter. 1998. Survivable consensus objects. In
Symposium on Reliable Distributed Systems (SRDS). IEEE, 271–279.

[139] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo. 2009. Towards low latency
state machine replication for uncivil wide-area networks. InWorkshop on Hot
Topics in System Dependability. Citeseer.

[140] J-P Martin and Lorenzo Alvisi. 2006. Fast byzantine consensus. Transactions on
Dependable and Secure Computing 3, 3 (2006), 202–215.

[141] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
honey badger of BFT protocols. In Conf. on Computer and Communications
Security (CCS). ACM, 31–42.

[142] C Mohan. 2018. Blockchains and databases: A new era in distributed computing.
In Int. Conf. on data engineering (ICDE). IEEE, 1739–1740.

[143] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2012. Egalitarian
paxos. In Symposium on Operating Systems Principles (SOSP). ACM.

[144] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There is
more consensus in egalitarian parliaments. In Symposium on Operating Systems
Principles (SOSP). ACM, 358–372.

[145] Louise E Moser, Peter MMelliar-Smith, Priya Narasimhan, Lauren A Tewksbury,
and Vana Kalogeraki. 1999. The Eternal system: An architecture for enterprise
applications. In Int. Enterprise Distributed Object Computing Conf. (EDOC). IEEE,
214–222.

[146] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2019.
Cogsworth: Byzantine view synchronization. arXiv preprint arXiv:1909.05204
(2019).

[147] Oded Naor and Idit Keidar. 2020. Expected Linear Round Synchronization:
The Missing Link for Linear Byzantine SMR. In Int. Symposium on Distributed
Computing (DISC). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[148] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A global-scale byzan-
tizing middleware. In Int. Conf. on Data Engineering (ICDE). IEEE, 124–135.

[149] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable BFT
Consensus with Pipelined Tree-Based Dissemination and Aggregation. In Sym-
posium on Operating Systems Principles (SOSP). ACM, 35–48.

[150] Ray Neiheiser, Daniel Presser, Luciana Rech, Manuel Bravo, Luís Rodrigues, and
Miguel Correia. 2018. Fireplug: Flexible and robust n-version geo-replication of
graph databases. In Int. Conf. on Information Networking (ICOIN). IEEE, 110–115.

[151] Nuno Ferreira Neves, Miguel Correia, and Paulo Verissimo. 2005. Solving vector
consensus with a wormhole. IEEE Transactions on Parallel and Distributed
Systems 16, 12 (2005), 1120–1131.

[152] André Nogueira, Miguel Garcia, Alysson Bessani, and Nuno Neves. 2018. On
the challenges of building a BFT SCADA. In Int. Conf. on Dependable Systems
and Networks (DSN). IEEE, 163–170.

[153] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm. In Annual Technical Conf. (ATC). USENIX Association,
305–319.

[154] Rafael Pass and Elaine Shi. 2017. Hybrid Consensus: Efficient Consensus in the
Permissionless Model. In Int.Symposium on Distributed Computing (DISC). 6.

[155] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with optimistic
instant confirmation. In Annual Int. Conf. on the Theory and Applications of
Cryptographic Techniques. Springer, 3–33.

[156] Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen
Chu. 2021. P2B-Trace: Privacy-Preserving Blockchain-based Contact Tracing
to Combat Pandemics. In SIGMOD Int. Conf. on Management of Data. ACM,
2389–2393.

[157] Zhe Peng, Jianliang Xu, Xiaowen Chu, Shang Gao, Yuan Yao, Rong Gu, and
Yuzhe Tang. 2021. Vfchain: Enabling verifiable and auditable federated learning
via blockchain systems. IEEE Transactions on Network Science and Engineering
(2021).

[158] Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang, Tianxiang Shen, Shixiong
Zhao, Sen Wang, Gong Zhang, Li Chen, Man Ho Au, et al. 2021. Bidl: A High-
throughput, Low-latency Permissioned Blockchain Framework for Datacenter



SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, & Boon Thau Loo

Networks. In Symposium on Operating Systems Principles (SOSP). ACM, 18–34.
[159] Michael O Rabin. 1983. Randomized byzantine generals. In Symposium on

Foundations of Computer Science (SFCS). IEEE, 403–409.
[160] HariGovind V Ramasamy and Christian Cachin. 2005. Parsimonious asynchro-

nous byzantine-fault-tolerant atomic broadcast. In Int. Conf. On Principles Of
Distributed Systems (OPODIS). Springer, 88–102.

[161] Hans P Reiser and Rudiger Kapitza. 2007. Hypervisor-based efficient proactive
recovery. In Int. Symposium on Reliable Distributed Systems (SRDS). IEEE, 83–92.

[162] Ronald L Rivest, Adi Shamir, and Leonard M Adleman. 2019. A method for
obtaining digital signatures and public key cryptosystems. Routledge.

[163] Tom Roeder and Fred B Schneider. 2010. Proactive obfuscation. ACM Transac-
tions on Computer Systems (TOCS) 28, 2 (2010), 1–54.

[164] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate
Blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 543–557.

[165] Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. Computing Surveys (CSUR) 22, 4 (1990), 299–319.

[166] Marco Serafini, Péter Bokor, Dan Dobre, Matthias Majuntke, and Neeraj Suri.
2010. Scrooge: Reducing the costs of fast Byzantine replication in presence of
unresponsive replicas. In Int. Conf. on Dependable Systems and Networks (DSN).
IEEE, 353–362.

[167] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case
of hyperledger fabric. In SIGMOD Int. Conf. on Management of Data. ACM,
105–122.

[168] Victor Shoup. 2000. Practical threshold signatures. In Int. Conf. on the Theory
and Applications of Cryptographic Techniques. Springer, 207–220.

[169] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. 2020. On the opti-
mality of optimistic responsiveness. In Conf. on Computer and Communications
Security (CCS). ACM, 839–857.

[170] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy Roscoe.
2008. BFT Protocols Under Fire.. In Symposium on Networked Systems Design
and Implementation (NSDI), Vol. 8. USENIX Association, 189–204.

[171] Yee Jiun Song and Robbert van Renesse. 2008. Bosco: One-step byzantine
asynchronous consensus. In Int. Symposium on Distributed Computing (DISC).
Springer, 438–450.

[172] João Sousa and Alysson Bessani. 2015. Separating the WHEAT from the chaff:
An empirical design for geo-replicated state machines. In Symposium on Reliable
Distributed Systems (SRDS). IEEE, 146–155.

[173] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves,
and Paulo Verissimo. 2009. Highly available intrusion-tolerant services with
proactive-reactive recovery. IEEE Transactions on Parallel and Distributed Sys-
tems 21, 4 (2009), 452–465.

[174] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko
Vukolić. 2021. Adding Fairness to Order: Preventing Front-Running Attacks in
BFT Protocols using TEEs. In Int. Symp on Reliable Distributed Systems (SRDS).
IEEE, 34–45.

[175] Chrysoula Stathakopoulou, David Tudor, Matej Pavlovic, and Marko Vukolić.
2022. [Solution] Mir-BFT: Scalable and Robust BFT for Decentralized Networks.
Journal of Systems Research 2, 1 (2022).

[176] Diem Team. 2021. DiemBFT v4: State Machine Replication in the Diem
Blockchain. Technical Report. Technical Report. Diem. https://developers. diem.
com/papers/diem-consensus . . . .

[177] Feng Tian. 2017. A supply chain traceability system for food safety based on
HACCP, blockchain & Internet of things. In Int. Conf. on service systems and
service management (ICSSSM). IEEE, 1–6.

[178] Gene Tsudik. 1992. Message authentication with one-way hash functions. ACM
SIGCOMM Computer Communication Review 22, 5 (1992), 29–38.

[179] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and
Lau Cheuk Lung. 2009. Spin one’s wheels? Byzantine fault tolerance with
a spinning primary. In Int. Symposium on Reliable Distributed Systems (SRDS).
IEEE, 135–144.

[180] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and
Lau Cheuk Lung. 2010. EBAWA: Efficient Byzantine agreement for wide-area
networks. In Int. Symposium on High Assurance Systems Engineering (HASE).
IEEE, 10–19.

[181] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk
Lung, and Paulo Verissimo. 2013. Efficient byzantine fault-tolerance. Transac-
tions on Computers 62, 1 (2013), 16–30.

[182] Gauthier Voron and Vincent Gramoli. 2019. Dispel: Byzantine SMR with dis-
tributed pipelining. arXiv preprint arXiv:1912.10367 (2019).

[183] Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas,
Neil Giridharan, Joseph M Hellerstein, Heidi Howard, Ion Stoica, and Adriana
Szekeres. 2021. Scaling replicated state machines with compartmentalization.
Proceedings of the VLDB Endowment 14, 11 (2021), 2203–2215.

[184] Chenyuan Wu, Mohammad Javad Amiri, Jared Asch, Heena Nagda, Qizhen
Zhang, and Boon Thau Loo. 2022. FlexChain: An Elastic Disaggregated
Blockchain. Proc. of the VLDB Endowment 16, 01 (2022), 23–36.

[185] Chenyuan Wu, Mohammad Javad Amiri, Haoyun Qin, Bhavana Mehta, Ryan
Marcus, and Boon Thau Loo. [n. d.]. Towards Full Stack Adaptivity in Permis-
sioned Blockchains. ([n. d.]).

[186] Chenyuan Wu, Bhavana Mehta, Mohammad Javad Amiri, Ryan Marcus, and
Boon Thau Loo. 2023. AdaChain: A Learned Adaptive Blockchain. Proc. of the
VLDB Endowment 16, 8 (2023), 2033–2046.

[187] David Yakira, Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori
Rottenstreich, and Ronen Tamari. 2021. Helix: A Fair Blockchain Consensus
Protocol Resistant to Ordering Manipulation. IEEE Transactions on Network and
Service Management 18, 2 (2021), 1584–1597.

[188] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. 2003. Separating agreement from execution for byzantine fault tolerant
services. Operating Systems Review (OSR) 37, 5 (2003), 253–267.

[189] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In
Symposium on Principles of Distributed Computing (PODC). ACM, 347–356.

[190] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:
Scaling blockchain via full sharding. In SIGSAC Conf. on Computer and Commu-
nications Security. ACM, 931–948.

[191] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.
Byzantine ordered consensus without Byzantine oligarchy. In Symposium on
Operating Systems Design and Implementation (OSDI). USENIX Association,
633–649.

[192] Lidong Zhou, Fred Schneider, Robbert VanRenesse, and Zygmunt Haas. 2002.
Secure distributed on-line certification authority. US Patent App. 10/001,588.

[193] Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. 2002. COCA: A
secure distributed online certification authority. ACM Transactions on Computer
Systems (TOCS) 20, 4 (2002), 329–368.


	Abstract
	1 Introduction
	2 Tutorial Outline
	2.1 Basics
	2.2 Design Space
	2.3 Design Choices Landscape

	3 Tutorial Information
	4 BIOGRAPHICAL SKETCHES
	Acknowledgments
	References

