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ABSTRACT
Byzantine Fault-Tolerant (BFT) protocols have recently been ex-
tensively used by distributed and decentralized data management
systems with non-trustworthy infrastructures to establish consen-
sus on the order of transactions. BFT protocols cover a broad spec-
trum of design dimensions from infrastructure settings, such as
the communication topology, to more technical features, such as
commitment strategy and even fundamental social choice proper-
ties like order-fairness. The proliferation of different protocols has
made it difficult to navigate the BFT landscape, let alone determine
the protocol that best meets application needs. In this tutorial, we
discuss BFT protocols that are used in modern large-scale data
management systems, present a design space consisting of a set
of design dimensions and explore several design choices that cap-
ture the trade-offs between different design space dimensions. The
presented design space and its design choices will help develop-
ers analyze BFT protocols, understand how different protocols are
related to each other, and find the protocol that best fits their needs.

CCS CONCEPTS
• Information systems→ Distributed database transactions;
• Computer systems organization→ Fault-tolerant network
topologies; • Networks → Network protocol design.
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1 INTRODUCTION
Distributed data management systems [37, 46, 50, 71, 79, 111, 145]
rely on crash fault-tolerant protocols, e.g., Paxos [126] and Raft
[153], to provide robustness and high availability and establish con-
sensus on the order of transactions. However, today’s large-scale
distributed data management systems need to deal with untrust-
worthy environments where multiple mutually distrustful entities
communicate with each other, and maintain data on untrusted in-
frastructure. By relying on Byzantine fault-tolerant (BFT) protocols,
distributed databases have enabled a large class of applications rang-
ing from contact tracing [156], crowdworking [22], supply chain
assurance [24, 177], and federated learning [157].

Fault tolerance in large-scale systems is often achieved by repli-
cating the data on multiple servers. The critical challenge is to
execute all client transactions in the same order on all replicas.
Formally, this approach is referred to as State Machine Replication
(SMR) [125, 165] and BFT protocols are used to ensure that all non-
faulty replicas execute all transactions in the same order despite 𝑓
Byzantine (adversarial) servers. The ability to tolerate arbitrary fail-
ures makes BFT protocols a key component in various distributed
data management systems with non-trustworthy infrastructures,
e.g., permissioned blockchains [1–3, 18, 21, 23, 24, 27, 38, 54, 67, 97–
99, 105, 124, 158, 164, 167, 184, 186], permissionless blockchains [51,
117, 119, 132, 190], distributed file systems [8, 61, 69], locking ser-
vice [70], firewalls [44, 92, 93, 163, 173, 188], certificate authority
systems [193], SCADA systems [35, 116, 152, 192], key-value datas-
tores [43, 83, 96, 108, 163], and key management [137].

BFT SMR protocols differ along several dimensions, such as the
number of replicas, processing strategy (i.e., optimistic, pessimistic,
or robust), and the number of communication phases. While a large
number of BFT protocols have been proposed [16, 25, 59, 101, 112,
120, 134, 189], there is no one-size-fits-all solution [185]. The perfor-
mance trade-offs offered by BFT protocols vary significantly based
on client workloads, network configurations, and application needs.
Dependencies and trade-offs among different design dimensions of
BFT protocols lead to several design choices. For example, proto-
cols that reduce message complexity by increasing communication
phases exhibit better throughput but worse latency (e.g., unsuitable
for geo-replicated databases). In addition, adversarial behaviors in
the system also affect the best-performing protocol choice. The
lack of a clear “winner” among BFT protocols makes it difficult
for application developers to choose one. It is, therefore, critical to
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study and analyze the various BFT protocols’ design dimensions
and their trade-offs in a unified manner.

Inspired by our Bedrock platform [26], this tutorial presents
a unified framework to analyze partially synchronous SMR BFT
protocols. We envision that this tutorial will provide an in-depth
understanding of existing BFT protocols, highlight the trade-offs
among dimensions, and will enable data management application
designers to find the protocol that best fits their needs.

Our goal is to present to the database community an in-depth
understanding of state-of-the-art solutions to design efficient BFT
consensus protocols for large-scale fault-tolerant data management
systems. We start with a design space to characterize BFT proto-
cols based on different dimensions that capture the environmental
settings, protocol structure, QoS features, and performance opti-
mizations. Within the design space, we then discuss a set of design
choices demonstrating trade-offs between different dimensions.

2 TUTORIAL OUTLINE
A BFT protocol runs on a network consisting of a set of nodes that
may exhibit arbitrary, potentially malicious, behavior. BFT proto-
cols use the State Machine Replication (SMR) algorithm [125, 165]
where the system provides fault tolerance by replicating a service
whose state is mirrored across different deterministic replicas. At a
high level, the goal of a BFT SMR protocol is to assign each client
transaction an order in the global service history and execute it
in that order across all replicas[170]. In a BFT SMR protocol, all
non-faulty replicas execute the same transactions in the same or-
der (safety) and all correct transactions are eventually executed
(liveness). In an asynchronous system, where replicas can fail, no
consensus solutions guarantee both safety and liveness (FLP re-
sult) [89]. As a result, asynchronous consensus protocols rely on
techniques such as randomization [41, 57, 91, 159], failure detectors
[65, 135], hybridization/wormholes [72, 151] and partial synchrony
[84, 85] to circumvent the FLP impossibility.

In this tutorial, we focus on the partial synchrony model as it is
used in most practical BFT protocols [59, 101, 120, 189]. In the par-
tial synchrony model, there exists an unknown global stabilization
time (GST), after which all messages between correct replicas are
received within some known bound Δ. BFT protocols follow several
standard assumptions. First, while there is no upper bound on the
number of faulty clients, the maximum number of concurrent mali-
cious replicas is assumed to be 𝑓 . Second, replicas are connected via
an unreliable network that might drop, corrupt, or delay messages.
Third, the network uses point-to-point bi-directional communica-
tion channels to connect replicas. Fourth, the failure of replicas
is independent of each other, where a single fault does not lead
to the failure of multiple replicas. This can be achieved by either
diversifying replica implementation (e.g., n-version programming)
[34, 90] or placing replicas at different geographic locations (e.g.,
datacenters) [42, 86, 172, 180]. Finally, a strong adversary can coor-
dinate malicious replicas and delay communication. However, the
adversary cannot subvert cryptographic assumptions.

2.1 Basics
BFT protocols structure. In a BFT protocol, as presented in Fig-
ure 1, clients communicate with a set of replicas that maintain a

Figure 1: Different stages of replicas in a BFT protocol

copy of the application state (i.e., database). A replica’s lifecycle
consists of ordering, execution, view-change, checkpointing, and
recovery stages. The goal of ordering is to establish agreement on
a unique order among requests executing on the application state.
In leader-based consensus protocols, a designated leader replica
proposes the order to all backup replicas and, to ensure fault toler-
ance, needs to get agreement from a subset of the replicas, referred
to as a quorum. In the execution stage, requests are executed (i.e.,
applied to the replicated state machine). The view-change stage
replaces the current leader due to failures. Checkpointing is used
to garbage-collect data and enable trailing replicas to catch up, and
finally, the recovery stage recovers replicas from faults.
The PBFT Protocol. To better illustrate the design space of BFT
protocols, we give an overview of the PBFT protocol [59, 61] as
a driving example. PBFT, as shown in Figure 2, is a leader-based
protocol that operates in a succession of configurations called views
[87, 88]. Each view is coordinated by a stable leader (primary), and
the protocol pessimistically processes requests. In PBFT, the number
of replicas, 𝑛, is at least 3𝑓 + 1 and the ordering stage consists of pre-
prepare, prepare, and commit phases. The pre-prepare phase assigns an
order to the request, the prepare phase guarantees the uniqueness
of the assigned order, and the commit phase guarantees that the
next leader can safely assign the order.

During a normal (no failure) case execution of PBFT, clients
send their signed request messages (including the transaction to be
executed) to the leader. In the pre-prepare phase, the leader assigns
a sequence number to the request to determine the execution order
of the request and multicasts a pre-prepare message to all backups.
Upon receiving a valid pre-prepare message from the leader, each
backup replica multicasts a preparemessage to all replicas and waits
for preparemessages from 2𝑓 different replicas (including the replica
itself) that match the pre-prepare message. The goal of the prepare
phase is to guarantee safetywithin the view, i.e., 2𝑓 replicas received
matching pre-prepare messages from the leader replica and agree
with the order of the request. Each replica then multicasts a commit
message to all replicas. Once a replica receives 2𝑓 + 1 valid commit
messages from different replicas, including itself, that match the
pre-prepare message, it commits the request. The goal of the commit
phase is to ensure safety across views, i.e., the request has been
replicated on a majority of non-faulty replicas and can be recovered
after (leader) failures. The second and third phases of PBFT follow
the clique topology, i.e., have 𝑂 (𝑛2) message complexity. If the
replica has executed all requests with lower sequence numbers, it
executes the request and sends a reply to the client. The client waits
for 𝑓 +1 matching results from different replicas.

In the view change stage, upon detecting the failure of the leader
of view 𝑣 using timeouts, replicas exchange view-change messages
including requests that have been received by the replicas. After
receiving 2𝑓 +1 view-changemessages, the designated leader of view
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Figure 2: Different stages of PBFT protocol

𝑣 + 1 proposes a new view message, including the list of requests
that should be processed in the new view.

In PBFT, replicas periodically generate checkpoint messages and
send them to all replicas. If a replica receives 2𝑓 + 1 matching check-
point messages, the checkpoint is stable. PBFT includes a proactive
recovery mechanism that periodically rejuvenates replicas one by
one. PBFT uses either signatures [59] or MACs [61] for authentica-
tion. Using MACs, replicas need to send view-change-ack messages
to the leader after receiving view-change messages. Since new view
messages are not signed, these view-change-ack messages enable
replicas to verify the authenticity of new view messages.

2.2 Design Space
Each BFT protocol can be analyzed along several dimensions. These
dimensions (and values associatedwith each dimension) collectively
help to define the overall design space of BFT protocols. The dimen-
sions are categorized into four main families: protocol structure and
environmental settings that present the core dimensions of BFT pro-
tocols, two optional QoS features including order-fairness and load
balancing that a BFT protocol might support, and a set of perfor-
mance optimizations, such as request pipelining, parallel execution,
and trusted hardware, for tuning BFT protocols. In this tutorial,
we focus on the first three families. In the rest of this section, we
describe these families of dimensions in greater detail.

2.2.1 Protocol Structure.
P 1. Commitment strategy. BFT protocols process transactions
in either an optimistic, pessimistic, or robust manner. Optimistic
BFT protocols make optimistic assumptions on failures, synchrony,
or data contention and might execute requests without necessarily
establishing consensus. An optimistic BFT protocol might make a
subset of the following assumptions:

𝑎1. The leader is non-faulty, assigns a correct order to requests
and sends it to all backups, e.g., Zyzzyva [120],

𝑎2. The backups are non-faulty and actively and honestly partic-
ipate in the protocol, e.g., CheapBFT [112],

𝑎3. All non-leaf replicas in a tree topology are non-faulty, e.g.,
Kauri[149],

𝑎4. The workload is conflict-free and concurrent requests update
disjoint sets of data objects, e.g., Q/U [4],

𝑎5. The clients are honest, e.g., Quorum [31], and
𝑎6. The network is synchronous (in a time window), and mes-

sages are not lost or delayed, e.g., Tendermint [52].
Optimistic protocols are either speculative or non-speculative. In

non-speculative protocols, e.g., CheapBFT [112] and SBFT [101],
replicas execute a transaction only if the optimistic assumption
holds. Speculative protocols, e.g., Zyzzyva [120] and PoE [103], on

the other hand, optimistically execute transactions. If the assump-
tion is not fulfilled, replicas might have to rollback the executed
transactions. Optimistic BFT protocols improve performance in
fault-free situations. If the assumption does not hold, the replicas,
e.g., SBFT [101], or clients, e.g., Zyzzyva [120], detect the failure and
use a fallback protocol. Pessimistic BFT protocols, on the other hand,
do not make any optimistic assumptions about failures, synchrony,
or data contention. In pessimistic BFT protocols, replicas communi-
cate to agree on the order of requests. Finally, robust protocols, e.g.,
Prime [16], Aardvark [70], R-Aliph [31], Spinning [179] and RBFT
[32], go one step further and consider scenarios where the system
is under attack by a very strong adversary.
P 2. Number of commitment phases. The number of commit-
ment (ordering) phases or good-case latency [7] of a BFT SMR pro-
tocol is the number of phases needed for all non-faulty replicas
to commit when the leader is non-faulty, and the network is syn-
chronous. We consider the number of commitment phases from
the first time a replica (typically the leader) receives a request to
the first time any participant (i.e., leader, backups, client) learns the
commitment of the request, e.g., PBFT executes in 3 phases.
P 3. View-change. BFT protocols follow either the stable leader
or the rotating leader mechanism to replace the current leader. The
stable leader mechanism [59, 101, 120, 140] replaces the leader when
the leader is suspected to be faulty by other replicas. In the rotating
leader mechanism [13, 54, 62–64, 70, 95, 107, 118, 124, 179, 180,
189], the leader is replaced periodically, e.g., after a single attempt,
insufficient performance, or an epoch (multiple requests).

Using the stable leader mechanism, the view-change stage be-
comes more complex. However, the routine is only executed when
the leader is suspected to be faulty. On the other hand, the ro-
tating leader mechanism requires ensuring view synchronization
frequently (whenever the leader is rotated). Rotating the leader has
several benefits, such as balancing load across replicas [39, 40, 179],
improving resilience against slow replicas [70], and minimizing
communication delays between clients and the leader [86, 139, 180].
P 4. Checkpointing. Checkpointing is used to first, garbage-
collect data of completed consensus instances to save space and
second, restore in-dark replicas (due to network unreliability or
leader maliciousness) to ensure all non-faulty replicas are up-to-
date [59, 80, 103]. Checkpointing is typically initiated after a fixed
window in a decentralized manner without relying on a leader [59].
P 5. Recovery. When there are more than 𝑓 failures, BFT pro-
tocols, apart from some exceptions [68, 130], completely fail and
do not give any guarantees on their behavior [80]. BFT protocols
perform recovery using reactive or proactivemechanisms (or a com-
bination [173]). Reactive recovery mechanisms detect faulty replica
behavior [106] and recover the replica by applying software rejuve-
nation techniques [76, 109] where the replica reboots, reestablishes
its connection with other replicas and clients, and updates its state.
On the other hand, proactive recovery mechanisms recover replicas
in periodic time intervals. Proactive mechanisms do not require
any fault detection techniques; however, they might unnecessarily
recover non-faulty replicas [80]. During recovery, a replica is un-
available. A BFT protocol can rely on 3𝑓 +2𝑘 +1 replicas to improve
resilience and availability during recovery where 𝑘 is the maximum
number of servers that rejuvenate concurrently [173].



SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi, & Boon Thau Loo

P 6. Types of clients. BFT protocols might have three types of
clients: requester, proposer, and repairer. Requester clients perform
a basic functionality and communicate with replicas by sending
requests and receiving replies. A requester client may need to verify
the results by waiting for a number of matching replies, e.g., 𝑓 +1
in PBFT [59], 2𝑓 +1 in PoE [103] and PBFT (for read-only requests)
[61], or 3𝑓 +1 is Zyzzyva [120]. Using trusted components, e.g.,
Troxy [129], or threshold signatures, e.g., SBFT [101], the client
does not even need to wait for and verify multiple results from
replicas. Clients might also play the proposer role by proposing a
sequence number (acting as the leader) for its request [4, 100, 136,
138]. Repairer clients, on the other hand, detect the failure of replicas,
e.g., Zyzzyva [120], and even change the protocol configuration,
e.g., Scrooge[166], Abstract [31], and Q/U[4].

2.2.2 Environmental Settings.
E 1. Number of replicas. The first dimension concerns selecting
BFT protocols based on the number of replicas used in a deployment.
In the presence of 𝑓 malicious failures, BFT protocols require at least
3𝑓 +1 replicas to guarantee safety [47, 48, 74, 85, 127]. Using trusted
hardware, the malicious behavior of replicas is restricted and safety
can be guaranteed using 2𝑓 +1 replicas [68, 73, 75, 161, 180, 180, 181].
Similarly, leveraging new hardware capabilities or using message-
and-memorymodels the required number of replicas can be reduced
to 2𝑓 + 1 [9–11]. On the other hand, the number of communication
phases can be reduced by increasing the number of replicas to 5𝑓 +1
[140] (its proven lower bound, 5𝑓 − 1 [7, 123]) or 7𝑓 + 1 [171]. A
BFT protocol might also optimistically assume the existence of a
set of 2𝑓 + 1 active non-faulty replicas, which participate in every
quorum to establish consensus (and 𝑓 passive replicas, which are
informed about the decisions and become active if any active replica
fails) [81, 112]. Using both trusted hardware and active/passive
replication, the quorum size is further reduced to 𝑓 + 1 during
failure-free situations [81, 82, 112].
E 2. Communication topology. BFT protocols follow different
communication topologies, including: (1) the star topology where
communication is strictly from a designated replica, e.g., the leader,
to all other replicas and vice-versa, resulting in linear message com-
plexity [120, 189], (2) the clique topology where all (or a subset of)
replicas communicate directly with each other (quadratic message
complexity) [59], (3) the tree topology where the replicas are orga-
nized in a tree with the leader placed at the root, and at each phase,
a replica communicates with either its child replicas or its parent
replica (logarithmic message complexity) [117, 118, 149], or (4) the
chain topology where replicas construct a pipeline and each replica
communicates with its neighbor replicas [31].
E 3. Authentication. Participants authenticate their messages to
enable other replicas to verify a message’s origin. BFT protocols
either use signatures, e.g., RSA [162], or authenticators [59], i.e.,
MACs [178]. Constant-sized threshold signatures [57, 168] have
also been used to reduce the size of a set (quorum) of signatures.
A protocol might even use different techniques (i.e., signatures,
MACs) in different stages to authenticate messages sent by clients
and sent by replicas in the ordering or view-change stage.
E 4. Responsiveness, synchronization, and timers. A BFT pro-
tocol is responsive if its normal case commit latency depends only

on the actual network delay needed for replicas to process and ex-
change messages rather than any (usually much larger) predefined
upper bound on message transmission delay [30, 154, 155, 169].
Responsiveness might be sacrificed in different ways. First, rotating
the leader, the new leader might need to wait for a predefined time
before initiating the next request to ensure that it receives the de-
cided value from all non-faulty but slow replicas, e.g., Tendermint
[124] and Casper [55]. Second, assuming all replicas are non-faulty,
replicas (or clients) need to wait for a predefined time to receive
messages of all replicas, e.g., SBFT [101] and Zyzzyva [120].

BFT protocols need to guarantee that all non-faulty replicas will
eventually be synchronized to the same view with a non-faulty
leader, thus enabling the leader to collect the decided values in
previous views and making progress in the new view [49, 146,
147]. This is needed because a quorum of 2𝑓 + 1 replicas might
include 𝑓 Byzantine replicas and the remaining 𝑓 "slow" non-faulty
replicas might stay behind (i.e., in-dark) and not even advance
views at all. View synchronization can be achieved by integrating
the functionality with the core consensus protocol, e.g., PBFT [59],
or assigning a distinct synchronizer component, e.g., Pacemaker in
HotStuff [189], and hardware clocks [5].

Depending on the environment, network characteristics, and
processing strategy, a BFT protocol uses a subset of the following
timers to ensure responsiveness and synchronization.

𝜏1. Waiting for reply messages, e.g., Zyzzyva [120],
𝜏2. Triggering (consecutive) view-change, e.g., PBFT [59],
𝜏3. Detecting backup failures, e.g., SBFT [101],
𝜏4. Quorum construction in an ordering phase, e.g., prevote and

precommit timeouts in Tendermint [52],
𝜏5. View synchronization, e.g., Tendermint [52],
𝜏6. Finishing a (preordering) round, e.g., Themis [113],
𝜏7. Performance check (heartbeat), e.g., Aardvark [70], and
𝜏8. Atomic recovery (watchdog timer) to periodically hand con-

trol to a recovery monitor [60], e.g., PBFT [61].

2.2.3 Quality of Service.
Q 1. Order-fairness. Order-fairness deals with preventing ad-
versarial manipulation of request ordering [36, 58, 113, 114, 121,
122, 191]. Order-fairness is defined as: "if a large number of repli-
cas receives a request 𝑡1 before another request 𝑡2, then 𝑡1 should
be ordered before 𝑡2" [114]. Order-fairness has been partially ad-
dressed using different techniques: (1) monitoring the leader to
ensure it does not initiate two new requests from the same client
before initiating an old request of another client, e.g., Aardvark
[70], (2) adding a preordering phase, e.g., Prime [16], where repli-
cas order the received requests locally and share their orderings
with each other, (3) encrypting requests and revealing the contents
only once their ordering is fixed [29, 56, 141, 174], (4) reputation-
based systems [29, 78, 119, 128] to detect unfair censorship of
specific client requests, and (5) providing opportunities for ev-
ery replica to propose and commit its requests using fair election
[6, 29, 95, 115, 128, 154, 187].
Q 2. Load balancing. The performance of fault-tolerant protocols
is usually limited by the computing and bandwidth capacity of the
leader [12, 14, 45, 66, 143, 144, 149, 183]. The leader coordinates the
consensus protocol and multicasts/collects messages to all other
replicas in different protocol phases. Load balancing is defined as
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distributing the load among the replicas of the system to balance
the number of messages any single replica has to process.

Load balancing can be partially achieved using the rotating leader
mechanism, multi-layer, or multi-leader protocols. Using leader
rotation, one replica (leader) is still highly loaded in each consensus
instance. In multi-layer protocols [17, 105, 131, 148, 150], the load
is distributed between the leaders of different clusters. However,
the system still suffers from load imbalance between the leader
and backups in each cluster. In multi-leader protocols [15, 28, 33,
104, 175, 182], all replicas can initiate consensus to partially order
requests in parallel. However, slow replicas still affect the global
ordering of requests.

2.3 Design Choices Landscape
Given a set of specified dimension values in Section 2.2, each pro-
tocol represents a point in the design space. In this section, using
PBFT and our design dimensions as a baseline, we illustrate a series
of design choices that expose different trade-offs BFT protocols
need to make. Each design choice acts as a one-to-one function
that maps each valid input point (i.e., a protocol) to another valid
output point in the design space.
Design Choice 1. (Linearization). This function explores a trade-
off between communication topology and communication phases.
The function takes a quadratic phase, e.g., prepare or commit in PBFT,
and splits it into two linear phases: one phase from all replicas to
a collector (typically the leader) and one phase from the collector
to all replicas, e.g., SBFT [101], HotStuff [189] and HotStuff-2 [134].
The output protocol requires (threshold) signatures for authentica-
tion. The collector collects a quorum of (typically 𝑛 − 𝑓 ) signatures
from replicas and broadcasts its message, including the signatures,
as a certificate of having received the required signatures. Using
threshold signatures [56, 57, 160, 168] the collector message size
becomes constant. Some BFT protocols [94, 110, 176] use linear
communication during the ordering phase but follow the quadratic
view-change routine of PBFT.
Design Choice 2. (Phase reduction through redundancy). This
function explores a trade-off between the number of ordering
phases and the number of replicas. The function transforms a pro-
tocol with 3𝑓 + 1 replicas and 3 ordering phases (i.e., one linear, two
quadratic), e.g., PBFT, to a fast protocol with 5𝑓 + 1 replicas and 2
ordering phases (one linear, one quadratic), e.g., FaB [140]. In the
second phase of the protocol, matching messages from a quorum
of 4𝑓 + 1 replicas are required. Recently, 5𝑓 − 1 has been proven
as the lower bound for two-step Byzantine consensus [7, 123]. The
intuition behind the 5𝑓 − 1 lower bound is that in an authenti-
cated model, when replicas detect leader equivocation and initiate
view-change, they do not include view-change messages coming
from the malicious leader, reducing the maximum number of faulty
messages to 𝑓 − 1 [7, 123].
Design Choice 3. (Leader rotation). This function replaces the
stable leader with the rotating leader mechanism, e.g., HotStuff
[189], where the rotation happens after each request or epoch or due
to low performance (as discussed in P 3). This function eliminates
the view-change stage and adds a quadratic phase or two linear
phases (the linearization function) to the ordering stage to ensure
that the new leader is aware of the correct state of the system.

Design Choice 4. (Non-responsive leader rotation). This func-
tion replaces the stable leader mechanism with the rotating leader
mechanism without adding a new ordering phase (in contrast to
design choice 3) while sacrificing responsiveness. The new leader
assumes that the network is synchronous (after GST) and waits
for a predefined known upper bound Δ (Timer 𝜏5) before initiating
the next request. This is needed to ensure that the new leader is
aware of the highest assigned order to the requests, e.g., Tendermint
[53, 124] and Casper [55]. As an optimization, if the new leader
is aware of the highest assigned order (the leader was part of the
quorum), it can initiate the next request right after receiving 2𝑓 + 1
votes (without necessarily waiting for Δ [134]).
Design Choice 5. (Optimistic replica reduction). This function
reduces the number of involved replicas in consensus from 3𝑓 +1 to
2𝑓 +1 while optimistically assuming all 2𝑓 +1 replicas are non-faulty
(assumption P 1, 𝑎2). In each phase of a BFT protocol, matching
messages from a quorum of 2𝑓 + 1 replicas is needed. If a quorum
of 2𝑓 + 1 non-faulty replicas is identified, they can order (and exe-
cute) requests without the participation of the remaining 𝑓 replicas.
Those 𝑓 replicas remain passive and are needed if any of the active
replicas become faulty [81, 112]. Note that 𝑛 is still 3𝑓 + 1.
Design Choice 6. (Optimistic phase reduction). Given a linear
BFT protocol, this function optimistically eliminates two linear
phases (i.e., the equivalence of a single quadratic prepare pahse)
assuming all replicas are non-faulty, e.g., SBFT [101]. The leader
(collector) waits for signed messages from all 3𝑓 + 1 replicas in the
second phase of ordering, combines signatures and sends a signed
message to all replicas. Upon receiving the signed message from
the leader, each replica ensures that all non-faulty replicas have
received the request and agreed with the order. As a result, the third
phase of communication can be omitted and replicas can directly
commit the request. If the leader has not received 3𝑓 + 1 messages
after a predefined time (timer 𝜏3), the protocol fallbacks to its slow
path and runs the third phase of ordering.
Design Choice 7. (Speculative phase reduction). This function,
similar to the previous one, optimistically eliminates two linear
phases of the ordering stage, assuming that non-faulty replicas
can construct a quorum of responses, e.g., PoE [103]. The main
difference is that the leader waits for signed messages from only
2𝑓 + 1 replicas in the second phase of ordering and sends a signed
message to all replicas. Upon receiving a message signed by 2𝑓 + 1
replicas from the leader, each replica speculatively executes the
transaction, optimistically assuming that either (1) all 2𝑓 + 1 signa-
tures are from non-faulty replicas or (2) at least 𝑓 + 1 non-faulty
replicas received the signed message from the leader. If (1) does
not hold, other replicas receive and execute transactions during the
view-change. However, if (2) does not hold, the replica might have
to rollback the executed transaction.
Design Choice 8. (Speculative execution). This function elimi-
nates the prepare and commit phases while optimistically assuming
that all replicas are non-faulty (assumptions P 1, 𝑎1 and 𝑎2), e.g.,
Zyzzyva [120]. Replicas speculatively execute transactions upon
receiving them from the leader. If the client does not receive 3𝑓 + 1
matching replies after a predefined time (timer 𝜏1) or it receives
conflicting messages, the (repairer) client detects the failure and
communicates with replicas to receive 2𝑓 + 1 commit messages.
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Design Choice 9. (Optimistic conflict-free). If requests of differ-
ent clients are conflict-free (assumption P 1, 𝑎4), there is no need
for a total order among all transactions. This function eliminates
all ordering phases while optimistically assuming that requests are
conflict-free and all replicas are non-faulty. The client becomes the
proposer and sends its request to all (or a quorum of) replicas where
replicas execute the requests without any communication [4, 77].
Design Choice 10. (Resilience). This function increases the num-
ber of replicas by 2𝑓 , enabling the protocol to tolerate 𝑓 more failure
with the same safety guarantees. In particular, optimistic BFT pro-
tocols that assume all 3𝑓 + 1 replicas are non-faulty (quorum size
is also 3𝑓 + 1) tolerate zero failures. By increasing the number of
replicas to 5𝑓 + 1 replicas, such BFT protocols can provide the same
safety guarantees with quorums of size 4𝑓 + 1 while tolerating 𝑓

failures, e.g., Zyzzyva5 [120], Q/U [4]. Similarly, a protocol with
the network size of 5𝑓 + 1 can tolerate 𝑓 more faulty replicas by
increasing the network size to 7𝑓 + 1 [171].
Design Choice 11. (Authentication). This function replaces
MACs with signatures for a given stage. Signatures are typically
more costly than MACs. However, in contrast to MACs, signatures
provide non-repudiation and are not vulnerable to MAC-based
attacks from malicious clients. If a protocol follows the star com-
munication topology where a replica needs to include a quorum of
signatures as a proof of its messages, e.g., HotStuff [189], 𝑘 signa-
tures can be replaced with a threshold signature. In such protocols,
MACs cannot be used since MACs do not provide non-repudiation.
Design Choice 12. (Robust). This function makes a pessimistic
protocol robust by adding a preordering stage to the protocol, e.g.,
Prime [16]. In the preordering stage and, upon receiving a request,
each replica locally orders and broadcasts the request to all other
replicas. All replicas then acknowledge the receipt of the request
in an all-to-all communication phase and add the request to their
local request vector. Replicas periodically share their vectors with
each other. The robust function provides (partial) fairness as well.
Robustness has also been addressed in other ways, e.g., using the
leader rotation and a blacklisting mechanism in Spinning [179] or
isolating the incoming traffic of different replicas, and checking the
performance of the leader in Aardvark [70].
Design Choice 13. (Fair). This function transforms an unfair
protocol, e.g., PBFT, into a fair protocol by adding a preordering
phase to the protocol. In the preordering phase, clients send requests
to all replicas, and once a round ends (timer 𝜏6), each replica sends
a batch of requests in the received order to the leader. The leader
then initiates consensus on the requests following the order of
requests in the received batches. Depending on the order-fairness
parameter𝛾 (0.5<𝛾≤1) that defines the fraction of replicas receiving
the requests in that specific order, at least 4𝑓 + 1 replicas (𝑛> 4𝑓

2𝛾−1 )
replicas are needed to provide order-fairness [113, 114] 1.
Design Choice 14. (Tree-based LoadBalancer). This function
explores a trade-off between the communication topology and load
balancing where load balancing is supported by organizing replicas
in a tree topology, with the leader at the root, e.g., Kauri [149]. This
function splits a linear communication phase into ℎ phases where
ℎ is the tree’s height and each replica uniformly communicates

1With 3𝑓 +1 replicas, as shown in [113], order-fairness requires a synchronized clock
[191] or does not provide censorship resistance [121].

with its child/parent replicas in the tree. The protocol optimistically
assumes all non-leaf replicas are non-faulty (assumption P 1, 𝑎3).
Otherwise, the tree is reconfigured (i.e., view change).

3 TUTORIAL INFORMATION
This is a three hours tutorial targeting researchers, designers, and
practitioners interested in consensus protocols and their applica-
tions in distributed transaction processing systems. The target
audience with a basic background in distributed systems should
benefit the most from this tutorial. For the general audience and
newcomers, the tutorial explains the design space of consensus
protocols in large-scale data management systems.

This tutorial differs from previous tutorials on the same topic
in database conferences. The tutorial presented by Amiri et al. at
ICDE 2020 [19] was mainly on a small subset of design dimensions,
e.g., synchrony mode, failure model, and participant types. This
tutorial focuses on partial synchrony protocols with the Byzantine
failure model and explores many dimensions. This tutorial is also
different from the tutorial presented by Gupta et al. [102] at VLDB
2020 where the focus of that tutorial was on designing consensus
protocols for permissioned blockchains and the blockchain tutorials
[20, 133, 142] presented in the DB community.
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