
AdaChain: A Learned Adaptive Blockchain
Chenyuan Wu

University of Pennsylvania
wucy@seas.upenn.edu

Bhavana Mehta
University of Pennsylvania
bhavanam@seas.upenn.edu

Mohammad Javad Amiri
University of Pennsylvania
mjamiri@seas.upenn.edu

Ryan Marcus
University of Pennsylvania
rcmarcus@seas.upenn.edu

Boon Thau Loo
University of Pennsylvania
boonloo@seas.upenn.edu

ABSTRACT
This paper presents AdaChain, a learning-based blockchain frame-
work that adaptively chooses the best permissioned blockchain
architecture in order to optimize effective throughput for dynamic
transaction workloads. AdaChain addresses the challenge in the
Blockchain-as-a-Service (BaaS) environments, where a large variety
of possible smart contracts are deployed with different workload
characteristics. AdaChain supports automatically adapting to an
underlying, dynamically changing workload through the use of re-
inforcement learning. When a promising architecture is identified,
AdaChain switches from the current architecture to the promis-
ing one at runtime in a way that respects correctness and security
concerns. Experimentally, we show that AdaChain can converge
quickly to optimal architectures under changing workloads, sig-
nificantly outperform fixed architectures in terms of the number
of successfully committed transactions, all while incurring low
additional overhead.

1 INTRODUCTION
Blockchain systems, in particular, permissioned blockchain sys-
tems, have enabled a new class of data center applications, ranging
from contact tracing [51], crowdworking [14], supply chain as-
surance [15, 59], and federated learning [52]. The popularity of
these services has motivated cloud providers, e.g., Amazon [2, 3],
IBM [8], Oracle [9], and Alibaba [63], to offer Blockchains-as-a-
Service (BaaS) [25].

BaaS offerings have resulted in a large variety of possible smart
contracts being deployed. Different smart contracts may exhibit dif-
ferent workload characteristics, such as read/write ratios, skewness
of popular keys, compute intensity, etc. To address these varia-
tions in workloads, there has been a proliferation of permissioned
blockchain systems, e.g., Tendermint [43], Fabric [16], Fabric++
[56], Fabric# [54], Streamchain [37], and ParBlockchain [11]. These
blockchain systems present significant variation in architectural
design, including the sequence in which ordering, execution and
validation are done, the number of transactions in a block, stream
processing (with no blocks), and the use of reordering and early
aborts.

Past studies [22, 31] have shown that different blockchain archi-
tectures and hyperparameter settings are optimal for different work-
loads with varying properties (e.g. system load, write ratios, skew-
ness, and compute intensity). We experimentally confirmed this
observation: Figure 1 shows the performance of various blockchain

architectures across four different workloads, showcasing signifi-
cant variations in throughput. For example, for Workload A1, which
requires high levels of computation, an XOV architecture with re-
ordering (e.g., Fabric++ [56]) provides the best throughput of all
the tested architectures. On the other hand, for Workload D, which
requires significantly less computation but has higher skewness,
an OXII architecture (e.g., ParBlockchain [11]) demonstrates the
highest throughput. Clearly, there is some dependency between
workload characteristics and the optimal blockchain architecture
for that workload.

Currently, BaaS providers must choose a single architecture
to offer customers, potentially resulting in poor performance, as
no single architecture provides dominant throughput. Even when
the user has control over the blockchain architecture, choosing
the right architecture and parameters is not easy given the large
configuration space. Moreover, in a BaaS setting, the workload may
fluctuate and change, as different tenants scale up or down their
smart contracts deployments, and client requests fluctuate with
different patterns throughout the day. Of course, one could imagine
building a static mapping from workload characteristics to optimal
blockchain architectures – but this mapping would (1) be expensive
to compute, (2) depend on the underlying hardware, (3) still be
suboptimal for workloads that shift unexpectedly over time, and
(4) require recomputing the mapping each time a new blockchain
architecture is developed.

In this paper, we propose AdaChain, a reinforcement learning-
based blockchain framework that chooses the best blockchain ar-
chitecture and sets appropriate parameters in order to maximize
effective throughput for dynamic transaction workloads. Experi-
mentally, we show that AdaChain is not only able to select optimal
or near-optimal configurations for a wide variety of workloads, but
its reinforcement learning approach also allows it to quickly adapt
to new hardware, new storage subsystems, and new unanticipated
workload changes on the fly.

In order to build an adaptive blockchain, AdaChain relies on two
key innovations. First, it models the selection of a blockchain archi-
tecture as a contextual multi-armed bandit problem, a well-studied
reinforcement learning problem with asymptotically optimal re-
sults [39]. This formulation allows AdaChain to apply classical
algorithms, such as Thompson sampling [23], to select blockchain
architectures in a way that minimizes regret (the difference between
the performance of the chosen architecture and the optimal archi-
tecture). AdaChain will strategically test different architectures to
learn which ones are well-suited to the user’s workload. It learns
which architectures work best by observing the characteristics of
1Details about each workload can be found in Tables 2 and 3.

the workload and the effective throughput of the system. When the
workload changes, AdaChain notices drops in throughput, and can
automatically adjust the blockchain architecture and parameters to
maximize performance, all without any user intervention.

Second, AdaChain introduces protocols to switch from one block-
chain architecture to another in a live system, while maintaining
strong serializability properties. This switching protocol is not only
required for AdaChain to function (multi-armed bandits generally
require making multiple decisions before the optimal is reached),
but also enables a new class of blockchains that can more-or-less
seamlessly transition between different architectures to support
the shifting workloads in the real-world. Intuitively, the switching
protocol works by splitting switching decisions between two paths.
In the normal path, all nodes agree to switch to the same new
architecture after a certain number of blocks have been committed,
while in the slow path, all nodes switch to the same architecture
after failing to make progress on processing transactions for a
certain amount of time.

Specifically, this paper makes the following contributions.

• Learned adaptive blockchain. To the best of our knowledge,
AdaChain is the first blockchain system to support automat-
ically adapting to an underlying, dynamic workload. Through
careful modeling of the states, actions, and objective function,
AdaChain’s use of reinforcement learning makes it the first
blockchain system to learn from its mistakes and self-correct.
• Multi-architecture switching. Additionally, we also present

the first blockchain system capable of switching from one archi-
tecture to another at runtime in a way that respects correctness
and security concerns.
• Analysis of architecture impact on blockchain performance.
We perform a large-scale measurement examining the relation-
ship between architecture choice and blockchain performance.
We implemented a wide range of blockchain architectures, and
through a suite of workload parameters, we identified architec-
ture configurations and runtime settings that significantly impact
performance improvements. Our experiments highlight the large
state space, which renders manual heuristics difficult to achieve.
The workloads, architectures and measured performance will be
publicly available to aid future research.
• Prototype and performance evaluation. We have developed
a prototype of AdaChain, which will be publicly available un-
der an open-source license. Our evaluation results on CloubLab
demonstrate that AdaChain can converge quickly to optimal ar-
chitectures under changing workloads, significantly outperform
existing fixed architectures, and incur low additional overhead.

2 ARCHITECTURE LANDSCAPE
To motivate AdaChain, we first examine, both experimentally and
intuitively, why different blockchain architectures work better for
different workloads: in Section 2.1, we will highlight a number of
blockchain architectures, and illustrate their advantages and disad-
vantages. The point here is not that some blockchain architectures
are “better” or “worse” than others, but rather that each blockchain
architecture performs well under some conditions and poorly under

Figure 1: Performance of different blockchain architectures
under various workloads. The performance of different ar-
chitectures can vary significantly between workloads. Work-
loads and architectures are described in Table 1 and 2.

others. In Section 2.2, we argue that a blockchain that can adap-
tively switch between multiple architectures is able to achieve “best
of all worlds” performance.

2.1 Blockchain Architectures and Workloads
Table 1 lists representative blockchain systems and their architec-
tures, where the design space consists of seven performance opti-
mizations (P1-P7) and two correctness dimensions (C1-C2). Figure 1
shows their corresponding performance under four different work-
loads. Here, we use effective throughput as the performance metric,
which measures the number of successfully committed transactions
per second.

The workloads A to D are characterized in Table 2. BaaS work-
loads embody a large extent of variations. For instance, different
transactions might invoke different percentages of write operations
to the underlying key-value store, as represented by the write ratio.
These transactions might also contend to access or update the same
set of popular keys (or hot keys), as indicated by the contention
level. In addition, the runtime load on a BaaS can be determined by
the frequency of issued transactions by each client and the num-
ber of active clients varying with time. Last, compute intensity is
an important characterization of BaaS workloads, as pointed out
by [34, 54, 62]. This is because permissioned blockchains support a
wide range of applications, some of which are compute-intensive
(e.g., those that provide security and correctness guarantees for
machine learning applications).

Below, we briefly describe the design principles of each architec-
ture and explain the intuition behind why the performance of each
architecture can vary under different workloads.
Order-Execute (OX). The order-execute architecture has been
widely used in permissioned blockchain systems such as Tender-
mint [43], Quorum [24], Chain Core [4], Multichain [35], Hyper-
ledger Iroha [7], and Corda [5]. In the OX architecture, transactions
are totally ordered and batched into blocks and then transactions

2

Architecture Rep. System P1. Block Size P2. Early Exec. P3. Dependency Graph P4. Early Abort P5. Cross-Block Conflicts P6. Parallel Exec. C1. MVCC C2. Isolation

OX Tendermint [43] tunable % % % - % % strong serializable
OXII ParBlockchain [11] tunable % ! % - partial % strong serializable
XOV Fabric [16] tunable ! % % V fully ! strong serializable
XOV++ Fabric++ [56] tunable ! ! X, O V fully ! strong serializable
XOV# Fabric# [54] tunable ! ! O O fully % serializable
XOV StreamChain [37] 1 ! % % V fully ! strong serializable

Table 1: Comparing design principles of existing permissioned blockchain architectures. Here, P stands for performance, C
stands for correctness, X stands for execution, O stands for ordering, and V stands for validation.

Workload Write Ratio Contention Level Load Compute Intensity

A low high high high
B moderate high moderate low
C moderate low high very high
D high very high moderate very low

Table 2: Characterizing workloads A, B, C and D. Specific
workload parameters are presented in Table 3.

of a block are executed sequentially. As a result, the OX architec-
ture does not require an MVCC validation phase, which is used to
resolve conflicts between transactions, and hence, no transactions
will be aborted due to conflicts. As shown in Figure 1, this design
principle makes OX outstanding at workload D, where transactions
are write-heavy and contentious, i.e., transactions update a small set
of hot keys. On the other hand, OX performs comparatively poorly
on workloads A and C, which are compute-intensive. Due to the
lack of parallel execution mechanisms, OX cannot take advantage
of the multi-core processing power of modern servers.
Order-Parallel Execute (OXII). In the OXII architecture, used
by ParBlockchain [11], transactions are first totally ordered and
batched into blocks. OXII then constructs a dependency graph for
transactions within a block based on their positions. Specifically, if
𝑡𝑖 is ordered before 𝑡 𝑗 , and the pair of transactions have either WR,
RW, or WW conflicts, OXII constructs a directed edge from 𝑡𝑖 to
𝑡 𝑗 . This dependency graph is then used in the execution phase to
execute certain transactions in parallel, i.e., a transaction can be
executed once all its predecessors have finished execution. Given
a higher level of execution parallelism than OX, OXII performs
better than OX under computation-heavy workloads such as A and
C. Note that even for a given workload, OXII requires careful tuning
of block size; a large block results in high overhead in dependency
graph construction, while a small block results in less parallelism
and higher communication overhead.
Execute-Order-validate (XOV).Hyperledger Fabric [16] presents
the XOV architecture (which was first introduced by Eve [38] in
the context of Byzantine fault-tolerant SMR) by switching the order
of the ordering and execution phases such that transactions are
simulated fully in parallel before being ordered in the ordering
phase. Since it utilizes early execution, XOV requires an MVCC
validation phase to invalidate all transactions that are simulated on
stale data, and commits only the validated transactions to the world-
state and the blockchain ledger. This early execution enables XOV to
perform well on contention-free workloads such as C. On the other
hanad, XOV demonstrates poor performance under contentious and
write-heavy workloads, such as B and D, due to the high percentage
of invalidated transactions.

XOV with early abort and reordering (XOV++). The XOV++
architecture, as introduced in Fabric++ [56], follows the XOV par-
adigm but with some modifications. First, a dependency graph is
constructed in the ordering phase to capture RW conflicts between
each pair of transactions within the same block. When the graph is
constructed, all elementary cycles in the graph are aborted greed-
ily. Unlike OXII, which utilizes the graph for concurrency control,
XOV++ uses the graph for transaction reordering; when there is a
RW conflict between 𝑡𝑖 and 𝑡 𝑗 , it (re)orders 𝑡𝑖 before 𝑡 𝑗 in the block.
Second, it adopts early abort techniques in both the simulation
and ordering phases. Whenever XOV++ detects that a transaction
operates on stale data, XOV++ immediately aborts that transac-
tion without waiting for the final MVCC validation. As an effect of
transaction reordering, XOV++ has outstanding performance on
workload A, where the conflicts are reconcilable given a low write
ratio. On the other hand, XOV++ performs poorly on workload
D with a near-zero effective throughput. This is because, under a
contentious and update-heavy workload, very few conflicts can
be reconciled through reordering. Moreover, reordering becomes
more expensive when there are a large number of cycles in the de-
pendency graph, resulting in more pending blocks and, thus, more
transactions that simulate on stale data.
XOVwith serializable isolation (XOV#). The XOV# architecture,
presented in Fabric# [54], is mainly different from XOV and XOV++
in that XOV# is serializable, while XOV and XOV++ are strong
serializable. To achieve this isolation level, XOV# incrementally
constructs a dependency graph that keeps track of all dependencies,
including those that span across blocks in the ordering phase. Once
a transaction is ordered, XOV# immediately drops this transaction
if there is a dependency cycle involved. The resulting acyclic sched-
ule is guaranteed to be serializable, thus, no extra MVCC validation
is needed in XOV#. To ensure a fair comparison with other archi-
tectures, we run XOV# under the strong serializability isolation
level while keeping the remaining design dimensions the same as
the original XOV# (the XOV+reorder+block_pipelining bar). XOV#
performs worse than vanilla XOV in all workloads A to D due to the
overhead of maintaining a large dependency graph and detecting
cycles. This suggests that the performance improvement reported
in Fabric# is mainly due to a more relaxed isolation level.
Stream XOV. StreamChain [37] switches from block processing to
stream transaction processing. Specifically, StreamChain follows
the XOV paradigm while fixing the block size to 1. The motivation
behind stream processing is simple: while the original, permission-
less blockchains were forced to used proof of work (PoW) consensus
techniques to maintain fault tolerance, a permissioned blockchain

3

environment allows more efficient consensus protocols to be used.
Thus, stream processing can reduce transaction latency. In terms
of effective throughput, StreamChain has relatively good perfor-
mance when the workload is lightweight or not contentious, such
as in workloads B and C. Otherwise, the high block construction
overhead in terms of cryptographic operations and excessive disk
I/Os leads to a large number of pending blocks in StreamChain,
making incoming transactions simulate on stale data.

StreamChain also highlights that the parameters of a given ar-
chitecture can impact performance [22]. A large block size leads to
higher block formation overhead and latency, while a small block
size results in higher communication and disk overhead.

2.2 The Case for Adaptivity & Learning
The previous section can be summarized as follows: depending
on workload and hardware characteristics, the performance of a
given blockchain architecture can vary drastically. We thus argue
that there is no one-size-fits-all architecture. From Figure 1, we ob-
serve that not only is there no single dominant architecture, but
some architectures that perform well on one workload can end up
performing quite poorly on another.
Adaptivity. Even if one precomputed the optimal blockchain con-
figuration for a particular workload, one would still have to deal
with: (1) shifts in workload characteristics could render the precom-
puted decisions suboptimal, (2) changes in the underlying hardware
may cause a different architecture to become optimal, and (3) the
development of new blockchain architectures would require re-
computing a new optimal. Moreover, BaaS providers must ensure
acceptable performance even when (1) multiple customers have
distinct workloads, (2) those workloads vary throughout the day,
and (3) the performance of hardware may vary. A blockchain that
can switch between architectures can thus adapt to the wide variety
of changes that occur in modern BaaS environments.
Learning. One may consider the design of simple heuristics to
map workloads to optimal blockchain configurations. For example,
a simple rule like “when compute intensity is high, use XOV, oth-
erwise use OXII” would indeed improve upon a single workload.
However, a heuristic that achieved optimal or near-optimal perfor-
mance for a wide variety of workloads would be much harder to
craft. Even if one invested the time to craft such a heuristic, the
heuristic would quickly become outdated, as changes in hardware
and new blockchain architectures emerge.

Instead of undertaking the Sisyphean task of designing such a
heuristic, we instead propose using machine learning techniques to
learn the heuristic on-the-fly. By using reinforcement learning tech-
niques, we can quickly search an ever-expanding set of blockchain
configurations for any workload on any hardware. Such a system
can learn from its mistakes and progressively improve.

3 ADACHAIN OVERVIEW
At a high level, AdaChain contains two key components: a ma-
chine learning model (the learning agent) which guides AdaChain
towards better and better blockchain architectures, and an architec-
ture switching mechanism that allows AdaChain to near-seamlessly
transition from one blockchain architecture to another while en-
suring correctness and security.

Figure 2: Architecture of AdaChain. For readability, we only
present the internals of server1.

Learning agent. AdaChain’s learning agent models the problem
of selecting a blockchain architecture as a contextual multi-armed
bandit (CMAB) problem [64]: periodically, AdaChain examines the
most recent properties of the workload (context), and then selects
one of many blockchain architectures (arms). After making the
selection, it observes the effective throughput of the newly selected
architecture (reward). To be successful, AdaChain must balance
the exploration of new, untested architectures with exploiting past
experience to maximize throughput – without a careful balance of
exploration and exploitation, AdaChain risks failing to discover an
optimal configuration (too much exploitation), or performing no
better than random (too much exploration). We select this CMAB
formulation (as opposed to generalized reinforcement learning
models) because CMABs are exceptionally well-studied, and many
asymptotically-optimal algorithms exist to solve them [10, 23].

Details about the learning agent are provided in Section 4.
Switching architecture. AdaChain utilizes a switching protocol
that allows it to switch from one blockchain architecture to another
in a distributed fashion across all nodes in the blockchain deploy-
ment, while transactions are ongoing. AdaChain achieves this by
splitting switching decisions between two paths, a normal path in
which all nodes agree to switch to the same new architecture after
a certain number of blocks have been committed, and a slow path
in which all nodes switch to the same new architecture after failing
to make progress for a certain amount of time.

Details about AdaChain’s switching protocol are in Section 5.
AdaChain workflow overview. Figure 2 shows the overall archi-
tecture of AdaChain. Similar to other permissioned blockchains,
AdaChain consists of a set of distributed servers, where each server
runs a peer process. The peers are responsible for transaction pro-
cessing and appending the constructed blocks to the blockchain
ledger. In addition to the peer process, AdaChain introduces a sep-
arate learning agent process on each server. The learning agent is
responsible for finding the current optimal architecture according
to the workload, and guiding its local peer to switch to that optimal
architecture.

AdaChain operates in episodes, where within one episode, the
blockchain architecture remains unchanged. When the learning
agent finds an architecture candidate, it instructs the peer to use
that architecture for the next episode. Each episode is marked by
the completion of a constant number of transactions (Δ𝑁episode),
including invalidated transactions. This episode design ensures

4

AdaChain does not stuck in a bad architecture for a long time even
when the fraction of invalidated transactions is high due to conflicts.

Below, we describe how the learning agent proposes the archi-
tecture for episode 𝑛 + 1 in detailed steps. Although our discussion
below focuses on the internals of server1, the same procedure hap-
pens simultaneously on every blockchain server.
Step 1: Notifying the learning agent. In episode 𝑛, the peer noti-
fies its local learning agent when the number of committed blocks
has reached a certain watermark. The notification also includes the
local performance measurement 𝑟𝑛 in episode 𝑛.
Step 2: Featurization. Since learning agents are distributed across
different servers, the state (i.e., some features that capture the work-
load) that they need in order to make a decision should also be
distributed. In AdaChain, states are not only distributed, but also
decentralized as no single entity controls the state. This is possible
with negligible overhead due to two key insights: (1) the blockchain
ledger contains rich information about the workload, and thus is a
good source of raw data for featurization; (2) the ledger is naturally
decentralized and consistent across peers. Thus, once the agent
is notified by the peer, its featurizer extracts the state 𝑠𝑛+1 from
blocks committed in episode 𝑛. Features are described in detail in
Section 4.2.
Step 3: Exchanging performance measurements. The locally
observed performance is different across different peers, and ma-
licious peers could even manipulate the local measurement. To
ensure each honest server has the same architecture for episode
𝑛 + 1, the learning agent on server1 exchanges the local measure-
ment 𝑟𝑛 with learning agents on every other server, so as to agree
on performance measurement.
Step 4: Estimating the performance for each architecture. The
predictive model𝑀𝜃 predicts the performance of each architecture
candidate under state 𝑠𝑛+1, and selects architecture 𝑎𝑛+1 that is
predicted to have the best performance. The learning agent then
informs the peer to switch to 𝑎𝑛+1 for episode 𝑛 + 1.
Step 5: Building experience buffer. Once an 𝑟𝑛 is obtained, the
learning agent adds the (𝑠𝑛, 𝑎𝑛, 𝑟𝑛) triplet to the experience buffer.
Note that 𝑠𝑛 and 𝑎𝑛 are derived prior to the start of episode 𝑛.
Step 6: Retraining. The predictive model 𝑀𝜃 is periodically re-
trained based on the experience buffer, creating a feedback loop.
As a result, AdaChain’s predictive model improves, and AdaChain
more reliably picks the best architecture for the observed state.
Assumptions. In short, AdaChain can adapt itself according to the
workload and hardware setup to continually improve performance.
Moreover, AdaChain is an online learned system that does not
require a separate and cumbersome data collection process prior to
deployment. Our current design makes two assumptions. First, in
AdaChain, similar to many other permissioned blockchain systems
[13, 24, 43], each node serves as both the ordering and execution
(endorser) node. This, however, is in contrast to Hyperledger Fabric
and its variants that separate endorsing and ordering roles. Second,
AdaChain is designed for a homogeneous setup, where different
servers have access to similar resources. While having these two
assumptions in place simplifies the system design, they have been
used in real-world BaaS deployments. Removing these assumptions
is an avenue for future work.

4 LEARNING ALGORITHMS
In this section, we discuss AdaChain’s learning approach in detail.
We first formalize AdaChain’s learning problem as a contextual
multi-armed bandit problem, and then discuss our selected algo-
rithm, Thompson sampling, for solving such problems. We next
describe the predictive model used by AdaChain, followed by the
specific state and action space design.
Contextual multi-armed bandits (CMABs). In a contextual
multi-armed bandit problem, an agent periodically makes deci-
sions in a number of episodes, enumerated by 𝑛. In each episode,
the agent selects an action 𝑎𝑛 based on a provided state 𝑠𝑛 , and then
receives a reward 𝑟𝑛 . The agent’s goal is to select actions in a way
that minimizes regret, i.e., the difference between the reward from
the chosen action and the reward from the optimal action. CMABs
assume that each episode is independent2 from each other, and that
the optimal decision depends only on the state 𝑠𝑛 . As described
in Section 3 and 5, in order to be responsive to workload changes,
there are no pending blocks across different episodes in AdaChain.
Thus, each episode in AdaChain can also be considered to be in-
dependent (although caching effects may bring a small amount of
dependence between episodes).
AdaChain’s formulation. AdaChain uses effective throughput
as the performance metric 𝑃 to maximize, which is the number of
successfully committed transactions per second. For each episode,
it must select an architecture to use. AdaChain’s goal is to select
the best architecture (in terms of effective throughput) in the family
of available architectures 𝐴, given the current perceived workload
𝑤 ∈𝑊 . We call this selection function 𝑆 :𝑊 → 𝐴. We formalize
the goal as a regret minimization problem, where the regret 𝑟𝑛
for an episode 𝑛 is defined as the difference between the effective
throughput of the architecture selected by AdaChain and the ideally
optimal architecture as presented in equation 1.

𝑟𝑛 = max
𝑎∈𝐴

𝑃 (𝑤, 𝑎) − 𝑃 (𝑤, 𝑆 (𝑤)) (1)

We use effective throughput as the performance metric since it
is the dominant metric used by previous studies. However, the
optimization goal above can be easily generalized to other perfor-
mance metrics, such as latency or even user-defined service level
objectives. We leave the study and evaluation of such performance
metrics to future work.
Thompson sampling. While there are many algorithms to solve
contextual multi-armed bandit problems, we select Thompson sam-
pling for its simplicity: at the start of each episode, we train a model
based on our current experience, and then select the best action
as predicted by the model. In order to train the model, Thomp-
son sampling deviates from traditional ML techniques. Normally,
models are trained by finding the model parameters that are most
likely given the training data (i.e., maximum likelihood estimation).
This works well when the training data is a representative sample
of the population. Unfortunately, in the context of a multi-armed
bandit, the experience set is not a representative sample: it contains
only data for actions we have previously selected. As a result, if we
trained our model using standard maximum likelihood techniques,
our agent would assume that our experience was representative,
2Contextual multi-armed bandit algorithms have been shown to be effective even
when these condition do not strictly hold [23].

5

and would only exploit past knowledge and would perform very
little exploration (i.e., testing actions that the current data suggests
may be sub-optimal). Alternatively, if we wanted our agent only to
explore, we could set the model weights to random values, ensuring
a random prediction at each episode.

How can we balance these competing goals? We want to exploit
the information we have gathered in the past, but we want to avoid
getting stuck in local maxima by exploring new possibilities as
well. The beauty of Thompson sampling is that an optimal balance
can be struck between exploration and exploitation by slightly
modifying the training procedure: instead of selecting the model
parameters that are most likely given the data, instead we sample
model parameters proportionally to their likelihood given the training
data. More formally, we can define maximum likelihood estimation
as finding the model parameters 𝜃 that maximize likelihood given
experience 𝐸: argmax𝜃 𝑃 (𝜃 | 𝐸) (assuming a uniform prior). Instead
of maximizing likelihood, Thompson sampling simply samples from
the distribution 𝑃 (𝜃 | 𝐸). This means that if we have a lot of data
suggesting that our model weights should be in a certain part of
the parameter space, our sampled parameters are likely to be in the
part of the space. Conversely, if we have only a small amount of
data suggesting that our model weights should be in a certain part
of the parameter space, we may or may not be sample parameters
in that part of the space during any given episode.

Of course, the “test loss” of a sampled 𝜃 may be higher than the
“test loss” of the most likely parameters: this is a key difference
between supervised and reinforcement learning. Concisely, sam-
pling from 𝑃 (𝜃 | 𝐸) instead of finding the most likely parameters
argmax𝜃 𝑃 (𝜃 | 𝐸) means that the likelihood of us choosing partic-
ular model parameters is proportional to the quantity of evidence
for those model parameters in our experience.
Comparison with supervised learning. The contextual ban-
dit problem formulation is critical for AdaChain to be practical:
AdaChain is an online system that learns from its mistakes, with-
out requiring a separate training data collection process prior to
deployment. If we simply wanted to select the architecture with
the best-expected performance, one naïve way would be training a
predictive model in a standard supervised fashion. However, as our
value model might be wrong, we might not always pick the optimal
architecture, and, as we would never try alternative strategies, we
would never learn when we are wrong. In other words, we could
become trapped in a local maxima.

Training a value model in a standard supervised fashion also
requires a time-consuming data collection process because an ac-
curate value model requires complete data: there cannot be large
“holes” in either the state space or action space when enumerating
them to gather data. Thus, all the potential workloads, blockchain
architectures, and hardware setups must be known a priori. This is
not realistic in a BaaS because: (1) unexpected changes in hardware
could happen when the cloud provider introduces new CPUs, larger
RAM, or transitioning from local disk to remote storage engine, etc.,
(2) users might exhibit unexpected workload behaviors, and (3) the
action space keeps growing as new blockchain architectures emerge.
When these changes happen, the previously trained value model
will be wrong and misguide the peers, unless the time-consuming
data collection process is repeated.

4.1 Predictive Model
AdaChain uses random forests [18] as the predictive model due
to their good performance on data sets of moderate sizes and fast
inference. The model takes the state (i.e., workload) concatenated
with action (i.e., architecture choice) as input, and outputs the
predicted performance.3 Thus, given a state, AdaChain enumerates
the action space and uses the model to predict the performance
of each action. AdaChain then chooses the action with the best-
predicted performance to be carried out. Once there is a tie on the
best-predicted performance, AdaChain breaks the tie randomly to
avoid local maxima.

Integrating random forests with Thompson sampling requires
the ability to sample model parameters from 𝑃 (𝜃 | 𝐸). The simplest
technique (which has been shown to work well in practice [49]) is to
train the model as usual, but only on a bootstrap [17] of the training
data. In other words, the random forest is trained using |𝐸 | random
samples drawn with replacement from experience 𝐸, inducing the
desired sampling properties. AdaChain uses this bootstrapping
technique for its simplicity.

In AdaChain, each node’s learning agent starts with the same
random seed when AdaChain is launched. Thus, since the state
of a certain episode is the same across peers (as mentioned in
Section 3 and 5), with the predictive model’s deterministic training
and inference, each honest agent chooses the same blockchain
architecture in the same episode.

4.2 State Space
In AdaChain, the state represents properties of the client workload.
AdaChain captures the state space using the four features below. To
ensure the accuracy of feature extraction, all aborted or invalidated
transactions are still written to the ledgerwith a validity flag (similar
to [36]). Below, we assume a window of blocks 𝑏𝑖 to 𝑏 𝑗 in the ledger
are read by the learning agent for featurizing the current state.
Write ratio. We observe that counting the write ratio in terms of
write accesses to the key-value store is not effective for predicting
performance. Thus, AdaChain measures the write ratio at the trans-
action level: once a transaction writes to the key-value store, it is
viewed as a write transaction. The write ratio is the ratio of write
transactions to the number of all transactions during 𝑏𝑖 and 𝑏 𝑗 .
Hot key ratio. AdaChain measures the frequency that each key is
accessed during𝑏𝑖 and𝑏 𝑗 . It then takes the frequency corresponding
to the hottest key to be the hot key ratio.
Transaction arrival rate. AdaChain timestamps each transaction
upon its first arrival to the system. AdaChain first measures the
number of all transactions from 𝑏𝑖 to 𝑏 𝑗 , denoted as 𝑁 , and then
derives the transaction arrival rate using 𝑁

𝑡𝑠 𝑗−𝑡𝑠𝑖 , where 𝑡𝑠𝑖 repre-
sents the arrival timestamp of the first transaction in 𝑏𝑖 and 𝑡𝑠 𝑗
represents that of the last transaction in 𝑏 𝑗 .
Execution delay.AdaChain uses average execution delay of all trans-
actions in the period of 𝑏𝑖 to 𝑏 𝑗 .

4.3 Action Space
In AdaChain, the action space consists of different blockchain ar-
chitectures. One naïve approach to represent the action space is
3This corresponds to a value based model. A policy model, in which the predictive
model predicts simultaneously the probability of each action being optimal, might be
an interesting direction for future work.

6

to give each architecture a one-hot encoding. However, from the
random forest’s perspective, this approach makes two semantically
close architectures totally unrelated, resulting in ineffective splits,
and thus poor prediction accuracy. For example, assume XOV is
represented by vector (1, 0, ..., 0) in the one-hot encoding. Random
forest might split on the first dimension in the vector, i.e., XOV is its
left child, while everything non-XOV is its right child. Each child’s
performance will be predicted using the average performance of
that child. Clearly, XOV++ and StreamChain might have a relatively
close performance to XOV, but they will always fall into a wrong
child node and their predicted performances are wrongly averaged.

Thus, AdaChain chooses to first featurize the blockchain architec-
tures to maintain the semantic information of their design. Feature
engineering an optimal representation of blockchain architectures
is a difficult and inexact task. Instead of attempting to design an
all-encompassing representation that captures every dimension of
blockchain architectures, we instead selected a simple representa-
tion based on our intuition of the most important properties. We
leave investigating alternative representations to future work.

AdaChain therefore captures the action space using three main
features: block size, early (speculative) execution, and dependency
graph construction. Block size is a scalar variable, representing the
number of transactions within a block. The block size in AdaChain
is also equal to the batch size in the consensus protocol. To limit the
growth of action space, the block size can not exceed 1, 000, which
is larger than typical block sizes used in blockchain systems, and
we further discretize the block size using paces. Early execution and
dependency graph construction are both binary variables. Thus,
AdaChain’s action space consists of 100 choices in total.

We do not consider parallel execution as a feature because it can
be derived from the two previous features (i.e., early execution and
dependency graph construction): (1) early execution of transactions
happens fully in parallel; (2) the goal of constructing a dependency
graph is to execute independent transactions in parallel.

5 SWITCHING ARCHITECTURES
This section discusses the architecture switching mechanism of
AdaChain. We first introduce the normal path of operations, fol-
lowed by our timeout-based mechanism in the slow path. Lastly,
we outline why the switching mechanism is resilient to attacks.

5.1 Normal Path
Algorithm 1 presents the normal path of operations. Each server
in AdaChain runs Algorithm 1 in a distributed fashion in order to
carry out architecture switching. Here, 𝑆 is the set of blockchain
servers, 𝑖 stands for the index of the server, 𝑛 stands for the current
episode, and Δ𝑁episode and Δ𝑁learn are two constant hyperparame-
ters. At a high level, the normal path introduces two watermarks: a
low watermark (𝑊 𝑛

𝐿
) that triggers the learning phase, and a high

watermark (𝑊 𝑛
𝐻
) that marks the end of an episode.

The untrustworthiness of participants in a blockchain system
prevents us from relying on a centralized entity to featurize the
state and measure the reward. Thus, inspired by the PBFT proto-
col [20], AdaChain conducts them in a decentralized fashion. Upon
reaching the low watermark𝑊 𝑛

𝐿
, each server 𝑖 ∈ 𝑆 records its lo-

cally observed throughput 𝑝𝑛
𝑖
of episode 𝑛 and featurizes the state

Algorithm 1 Normal path
▷ On each server 𝑖

1: Upon index of local last committed block 𝑏last reaching𝑊 𝑛
𝐿

2: Record performance 𝑝𝑛
𝑖

3: Extract features 𝑓 𝑛+1
𝑖

= (𝑤𝑛+1
𝑖

, 𝑐𝑛+1
𝑖

, 𝑟𝑛+1
𝑖

, 𝑒𝑛+1
𝑖
) from block𝑊 𝑛−1

𝐻
to𝑊 𝑛

𝐿

4: Multicast ⟨CHECKPOINT, 𝑛, 𝑖, 𝑒𝑛+1
𝑖

, 𝑝𝑛
𝑖
⟩𝜎𝑖 to all servers

▷ On the leader sever 𝑙
5: Upon receiving valid CHECKPOINTmessages from a quorumQ of 2𝑓 +1 servers
6: Compute 𝑒𝑛+1 ← median{𝑒𝑛+1

𝑗
| 𝑗 ∈ Q}

7: Compute 𝑝𝑛 ← median{𝑝𝑛
𝑗
| 𝑗 ∈ Q}

8: Multicast ⟨⟨PROPOSE, 𝑒𝑛+1, 𝑝𝑛 ⟩𝜎𝑙 , C⟩ to all servers
▷ On each server 𝑖

9: Upon receiving a PROPOSE message from the leader
10: if 𝑒𝑛+1 and 𝑝𝑛 are valid (based on C) then
11: Multicast ⟨ACCEPT, 𝑛, 𝑖, 𝑒𝑛+1, 𝑝𝑛 ⟩𝜎𝑖 to all servers
12: Upon receiving valid matching ACCEPT messages from 2𝑓 + 1 different servers
13: Multicast ⟨COMMIT, 𝑛, 𝑖, 𝑒𝑛+1, 𝑝𝑛 ⟩𝜎𝑖 to all servers
14: Upon receiving valid matching COMMITmessages from 2𝑓 + 1 different servers
15: Add 𝑝𝑛 to experience and derive action 𝑎𝑛+1 based on 𝑓 𝑛+1

16: if 𝑇𝑛 transactions have been committed then
17: Abort any new incoming transaction 𝑡 in the ordering phase
18: Upon 𝑏last reaching𝑊 𝑛

𝐻
19: Pause block formation thread until action 𝑎𝑛+1 is derived
20: 𝑊 𝑛+1

𝐿
←𝑊 𝑛

𝐻
+ ⌊Δ𝑁learn/|𝑏𝑛+1 | ⌋

21: 𝑊 𝑛+1
𝐻
←𝑊 𝑛

𝐻
+ ⌊Δ𝑁episode/|𝑏𝑛+1 | ⌋

22: 𝑇𝑛+1 ← 𝑇𝑛 + ⌊Δ𝑁episode/|𝑏𝑛+1 | ⌋ × |𝑏𝑛+1 |
23: 𝑛 ← 𝑛 + 1
24: Carry out action 𝑎𝑛+1
25: Reset timer 𝜏

for the next episode 𝑛 + 1 from its local blockchain ledger (lines
1-3). Although most dimensions of the state are naturally consis-
tent across different servers, there can be slight variations on the
execution delay, 𝑒𝑛+1

𝑖
, and measured throughput. Thus, each server

𝑖 multicasts a checkpoint message consisting of 𝑒𝑛+1
𝑖

and 𝑝𝑛
𝑖
to all

other servers (line 4). AdaChain relies on the leader server to (1)
collect a quorum Q of 2𝑓 + 1 checkpoint messages, (2) calculate
the median of observed throughput values to be the global reward
𝑝𝑛 , and (3) calculate the median of the execution delay values 𝑒𝑛+1
to be part of the global state (lines 5-7). Taking the median value
prevents malicious servers from disrupting the predictive model’s
training and inference by multicasting adversarial 𝑒𝑛+1

𝑗
and 𝑝𝑛

𝑗
that

are abnormally high (or low). Once both values are computed, the
leader multicasts a propose message, including the values and the
set C of 2𝑓 + 1 received checkpoint messages to all servers (line
8). Sending set C inside the message enables servers to validate
𝑒𝑛+1 and 𝑝𝑛 values. This is necessary because a malicious leader
might compute the values incorrectly. Upon receiving the propose
message, each server validates the message and multicasts an ac-
ceptmessage to all other servers (lines 9-11). The goal of the accept
phase is to prevent a malicious leader from sending different values
of 𝑒𝑛+1 and 𝑝𝑛 to different servers. Each server then waits for 2𝑓 +1
matching accept messages before sending a commit message (lines
12-13). The accept and commit phases, similar to prepare and com-
mit phases of PBFT, ensure that values are correct and replicated
on a sufficient number of nodes. Finally, when a server receives
2𝑓 + 1 commit messages, the predictive model will derive action
𝑎𝑛+1 as described in Section 4 (lines 14-15). Note that since accept
and commit messages are broadcast to all servers, even if a server
has not received the propose message from the leader (due to the
asynchronous nature of the network or the maliciousness of the
leader), the server still has access to the values.

7

Algorithm 2 Slow path
▷ On each server 𝑖

1: if timer 𝜏 timeouts and 𝑏last has not reached𝑊 𝑛
𝐿

then
2: pause block formation thread after committing the current block
3: Record performance 𝑝𝑛

𝑖

4: Multicast ⟨S-CHECKPOINT, 𝑛, 𝑖, 𝑏𝑛last,𝑖 ⟩𝜎𝑖 to all servers
▷ On each server 𝑗 where 𝜏 has not been expired

5: Upon receiving 𝑓 + 1 valid S-CHECKPOINT messages from different servers
6: pause block formation thread after committing the current block
7: Record performance 𝑝𝑛

𝑗

8: Multicast ⟨S-CHECKPOINT, 𝑛, 𝑗, 𝑏𝑛last, 𝑗 ⟩𝜎𝑗
to all servers

▷ On the leader sever 𝑙
9: Upon receiving valid S-CHECKPOINT messages from a quorum Q of 2𝑓 + 1

servers
10: Compute𝑊 𝑛

𝐻
← max{𝑏𝑛last, 𝑗 | 𝑗 ∈ Q}

11: Multicast ⟨⟨S-PROPOSE,𝑊 𝑛
𝐻
⟩𝜎𝑙 , C

′ ⟩ to all servers
▷ On each server 𝑖

12: Upon receiving a S-PROPOSE message from the leader
13: if𝑊 𝑛

𝐻
is valid (based on C′) then

14: Multicast ⟨S-ACCEPT, 𝑛, 𝑖,𝑊 𝑛
𝐻
⟩𝜎𝑖 to all servers

15: Upon receiving valid matching S-ACCEPT from 2𝑓 + 1 different servers
16: Multicast ⟨S-COMMIT, 𝑛, 𝑖,𝑊 𝑛

𝐻
⟩𝜎𝑖 to all servers

17: Upon receiving valid matching S-COMMIT from 2𝑓 + 1 different servers
18: Resume block formation thread
19: Extract features 𝑓 𝑛+1

𝑖
= (𝑤𝑛+1

𝑖
, 𝑐𝑛+1

𝑖
, 𝑟𝑛+1

𝑖
, 𝑒𝑛+1

𝑖
) from block𝑊 𝑛−1

𝐻
to 𝑏last

20: Multicast ⟨CHECKPOINT, 𝑛, 𝑖, 𝑓 𝑛+1
𝑖

, 𝑝𝑛
𝑖
⟩𝜎𝑖 to all servers

▷ On the leader sever 𝑙
21: for every transaction 𝑡 in the ordering phase do
22: 𝑡 .𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ← 𝑛

▷ On each server 𝑖
23: for every transaction 𝑡 committed by consensus do
24: if 𝑡 .𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ≠ 𝑛 then
25: abort 𝑡

In order to be responsive to workload changes, each episode
is marked by the completion of ⌊Δ𝑁episode/|𝑏𝑛 |⌋ blocks where
Δ𝑁episode, as discussed in Section 3, is a constant hyperparame-
ter of the system (10, 000 transactions in the current deployment),
and |𝑏𝑛 | denotes the block size in episode𝑛. As a result, each episode
processes ⌊Δ𝑁episode/|𝑏𝑛 |⌋ × |𝑏𝑛 | transactions, including transac-
tions invalidated in MVCC validation due to conflicts. Specifically,
when the number of committed transactions in consensus reached
𝑇𝑛 , AdaChain early aborts transactions in the ordering phase (i.e.,
no more transactions will be committed by the consensus protocol)
until AdaChain transitions into the next episode (lines 16-17). In
AdaChain, the block formation thread waits for transactions to be
committed, cuts the block, possibly performs dependency graph
construction, reordering, or execution according to the current
architecture, and lastly, commits the block. Once the number of
committed blocks reaches the high watermark, the block formation
thread will be paused until action 𝑎𝑛+1 is derived (lines 18-19). This
ensures exactly ⌊Δ𝑁episode/|𝑏𝑛 |⌋ blocks are committed in episode 𝑛
on different servers. Note that the learning phase (including feature
extraction, exchanging measurements, training, and inference) is
triggered by low watermark𝑊 𝑛

𝐿
, and AdaChain keeps processing

transactions using architecture 𝑎𝑛 between𝑊 𝑛
𝐿
and𝑊 𝑛

𝐻
. Thus, as

shown in Section 6.5, in most cases, architecture 𝑎𝑛+1 is derived
before reaching𝑊 𝑛

𝐻
, ensuring the high throughput of AdaChain.

5.2 Slow Path
Before AdaChain converges to the optimal architecture, the learn-
ing agent might occasionally choose “bad” architectures. The bad
architectures might result in a high fraction of transactions being
invalidated, or a slow growth of committed blocks (e.g., choosing

OX when the workload is highly compute-intensive, or choosing
XOV+reorder when the contention is extremely high). In terms of
wall-clock time, AdaChain should not be stuck in either scenario.
While the normal path is capable of handling the first scenario, we
further introduce a slow path to handle the scenario where the
growth of committed blocks is slow.

Algorithm 2 presents the slow path operations. Note these are
additional operations upon Algorithm 1. When the timer of server
𝑖 timeouts and the index of the last committed block, 𝑏last, has not
reached the low watermark, server 𝑖 pauses the block formation
thread after committing the current block, records the performance
𝑝𝑛
𝑖
in the current episode, and multicasts a s-checkpoint message

including the 𝑏last to all other servers (lines 1-4). If a server 𝑗 re-
ceives s-checkpoint messages from at least 𝑓 + 1 servers, even if
its timer has not expired, it pauses the block formation, records its
performance, and multicasts a s-checkpoint message to all other
nodes (lines 5-8). Since at most 𝑓 Byzantine servers might send
s-checkpoint messages maliciously, 𝑓 + 1 messages are needed.

When the leader receives s-checkpoint messages from a quorum
of 2𝑓 + 1 servers, it finds the maximum index of the last committed
block across all servers,𝑊 𝑛

𝐻
, and multicasts a s-propose message

including𝑊 𝑛
𝐻

and the received 2𝑓 + 1 s-checkpoint messages to all
servers (lines 9-11). All servers validate the received s-proposemes-
sage before two rounds of s-accept and s-commit communication,
as shown in lines 12-16 (similar to the normal path). Each server
then uses𝑊 𝑛

𝐻
as its high watermark and then resumes the block

formation thread (lines 17-18). This ensures that in a slow path, the
same number of blocks are committed in episode 𝑛 across differ-
ent servers. These operations might be expensive on the normal
path, but are negligible on the slow path, compared to the timeout
(15s in our case) and the poor performance before timeouts. The
worst case happens when a fast server has not sent a s-checkpoint
message, or its message has not been considered in the leader’s
calculation of𝑊 𝑛

𝐻
. In this case, if the index of its last committed

block is higher than𝑊 𝑛
𝐻
, the server needs to rollback those exceed-

ing blocks. Similar to the normal path, each server also needs to
exchange state and performance measurements to derive action
𝑎𝑛+1 for the next episode (lines 19-20). Upon receiving transaction
𝑡 for ordering at the leader 𝑙 , the leader tags 𝑡 with the current
episode 𝑛 as part of the sequence number (lines 21-22). When a
server receives transactions committed by consensus protocol, it
aborts transactions whose tagged episode is not equal to the current
episode (lines 23-25). This ensures episode independence, i.e., there
are no pending blocks across episodes in AdaChain. As a result,
a bad architecture that triggers the slow path will not affect the
performance of future episodes with promising architectures.

The normal path and slow path of AdaChain ensure two prop-
erties. First, transactions are strong serializable, and second, the
world state is eventually consistent across different servers.

5.3 Security Analysis
AdaChain introduces two potential vulnerabilities that existing
blockchain architectures do not have. First, malicious peers might
attack the switching protocol. As illustrated in Sections 5.1 and 5.2,
the protocol is robust to equivocation and poisoning attacks. Sec-
ond, a malicious peer can manipulate its local model to choose a

8

different architecture from what honest peers choose within the
same episode. Below, we briefly show that in this scenario, malicious
peers cannot affect the correctness of honest peers.

Assume 𝑓 = 1 and there are 3𝑓 + 1 peers in the system, where
𝑃1, 𝑃2, 𝑃3 are honest and 𝑃4 is malicious. Without loss of generality,
we assume the honest peers choose the XOV architecture. We first
discuss the cases when 𝑃4 is currently the leader in the consensus
protocol. If 𝑃4 chooses OX in the same episode, it will send out
transaction proposals instead of endorsements, so honest peers can
detect this mismatch and elect a new leader. If 𝑃4 chooses XOV
but with a batch size 𝑏4 that is different from honest peers, it does
not affect the correctness of honest peers. If 𝑃4 chooses XOV with
different batch sizes and uses different batch sizes for different peers
(e.g., 𝑏4,1 for 𝑃1, 𝑏4,2 for 𝑃2, etc.), the honest peer will detect and
reject these batches during consensus on batches and select a new
leader. If 𝑃4 chooses XOV but with an opposite reordering choice,
since reordering happens locally on each peer according to its local
model, the malicious peer cannot corrupt honest peers. In the cases
where 𝑃4 is not the leader in consensus protocol, the honest leader
can detect type mismatch for messages originating from 𝑃4 and
discard them, while other honest peers work as normal.

6 EVALUATION
Our evaluation aims to answer the following questions:

(1) Can AdaChain converge to the optimal architecture under a
static workload without prior knowledge? (Section 6.2)
(2) How well does AdaChain perform compared to existing fixed
blockchain architectures when the workload changes? (Section 6.3)
(3) How does the hardware setup (e.g., the type of CPU, network
latency and bandwidth, etc.) affect the performance of AdaChain
and existing blockchain architectures? (Section 6.4)
(4) What overhead does AdaChain introduce? (Section 6.5)

6.1 Experimental Setup
We have implemented a prototype of AdaChain in C++ and Python.
The blockchain peers which process transactions and carry out
architecture switching are implemented in C++. We use gRPC for
communications between peers and LevelDB [1] for storing the
world states. The learning agents are implemented separately in
Python due to its mature machine learning libraries. Each peer
communicates with its local learning agent through gRPC.
Testbed. Our testbed consists of 4 c6220 bare-metal machines on
CloudLab [29], each with two Xeon E5-2650v2 processors (8 cores
each, 2.6Ghz), 64GB RAM(8 x 8GB DDR-3 RDIMMs, 1.86Ghz) and
two 1TB SATA 3.5” 7.2K rpm hard drives. These machines are con-
nected by two networks, each with one interface: (1) a 1 Gbps
Ethernet control network; (2) a 10 Gbps Ethernet commodity fab-
ric. Unless otherwise specified, we use the second network for all
communication. We set the size of the execution thread pool equal
to the number of cores on each peer.
System configuration.We run a single blockchain channel that
consists of 3 peers on 3 different servers. As mentioned in Sec-
tion 3, each peer in AdaChain serves as an executor as well as an
orderer. The choice of consensus protocol in the ordering phase is
configurable inside AdaChain, and we use Raft [48] for consistency

Workload 𝑃𝑤 𝑃ℎ𝑜𝑡 𝑁ℎ𝑜𝑡 𝑁𝑡𝑟𝑎𝑛𝑠 𝑇𝑓 𝑖𝑟𝑒 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒

A 0.2 0.95 5 300 50ms 5ms
B 0.5 0.99 10 100 50ms 1ms
C 0.5 0.1 10 300 50ms 10ms
D 0.9 0.95 1 100 50ms 0ms
E 0.5 0.99 10 100 50ms 5ms

Table 3: Specific workload parameters.

with Hyperledger Fabric and its variants. We run the client on a
separate server with 3 threads, each firing transaction proposals to
one specific peer. The reported throughput only considers effective
transactions, i.e., excluding early aborted and invalidated trans-
actions. Throughout this paper, we parameterize the architecture
switching protocol as follows: normal path timeout is set to 15s, the
low watermark is set to 7500 transactions, and the high watermark
to set to 10000 transactions.
Workloads. To capture the diversity in real-world blockchain trans-
actions, we implement a benchmark driver above SmallBank [28] to
derive customized workloads with tunable parameters. The bench-
mark driver preloads the blockchain with 10k users, each with
two accounts. We set 𝑁ℎ𝑜𝑡 of them as hot accounts. When firing
transactions, the client randomly picks one of the five modifying
transactions with probability 𝑃𝑤 and the read-only transactions
with probability 1 − 𝑃𝑤 . Each transaction has a certain probability
to access the hot accounts, as controlled by the 𝑃ℎ𝑜𝑡 parameter.
The client continuously fires 𝑁𝑡𝑟𝑎𝑛𝑠 transactions every 𝑇𝑓 𝑖𝑟𝑒 mil-
liseconds. To simulate computation-heavy transactions, each trans-
action has a 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 interval after it fetches the required world
states from the key-value store and before it carries out subsequent
operations.

We use workloads A-E throughout this paper, where workloads
A-D are the same as in Figure 1. The specific parameters of work-
loads A-E are listed in Table 3. Unlike workloads A-D, the additional
workload E is introduced later in the section that explores adaptiv-
ity to different hardware settings. Although workload E has only
slight deviation from workload B, it renders blockchain architec-
tures extremely sensitive to hardware setup (details in Section 6.4).
Note that we have written our own benchmark driver because no
existing benchmark captures all these variations in workloads.

6.2 Convergence under Static Workloads
Our first set of experiments aims to demonstrate that AdaChain can
rapidly converge to the optimal architecture under a static workload
with no prior experiences required. We runAdaChain for 100 episodes
on four representative workloads (i.e., A-D). To compare AdaChain
against the a priori optimal architecture, we also perform a grid
search in the action space to find the optimal architecture for each
workload. For our four workloads, we compare AdaChain with the
four optimal static architectures.

Figure 3 plots the performance of AdaChain and four baselines
for each workload, where the baseline curves are smoothed for bet-
ter readability. The curve for AdaChain is not smoothed. Each work-
load has a different optimal architecture. For instance, XOV+reorder
is optimal for workload A, suboptimal for workloads B and C, but
the worst for workload D. Unlike a fixed architecture that cannot
adjust itself even under a static workload, AdaChain always con-
verges to the optimal architecture for each workload quickly within

9

(a) Workload A (b) Workload B (c) Workload C (d) Workload D

Figure 3: Convergence of AdaChain to the optimal architecture under static workloads. Each plot shows the performance
of AdaChain, XOV+reorder, XOV, OXII, and OX. While different blockchain architectures are optimal for each workload,
AdaChain always reaches near-optimal performance.

Workload XOV + reorder XOV OXII OX AdaChain

A 1532 1415 968 194 1425
B 897 866 1545 861 1426
C 3228 3235 940 98 3153
D 1 272 1494 1498 1447

Average 1414 1447 1237 663 1862
Worst 1 272 940 98 1425

Table 4: Effective throughput (tps) for each architecture in
the last 20 episodes of each workload. AdaChain provides
the best average and worst-case throughput across the four
workloads.

40 episodes, no matter how bad the first episode (initial architec-
ture) is. Due to Thompson sampling, AdaChain still performs some
exploration in the architecture space even after convergence, as
identified by the drops in the performance plot. Although these
explorations do not seem useful under static workloads, they are
crucial for finding optimal architectures under a changing workload
which is more realistic in today’s BaaS environment (see Section 6.3
for performance improvements with exploration).

Comparing to exhaustive grid search (not shown in Figure 3) that
takes 𝑛𝑎 (the size of action space, i.e., 100 in our case) to converge
and performs pure random exploration at all times, AdaChain con-
verges much faster and strikes a better balance between exploiting
known good actions and exploring unknown actions.
Average performance. AdaChain obviously does not outperform
the optimal action in any workload (it is the optimal action, after
all). However, we show that AdaChain does offer good average
and worst-case performance after convergence. Table 4 shows the
throughput for each blockchain on each workload in the last 20
episodes of execution. Even with a few performance drops due to
exploration, AdaChain achieves both the best average throughput
and the best worst-case throughput across all four workloads.

6.3 Adaptivity under a Changing Workload
Our next experiment focuses on the key benefits of AdaChain:when
the workload is changing, AdaChain can commit significantly more
transactions than the best baseline during the same deployment period.
To emulate a changing workload, we run workload A for the first 15
minutes, followed by workloads B, C, D, and A, each for another 15
minutes. We use the same four baselines as in Figure 3, which are
the optimal architectures for workload A-D when they are static.

Figure 4 shows the number of cumulative committed transac-
tions with respect to time. During the entire 75 minutes, AdaChain

Figure 4: Cumulative committed transactions with time for a
changing workload, showing AdaChain’s ability to maintain
superior performance during workload shifts.

successfully completed 7.73 × 106 committed transactions, while
the best baseline XOV completed 6.60×106 committed transactions.
The worst baseline OX only completed 0.87 × 106 committed trans-
actions. AdaChain can successfully commit 1.12 million (17%) more
transactions than the best baseline during 75 minutes. The trend in
Figure 4 also suggests the improvement of AdaChain would become
increasingly significant with a longer deployment time and more
variations in the workloads, which are common in today’s BaaS.

Interestingly, Figure 4 also shows a “catastrophic" effect for cer-
tain fixed architectures when the workload is changing. For in-
stance, when transitioning back to workload A again (60-75 min),
the slope of XOV+reorder is near zero, indicating poor perfor-
mance where few if any transactions are completed successfully.
However, if we start running XOV+reorder right from the begin-
ning under workload A without any changes to the workload (Fig-
ure 3(a)), XOV+reorder would be the optimal architecture. The
reason XOV+reorder performs poorly in workload D (45-60min)
is due to the high overhead of Johnson’s algorithm with a large
number of cycles, which slows down the block formation. Since the
block formation is sequential, the number of pending blocks grows
significantly. Thus, incoming transactions simulate on stale data
and would fail in the MVCC validation phase, even when transi-
tioning back to workload A again. OX suffers from similar problems
due to a large number of pending blocks. This phenomenon also
justifies our watermark-based design of AdaChain, as elaborated
in Section 5.

10

Figure 5: Effective throughput of AdaChain in each episode. Here, red vertical line indicates when the workload shifts. The
workload shifts every 15 minutes. The number of episodes per 15 minutes duration varies depending on the transactions arrival
rate and compute intensity of workload.

To further investigate how AdaChain switches its architecture
under a changing workload, we plot AdaChain’s effective through-
put in each episode during the 75 minutes in Figure 5. The red
dashed vertical line indicates when the workload shifts. Although
workloads A and B have the same duration in terms of wall clock
time (15 min), they vary in terms of the number of episodes. This
is because, depending on the transaction arrival rate and compute
intensity of different workloads, each episode (which is marked by
the high watermark) may have a different time duration.

Figure 5 shows that when workloads shifts, AdaChain is able
to quickly converge and perform competitively with the optimal
architecture. For instance, when transitioning from workload A to
B, AdaChain quickly converges to the new optimal (i.e., OXII) and
achieves a 1450 tps throughput. In contrast, while XOV+reorder
is optimal under workload A, as shown in Figure 3(b), it is able to
reach only 900 tps when processing workload B, even in the best-
case scenario where the catastrophic effect is avoided by starting
with workload B and XOV+reorder right at the beginning. When
transitioning from workload B to C, AdaChain quickly converges
to the new optimal (i.e., XOV) and achieves a 3250 tps throughput.
In comparison, OXII, which is optimal under workload B, is able to
achieve only 980 tps under workload C (Figure 3(c)).

Due to Thompson sampling, AdaChain maintains some degree
of exploration in the architecture space even after convergence, so
as to avoid getting stuck at the local optimum. As AdaChain gains
more experiences (i.e., data points) on a certain workload, the extent
of exploration decreases, which is indicated by the less frequent
drops within each 15 minutes period. Also, when AdaChain en-
counters a workload it has seen before (e.g., transition to workload
A again in the last 15 minutes), AdaChain converges much faster
than the first time and has less variation in performance.

6.4 Adaptivity under Different Hardware
Our next set of experiments demonstrates another operational bene-
fit of AdaChain: when deployed on different hardware configurations,
AdaChain can rapidly converge to the optimal architecture for that
hardware without manually re-configuring the blockchain architec-
ture. We use workload E on three different hardware setups: HW1
stands for single data center deployment, where the network con-
necting peers has low latency (0.15 ms) and high bandwidth (10
Gbps), and each peer has 16 CPU cores; HW2 also stands for single

featurization communication training inference episode

mean 0.11𝑠 ± 0.01 0.14𝑠 ± 0.04 0.21𝑠 ± 0.04 0.01𝑠 ± 0.01 3.67𝑠 ± 2.12
median 0.11s 0.14s 0.21s 0.01s 2.57s
max 0.20s 0.27s 0.32s 0.02s 16.35s

Table 5: Overhead of each stage in AdaChain.

data center deployment, but with 2 CPU cores per peer; HW3 stands
for a multi-data center deployment, with high latency (50 ms) and
low bandwidth (1 Gbps) network, and 2 CPU cores per peer. As
mentioned in Section 6.1, for HW1 and HW2, we use the commod-
ity network fabric; for HW3, we use the control network as well
as Linux netem [30] to inject delay to the NIC. For each hardware
setup, we also perform a grid search to find the optimal architecture
for that hardware: for HW1, the optimal is (OXII, blocksize = 100);
for HW2, the optimal is (XOV, blocksize = 1), for HW3 the optimal
is (OXII, blocksize = 100) again. Figure 6 plots AdaChain’s perfor-
mance in each episode on HW1-HW3, along with the averaged
performance of the optimal architecture for comparison.

As shown in Figure 6, even under the same workload, the hard-
ware setup affects the effective throughput and thus affects the
choice of the best architecture. For instance, OXII performs well
when each server has enough compute resources (HW1 best arch
in Figure 6(a)), but suffers when the servers have low compute
resources (HW1 best arch in Figure 6(b)); StreamChain can perform
well in a single data center deployment (HW2 best arch in Fig-
ure 6(b)), but suffers from the high round trip time when deployed
across multiple data centers due to the small batch size it uses in
the consensus protocol (HW2 best arch in Figure 6(c)). No matter
what type of hardware AdaChain is deployed on, AdaChain can
adapt itself to the optimal architecture for that hardware.

More importantly, for any kind of unseen hardware setup, users
of AdaChain do not need to recollect data and retrain the machine
learning model offline. AdaChain is an online system that learns
from its past experiences and balances exploitation and exploration.
With AdaChain, BaaS can have humans completely out of the loop.

6.5 Overhead of Learning
Our last experiment evaluates the additional overhead incurred
by AdaChain’s learning framework. We repeat the experiment in
Section 6.3 and profile every stage that involves the learning agent.
We report the results along with the episode duration in Table 5.

11

(a) HW1 (16 cores, RTT=0.15ms, BW=10Gbps) (b) HW2 (2 cores, RTT=0.15ms, BW=10Gbps) (c) HW3 (2 cores, RTT=50ms, BW=1Gbps)

Figure 6: Convergence of AdaChain to the optimal architecture under different hardware.

Before deriving the architecture for the next episode, AdaChain
needs to go through feature extraction, communication, training
and inference phases in sequence (Section 3). Table 5 shows that all
of these four phases have low average overhead with low variance,
as compared to the episode duration. The additional mean overhead
time (0.47s) is only 12.8% of the average episode duration (3.67s).

More importantly, the 12.8% overhead can be masked by paral-
lelizing transaction processing and learning. The learning phase
only occurs between the low and high watermark period, which
constitutes 25% duration with each episode. Considering that the
median episode duration is 2.57s, this interval time is 0.64s which
is higher than the mean overhead of 0.47s. During this interval,
the peers continue to process transactions based on the current
architecture, while in parallel, the learning agent goes through the
four stages to determine the architecture for the next episode. Such
parallel execution ensures that the overhead of AdaChain does not
adversely affect its effective throughput, as long as there are some
spare CPU cycles devoted to the learning agent.

Finally, we note that the episode duration has a high standard
deviation due to two reasons: (1) AdaChain triggers the slow path
when making poor architecture choices; (2) even in the normal path,
the wall-clock time needed to reach a high watermark depends on
the workload, e.g., the episode duration is longer under a compute-
intensive or low-load workload.

Unlike deep neural networks, which are especially expensive to
train, the random forest model used by AdaChain has moderate
training overhead. With thousands of data points in the experience
buffer, AdaChain only incurs a maximum training overhead of 0.32
seconds. Moreover, the succinct action space design also results in
a lightweight inference phase, i.e., maximum 0.02 seconds. When
AdaChain is deployed for a long run that lasts for months or years,
techniques such as periodic resampling and limiting the length of
experience buffer [46] can be utilized.

7 RELATEDWORK
In this section, we briefly survey several related research lines.
Permissioned blockchains. A permissioned blockchain system
consists of a set of known, identified, but possibly untrusted partic-
ipants. Permissioned blockchains have been analyzed in different
surveys and empirical studies [12, 19, 22, 27, 28, 53, 57, 57]. Over the
past few years, several benchmarks have been proposed to facilitate
studying the performance of blockchains. Hyperledger Caliper [6]

benchmark framework is proposed to evaluate blockchain systems
developed within the Hyperledger project. Blockbench [28], on the
other hand, is able to benchmark all permissioned blockchains. Us-
ing Blockbench, blockchain systems can be evaluated under an ex-
isting, e.g., YCSB or SmallBank, or a newly implemented benchmark.
Chainhammer [42] is another benchmark tool that can be used to
evaluate Ethereum-based blockchains under extremely high loads.
Finally, Diablo-v2 [34] presents a unified framework consisting of 5
realistic Decentralized Applications and their corresponding work-
loads. AdaChain models similar workload characteristics as Diablo
and is also able to support the combination of such workloads, e.g.,
a contentious compute-intensive workload.
Contextual multi-armed bandits. Contextual multi-armed ban-
dits [64] and Thompson sampling [58] have both been studied
extensively [32, 39, 49, 55]. Thompson sampling has also been
applied in other database context, such as parameterized query
optimization [60], query optimization [46], and cloud workload
management [47].
Learned systems. More generally, many recent works have ap-
plied machine learning concepts to systems components. These
works, falling under the umbrella of machine programming [33],
cannot be exhaustively enumerated here, but we refer the reader to
past work on indexing [41], cardinality estimation [40, 44], index
selection [26], database tuning [50], scheduling [45], garbage collec-
tion [21], and concurrency control for in-memory databases [61].

8 CONCLUSION
In this paper, we presentedAdaChain, an adaptive blockchain frame-
work that leverages reinforcement learning to dynamically switch
between different blockchain architectures based on the workload.
AdaChain is able to identify the optimal blockchain architecture
as workload changes, obtaining significantly higher throughput
compared to fixed architecture settings. AdaChain requires low
additional overhead, which can be masked by parallelizing the
transaction processing and learning phases.

As future work, we are exploring expanding the learning frame-
work to cover other aspects of blockchain architectures, e.g., choos-
ing the best performing consensus protocol. Another intriguing
future direction is to figure out whether our learning framework
can be used to uncover new effective architectures not previously
explored by human experts.

12

REFERENCES
[1] [n. d.]. https://github.com/google/leveldb
[2] [n. d.]. AWS. Amazon quantum ledger database (QLDB). https://aws.amazon.

com/qldb/.
[3] [n. d.]. Blockchain on AWS Enterprise blockchain made real.

https://aws.amazon.com/blockchain/.
[4] [n. d.]. Chain. http://chain.com.
[5] [n. d.]. Corda. https://github.com/corda/corda.
[6] [n. d.]. Hyperledger Caliper. https://www.hyperledger.org/use/caliper.
[7] [n. d.]. Hyperledger Iroha. https://github.com/hyperledger/iroha.
[8] [n. d.]. IBM Blockchain Platform. https://www.ibm.com/cloud/blockchain-

platform.
[9] [n. d.]. Oracle Blockchain. https://www.oracle.com/blockchain/.
[10] Shipra Agrawal and Navin Goyal. 2013. Further Optimal Regret Bounds for

Thompson Sampling. In The International Conference on Artificial Intelligence
and Statistics (AISTATS ’13).

[11] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Par-
Blockchain: Leveraging Transaction Parallelism in Permissioned Blockchain
Systems. In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 1337–
1347.

[12] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. Permis-
sioned Blockchains: Properties, Techniques and Applications. In SIGMOD Int.
Conf. on Management of Data. 2813–2820.

[13] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. In SIGMOD Int. Conf.
on Management of Data. ACM, 76–88.

[14] Mohammad Javad Amiri, Joris Duguépéroux, Tristan Allard, Divyakant Agrawal,
and Amr El Abbadi. 2021. SEPAR: Towards Regulating Future of Work Multi-
Platform Crowdworking Environments with Privacy Guarantees. In Proceedings
of The Web Conf. (WWW). 1891–1903.

[15] Mohammad Javad Amiri, Boon Thau Loo, Divyakant Agrawal, and Amr El Ab-
badi. 2022. Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System
with Confidentiality Guarantees. Proc. of the VLDB Endowment 15, 11 (2022),
2839–2852.

[16] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.
Hyperledger Fabric: a distributed operating system for permissioned blockchains.
In European Conf. on Computer Systems (EuroSys). ACM, 30:1–30:15.

[17] Leo Breiman. 1996. Bagging Predictors. In Machine Learning (Maching Learning
’96).

[18] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (Oct. 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[19] Christian Cachin and Marko Vukolić. 2017. Blockchain Consensus Protocols in
the Wild. In Int. Symposium on Distributed Computing (DISC). 1–16.

[20] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.
In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173–186.

[21] Lujing Cen, Ryan Marcus, Hongzi Mao, Justin Gottschlich, Mohammad Alizadeh,
and Tim Kraska. 2020. Learned Garbage Collection. In Proceedings of the 4th
ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages (MAPL @ PLDI ’20). ACM. https://doi.org/10.1145/3394450.3397469

[22] Jeeta Ann Chacko, Ruben Mayer, and Hans-Arno Jacobsen. 2021. Why Do My
Blockchain Transactions Fail? A Study of Hyperledger Fabric. In SIGMOD Int.
Conf. on Management of Data. ACM, 221–234.

[23] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of Thompson
sampling. In Advances in neural information processing systems (NIPS’11).

[24] JP Morgan Chase. 2016. Quorum white paper.
[25] Sam Daley. 2021. 18 Blockchain-as-a-Service Companies Making the DLT More

Accessible. https://builtin.com/blockchain/blockchain-as-a-service-companies.
[26] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and

Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In 38th ACM Special Interest Group in Data Management
(SIGMOD ’19).

[27] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and
Ji Wang. 2018. Untangling blockchain: A data processing view of blockchain
systems. IEEE transactions on knowledge and data engineering 30, 7 (2018), 1366–
1385.

[28] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-
Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In
SIGMOD Int. Conf. on Management of Data. ACM, 1085–1100.

[29] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.
2019. The Design and Operation of {CloudLab}. In 2019 USENIX annual technical
conference (USENIX ATC 19). 1–14.

[30] The Linux Fundation. 2021. netem. Retrieved July 4, 2022 from https://wiki.
linuxfoundation.org/networking/netem

[31] Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and TianwenWang.
2022. Hybrid blockchain database systems: design and performance. Proceedings

of the VLDB Endowment 15, 5 (2022), 1092–1104.
[32] Aditya Gopalan, Shie Mannor, and Yishay Mansour. 2014. Thompson Sampling

for Complex Online Problems.. In International Conference on Machine Learning
(ICML ’14, Vol. 14). 100–108.

[33] Justin Gottschlich, Armando Solar-Lezama, Nesime Tatbul, Michael Carbin, Mar-
tin Rinard, Regina Barzilay, Saman Amarasinghe, Joshua B. Tenenbaum, and
Tim Mattson. 2018. The three pillars of machine programming. In Proceed-
ings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages (MAPL 2018). Association for Computing Machinery,
Philadelphia, PA, USA, 69–80. https://doi.org/10.1145/3211346.3211355

[34] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. 2022. Diablo-v2: A Benchmark for Blockchain Systems. Technical Report.

[35] Gideon Greenspan. 2015. MultiChain private blockchain-White paper. URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf (2015).

[36] Hyperledger. [n. d.]. Private Data Collections: A High-Level Overview.
https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-high-
level-overview.

[37] Zsolt István, Alessandro Sorniotti, and Marko Vukolić. 2018. StreamChain: Do
Blockchains Need Blocks?. In Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers (SERIAL). ACM, 1–6.

[38] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, et al. 2012. All about Eve: Execute-Verify Replication for Multi-Core
Servers.. In Symposium on Operating systems design and implementation (OSDI),
Vol. 12. USENIX Association, 237–250.

[39] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. 2012. Thompson sampling:
An asymptotically optimal finite-time analysis. In International Conference on
Algorithmic Learning Theory (ALT ’12).

[40] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. In 9th Biennial Conference on Innovative Data Systems Research (CIDR
’19). http://arxiv.org/abs/1809.00677

[41] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York, NY, USA.
https://doi.org/10.1145/3183713.3196909

[42] Andreas Krueger. 2019. Chainhammer: Ethereum benchmarking.
https://github.com/drandreaskrueger/chainhammer.

[43] Jae Kwon. 2014. Tendermint: Consensus without mining. (2014).
[44] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte. 2015.

Cardinality Estimation Using Neural Networks. In Proceedings of the 25th Annual
International Conference on Computer Science and Software Engineering (CASCON
’15). IBM Corp., Riverton, NJ, USA, 53–59. http://dl.acm.org/citation.cfm?id=
2886444.2886453

[45] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2018. Learning Scheduling Algorithms for Data
Processing Clusters. arXiv:1810.01963 [cs, stat] (2018). http://arxiv.org/abs/1810.
01963 arXiv: 1810.01963.

[46] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In Proceedings of the 2021 International Conference on Management of Data (SIG-
MOD ’21). China. https://doi.org/10.1145/3448016.3452838 Award: ’best paper
award’.

[47] Ryan Marcus and Olga Papaemmanouil. 2017. Releasing Cloud Databases from
the Chains of Performance Prediction Models. In 8th Biennial Conference on
Innovative Data Systems Research (CIDR ’17). San Jose, CA. tex.authors= Ryan
Marcus and Olga Papaemmanouil.

[48] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm. In Annual Technical Conf. (ATC). USENIX Association,
305–319.

[49] Ian Osband and Benjamin Van Roy. 2015. Bootstrapped Thompson Sampling
and Deep Exploration. arXiv:1507.00300 [cs, stat] (July 2015). http://arxiv.org/
abs/1507.00300

[50] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.
In 8th Biennial Conference on Innovative Data Systems Research (CIDR ’17).

[51] Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen
Chu. 2021. P2B-Trace: Privacy-Preserving Blockchain-based Contact Tracing to
Combat Pandemics. In SIGMOD Int. Conf. on Management of Data. 2389–2393.

[52] Zhe Peng, Jianliang Xu, Xiaowen Chu, Shang Gao, Yuan Yao, Rong Gu, and
Yuzhe Tang. 2021. Vfchain: Enabling verifiable and auditable federated learning
via blockchain systems. IEEE Transactions on Network Science and Engineering
(2021).

[53] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang
Chen, Qian Lin, and Beng Chin Ooi. 2021. Blockchains vs. Distributed Databases:
Dichotomy and Fusion. In SIGMOD Int. Conf. on Management of Data. 1504–1517.

13

https://github.com/google/leveldb
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3394450.3397469
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://doi.org/10.1145/3211346.3211355
http://arxiv.org/abs/1809.00677
https://doi.org/10.1145/3183713.3196909
http://dl.acm.org/citation.cfm?id=2886444.2886453
http://dl.acm.org/citation.cfm?id=2886444.2886453
http://arxiv.org/abs/1810.01963
http://arxiv.org/abs/1810.01963
https://doi.org/10.1145/3448016.3452838
http://arxiv.org/abs/1507.00300
http://arxiv.org/abs/1507.00300

[54] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate
Blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 543–557.

[55] Daniel Russo and Benjamin Van Roy. 2014. An information-theoretic analysis of
Thompson sampling. Journal of Machine Learning Research (2014).

[56] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case of
hyperledger fabric. In SIGMOD Int. Conf. on Management of Data. ACM, 105–122.

[57] Man-Kit Sit, Manuel Bravo, and Zsolt István. 2021. An experimental frame-
work for improving the performance of BFT consensus for future permissioned
blockchains. In Proceedings of the 15th ACM Int. Conf. on Distributed and Event-
based Systems. 55–65.

[58] William R. Thompson. 1933. On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples. Biometrika (1933).

[59] Feng Tian. 2017. A supply chain traceability system for food safety based on
HACCP, blockchain & Internet of things. In Int. Conf. on service systems and

service management (ICSSSM). IEEE, 1–6.
[60] Kapil Vaidya, Anshuman Dutt, Vivek Narasayya, and Surajit Chaudhuri. 2022.

Leveraging query logs and machine learning for parametric query optimization.
Proceedings of the VLDB Endowment 15, 3 (Feb. 2022), 401–413. https://doi.org/
10.14778/3494124.3494126

[61] Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions
via Learned Concurrency Control.. In OSDI. 198–216.

[62] Chenyuan Wu, Mohammad Javad Amiri, Jared Asch, Heena Nagda, Qizhen
Zhang, and Boon Thau Loo. 2022. FlexChain: An Elastic Disaggregated
Blockchain. Proc. of the VLDB Endowment 16, 01 (2022), 23–36.

[63] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and
Wenyuan Yan. 2020. LedgerDB: a centralized ledger database for universal audit
and verification. Proceedings of the VLDB Endowment 13, 12 (2020), 3138–3151.

[64] Li Zhou. 2016. A Survey on Contextual Multi-armed Bandits. arXiv:1508.03326
[cs] (Feb. 2016). http://arxiv.org/abs/1508.03326

14

https://doi.org/10.14778/3494124.3494126
https://doi.org/10.14778/3494124.3494126
http://arxiv.org/abs/1508.03326

	Abstract
	1 Introduction
	2 Architecture Landscape
	2.1 Blockchain Architectures and Workloads
	2.2 The Case for Adaptivity & Learning

	3 AdaChain Overview
	4 Learning Algorithms
	4.1 Predictive Model
	4.2 State Space
	4.3 Action Space

	5 Switching Architectures
	5.1 Normal Path
	5.2 Slow Path
	5.3 Security Analysis

	6 Evaluation
	6.1 Experimental Setup
	6.2 Convergence under Static Workloads
	6.3 Adaptivity under a Changing Workload
	6.4 Adaptivity under Different Hardware
	6.5 Overhead of Learning

	7 Related Work
	8 Conclusion
	References

