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Abstract
Business processes (workflows) are typically the compositions

of services (activities and tasks) and play a key role in every enter-
prise. Business processes need to be changed to react quickly and
adequately to internal and external events. Moreover, each business
process is required to satisfy certain desirable properties such as
soundness, consistency, or some user-defined linear temporal logic
(LTL) constraints. This paper focuses on the verification of evolving
processes: given a business process, a change operation, and a set
of LTL constraints, check whether all execution sequences of the
evolved process satisfy all the given constraints. We propose a tech-
nique to incrementally check and verify the constraints of evolving
business processes. Furthermore, we develop VIEW, a framework to
model, change, and VerIfy Evolving Workflows and conduct a study
to evaluate the effect of workflow characteristics on the performance
of verification approaches. Experiments reveal several interesting
factors concerning performance and scalability.
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1 Introduction
A business process consists of a set of activities performed in

coordination in an organizational environment to accomplish a busi-
ness goal. Business process management (BPM) includes concepts,
methods, and techniques to support the design, administration, con-
figuration, enactment, and analysis of business processes [32]. An
important problem in BPM is to determine whether a process model
exhibits certain desirable behaviors, known as process verification
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[9]. Although the problem has been extensively studied, introducing
new modeling languages and rapidly changing environment still
make verification a challenging problem. On one hand, while ear-
liest verification approaches have mainly focused on control flow
correctness, new paradigms such as artifact-centric and decision-
aware process modeling deal with data aspect of business processes.
On the other hand, business processes need to be changed to react
quickly and adequately to internal and external events and adapt the
business processes with current and upcoming requirements [7, 30].
Since every change in a business process could affect the correctness,
the verification needs to be performed after each change. However,
known algorithms especially in the presence of data and objects are
highly intractable and thus not practical [19]. A goal is to help BPM
applications by (1) developing effective techniques and algorithms
to verify evolving processes, and (2) conducting a performance study
on verification algorithms based on the characteristics of business
processes. This paper provides the first step to realize this goal.

This paper focuses on processes with stateful objects and studies
linear temporal logic (LTL) constraints on these processes. Note that
while data is not modeled, “finite domain” data can be captured using
object states. We study five different classes of LTL constraints which
are known as DecSerFlow constraints [28]: cardinality, existence,
ordering, alternating, and chain where the first class considers the
number of occurrences of one activity within all execution of a
process and the four other classes take binary constraints between
two activities into account. In this paper, we study the following
verification problem: do all possible executions of a process satisfy
the aforementioned LTL constraints?

A straightforward approach to LTL constraint checking is to
construct automata representing individual constraints and determine
if their cross product accepts all the execution sequences of the
process schema. This approach has one major problem; as soon
as the process schema changes, all the execution sequences of the
updated schema need to be checked again. Another possibility is
to perform checking incrementally: When a process P is changed
into P ′, constraints of P ′ is checked based on the auxiliary stored
data concerning constraints checking of P and the specific change
of P . In that way, we only check part of the process schema that is
affected by the change.

To support incremental checking, additional information about
processes and object state transitions is stored in “auxiliary data
stores”, which are associated with nodes in a tree representation of
the process in question. At design time, we consider well-structured
processes and a set of LTL constraints as the input to the framework.
Then a process tree is created from the process model and depending
on the given constraints, auxiliary data stores are constructed for
the nodes of the tree. Auxiliary data stores can be constructed for
nodes of the tree in the bottom-up fashion from the leaf nodes. We
first construct auxiliary data for activity nodes and then construct the
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auxiliary data store for each internal node using that of its child(ren)
depending on the type of the internal node. Finally, the verification
can be done by checking the auxiliary data of the root node.

At evolution time, one of the process change operations including
updating an activity, expanding an activity to a sequential, condi-
tional, parallel, or loop block, and shrinking a sequential, condi-
tional, parallel, or loop block into an activity is considered as the
input. When a process is modified, the leaf level (activity) nodes and
their auxiliary data are modified, and the changes are propagated
incrementally along the path to the root node. Finally, the constraints
can be checked using only the auxiliary data of the root node. Note
that, while only the basic change operations are considered, any
advanced change operation, e.g., swap two fragments, can easily be
presented with a sequence of these basic change operations.

A key contribution of this paper is to show that it is possible
to employ incremental methods for object-aware process verifica-
tion. Technically, this paper makes the following contributions: (1)
Techniques of incremental maintenance of auxiliary data store are
developed, (2) VIEW, a framework to model, evolve, and (incremen-
tally) verify business processes is developed, and (3) Performance
of different verification algorithms, i.e., Spin-based, bottom-up con-
struction, and incremental, for different processes is studied.

The rest of the paper is organized as follows. Section 2 defines the
formal process model, DecSerFlow constraints, and schema change
operations. Section 3 introduces process trees, formulates auxiliary
data stores, and proposes our bottom-up approach to construct the
auxiliary data stores. Section 4 presents our incremental approach
to construct the auxiliary data stores and the verification step, and
Section 5 performs a study on the performance of verification ap-
proaches. Section 6 discusses related work, and Section 7 concludes
the paper.

2 Business Processes: Model, Constraints, and
Evolution

In this section, we first present a model for business processes.
Then a set of process schema change operations is provided to evolve
processes. Next, different classes of DecSerFlow constraints are
introduced, and finally, a SPIN-based algorithm to verify business
processes is presented.

2.1 A Model for Business Processes
We assume the existence of a countably infinite set I of (object)

identifiers (or IDs). Let S be a finite set of states, and subsets SI, SF ⊆ S
the sets of initial and final states respectively. An object is a pair
(o,q) where o ∈ I is a (unique) ID and q ∈ S is a state.

We first introduce elements “activity” and “gateway” in business
processes. An activity represents a unit of work. In our model an
activity has a name (label) and works on a set of objects where
the activity might change the states of its objects and possibly data
contents (the data is not modeled in this paper). More formally, an
activity is a triple (α ,O,τ ) where α is a unique activity name, O is a
set of object IDs, and τ ⊆ S |O | × S |O | is a set of transitions with |O |
incoming and |O | outgoing states. We denote an activity (α ,O,τ )
simply by α , and denote the set of all activities by A . Note that a
silent activity, i.e., an activity that does nothing, can be presented
with the empty sets of objects and transitions. Activities here can
also model decision nodes in decision-aware process modeling [4].

(a) A conditional Process schema P (b) process Tree T (P )

Figure 1: A Process Schema and its Tree

A gateway controls the divergence and convergence of sequence
(execution) flows. There are four kinds of gateways: (exclusive)
choice and merge, and (parallel) split and join. A choice gateway
simulates an if-else statement: exactly one of the outgoing flows will
be chosen. An object and a set of states is associated with a choice
gateway where the decision is based on the current state of the object
in this set. In our formalism, we denote a choice gateway as a pair
(o, χ ) where o is an (object) ID, and χ ⊆ S is a set of states. A merge
gateway continues an incoming flow, a split gateway forwards a flow
to every outgoing edge, and finally, a join gateway synchronizes
flows from all incoming edges and combines them into one outgoing
edge. We use symbols M, S, and J to denote merge, split, and join
gateways, respectively.

We restrict process schemas to be well-structured, i.e., can be
composed from sequential, conditional, parallel, and loop blocks
through a finite number of times [21, 29].

Informally, a well-structured process schema is either an activity
or a composite block. A composite block consists of two sequential,
two conditional, two parallel, or a loop sub-block where each of
them is again either an activity or a composite block.

DEFINITION 2.1. A (process) schema is a labeled graph (N , s, f ,
L,E,O) with a set N of nodes, a set E of edges, a single source s, a
single sink f , and a set of object IDs O whose nodes (N ) are labeled
by the function L with either a gateway or an activity, recursively
defined as follows:

(1) If α is an activity name in A with a set of object IDs O and a set
of transitions τ , ({s, f ,u}, s, f , {u 7→α }, {(s,u), (u, f )},O) is an
atomic schema, where s, f ,u are nodes with start s and end f .

Assume now Pi = (Ni , si , fi ,Li ,Ei ,Oi ) (for i = 1, 2) is a process
schema such that (si ,ui ), (vi , fi ) are edges in Ei , and N1 ∩N2 = ∅.

(2) A sequence schema of P1 and P2, denoted as P1◦P2 is (N1 ∪
N2 − { f1, s2}, s1, f2,L1 ∪L2,E1 ∪E2 ∪ {(v1,u2)} − {(v1, f1), (s2,
u2)},O1 ∪O2) (note that a new edge (v1,u2) shows that P2 be-
gins after P1 ends),

(3) a conditional schema of P1 and P2, denoted as P1∪P2 is (N1∪N2,
s1, f1,L1∪L2∪{s2 7→(o, χ ), f2 7→M},E1∪E2∪{(s1, s2), (s2,u1), (v1,
f2), (f2, f1)} − {(s1,u1), (v1, f1)},O1 ∪O2 ∪ {o}) where (o, χ ) is
a choice gateway such that if the state of o is in χ at gateway s2,
the execution proceeds to u1,

(4) If P1, P2 share no objects (O1 ∩O2 = ∅), a parallel schema of
P1 and P2, denoted as P1 | |P2 is (N1∪N2, s1, f1,L1 ∪L2∪{s2 7→S,
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Figure 2: Process schema change operations

f2 7→J},E1∪E2∪{(s1, s2), (s2,u1), (v1, f2), (f2, f1)} − {(s1,u1), (v1
, f1)},O1 ∪O2),

(5) a loop schema of P1 denoted as P∗ is (N1∪{s, f }, s, f ,L∪{s1 7→(o, χ ),
f1 7→M},E1∪{(s, f1), (s1, f ), (f1, s1)},O1 ∪ {o}), where (o, χ ) is a
choice gateway such that if the state of o is in χ at gateway node
s1 the execution proceeds to u1 (enters to the loop).

EXAMPLE 2.2. Fig. 1a shows a conditional process schema. Let
{o} be the singleton set of objects and S = {a,b, c} (SI = {a}, SF = {c})
be the set of states. s and f are the start and final nodes, 1 to 4 are
activity nodes which are labeled by αi (1 ⩽ i ⩽ 4), e.g., L(1) =
(α1, {o}, {(b,a), (b,b).(b, c)}. Nodes 5 and 8 are two choice gateways
where L(5) = (o, {b}), and L(8) = (o, {a,b}). Finally, 6 and 7 are
merge gateways (L(6) = L(7) = M). □

2.2 Business Process Change Operations
We now proceed to introduce 9 operations to update a process

schema. The RevActivity operation replaces an activity associated
with a node by another activity. The other 8 operations are divided
into two groups to expand (replacing an activity node by a sequence/-
conditional/parallel/loop block) and shrink schemas (replacing a
sequence/conditional/parallel/loop block by an activity node).

Fig. 2 shows different update operations. RevActivity simply mod-
ifies the label of node u to an activity α (set of objects and transitions
may change), The expand operation RepBySeq replaces an activity
node u with a sequence of two activity nodes u1,u2 that are labeled
by α1 and α2 resp. RepByCond replaces an activity node u with a
conditional schema containing two activities α1 and α2, a choice
gateway v, and a merge gateway w . The remaining two operations
RepByPar and RepByLoop are similar. The four shrink operations
reverse the expand operations in a straightforward manner.
2.3 DecSerFlow Constraints

We now present DecSerFlow constraints [28]. DecSerFlow con-
straints can be categorized into five classes: cardinality, existence,
ordering, alternating, and chain.

Cardinality constraints define the required number of executions
of an activity node (name) in a process in terms of a lower bound
Lb(α) that specifies the minimum number of occurrences of activity
α in each execution of the process, and/or an upper bound Ub(α)
that defines the maximum number of occurrences of activity α . The
combination of Lb(α) and Ub(α) can either specify the exact number
Fix(α) of occurrences of activity α , or a range Rng(α) of occurrences
of activity α in each execution.

The existence class has no restrictions on temporal orders and
consists of two constraints. Responded existence Ex(α , β) specifies
if α is executed, then β must be executed (before or after α), and
coexistence coEx(α , β) says either both α and β are executed, or
none of them is executed.

Each of the final three classes of DecSerFlow constraints can
be further divided into three directions: “response” (Res) which
specifies that an activity should happen in the future, “precedence”
(Pre) which specifies that an activity should have happened in the
past, and “succession” (Suc) which combines both response and
precedence. Ordering constraints consider the order of activities.
Res(α , β) (Pre(α , β)) specifies that each occurrence of α is followed
(preceded) by an occurrence of β and Suc(α , β) requires both to
be satisfied. Alternating constraints strengthen the ordering con-
straints, e.g., aRes(α , β) specifies that in addition to Res(α , β), α and
β have to alternate. Chain constraints, i.e., cRes(α , β), cPre(α , β),
and cSuc(α , β), are even stricter, which require that the executions
of the two activities (α and β) are consecutive.

2.4 SPIN-based Verification
We now introduce a SPIN-based verification algorithm to verify

DecSerFlow constraints in a given process schema. Spin [18] is the
main model checker used in the verification community and supports
the verification of LTL properties of models specified in Promela,
a C-like modeling language. Here we develop a translation from
business process model to Promela. The main elements are objects,
activity nodes, and gateways. we define each object as a byte vari-
able and define a typedef variable that contains all objects. Fig. 3
shows the Promela code for a part of the schema in Fig. 1a. As can be
seen, objects is a typedef that consists an object o and states

is an instance of objects which is used by nodes. For each node
in process schema a Promela process (proctype) is defined. Start
node s() only runs the next node n5(). We use if statements in
choice gateways to chose the next Promela process to run. In choice
node n5(), if the state of object o is b, proctype n1() will be ex-
ecuted, otherwise n3() runs. if statements are also used to code state
transitions within an activity, e.g., state of object o can be changed
from b to a, b to b, or b to c in proctype n1().

typedef objects {
byte o;

}
objects states;

proctype s(){ //start node s
run n5();

}
proctype n5(){ //choice gateway 5

if
:: (states.o==2) -> run n1();
:: else -> run n3();
fi;

}
proctype n1(){ //activity node 1

if
::(states.o==2)->(states.o=1);
::(states.o==2)->(states.o=1);
::(states.o==2)->(states.o=1);
fi;
run n2();

}
...

Figure 3: A Promela Code for Process Schema in Fig. 1a

Since decSerFlow constraints are a form of LTL formulas and SPIN
can verify LTL, we can easily translate and check the constraints.

3 Process Trees and Auxiliary Data
In this section, we first define the notion of process trees and then for-
mulate auxiliary data that are stored for process tree nodes and used
to incrementally check constraints. Finally, a bottom-up algorithm
to construct auxiliary data is presented.
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3.1 Process Tree
The recursive nature of the definition of a process schema naturally
leads to a tree: The root of each (sub)tree corresponds to a schema
with children (child) correspond(s) to schema(s) used in constructing
the schema.

DEFINITION 3.1. Given a process schema P = (N , s, f ,L,E,O), pro-
cess tree T (P) of P is a tuple (V ,V L,V R,Lp ) with a node set V , two
partial functions V L,V R:V→V to specify left and right child nodes
(resp.), and a node labeling function Lp assigning each node an activ-
ity α in A, a choice gateway (o, χ ), split (parallel) gateway symbol
S, or Q (sequential composition), recursively defined as follows:
(1) If P is an atomic schema consisting of an activity node u labeled

by activity α , T (p) = (u, ∅, ∅,u 7→ α),
Assume Pi = (Ni , si , fi ,Li ,Ei ,Oi ) (for i = 1, 2) is a process schema
where N1 ∩ N2 = ∅, let T (Pi ) = (Vi ,V L

i ,V
R
i ,Lpi ) be the corre-

sponding process tree of Pi rooted at node ui ∈Vi , V1 ∩V2 = ∅, and
v < (V1∪V2) is a new node,
(2) If P = P1◦P2 is a sequential composition of schemas P1 and P2,

then T (P) consists of two subtrees T (P1) and T (P2) with a new
sequence node v as the root where u1 and u2 are v’s left and
right child nodes, we call v a sequence node,

(3) If P = P1∪P2 is a conditional composition of P1 and P2 with a
choice gateway node v then T (P) consists of two subtrees T (P1)
and T (P2) with node v as the root where u1 and u2 are v’s left
and right child nodes, we call v a conditional node,

(4) If P = P1 | |P2 is a parallel composition of P1 and P2 with a split
gateway node v then T (P) consists of two subtrees T (P1) and
T (P2) with node v as the root where u1 and u2 are v’s left and
right child nodes, we call v a parallel node, and

(5) If P = P∗1 is a loop composition of P1 with a choice gateway
node v, then T (P) consists of a subtree T (P1) with node v as the
root where u1 is v’s left child node, we call v a loop node.

EXAMPLE 3.2. Fig. 1b shows a process tree corresponding to the
schema in Fig. 1a where 1, 2, 3, and 4 are activity nodes, 5 is a
conditional node, 8 is a loop node, and 9 and 10 are the sequence
nodes. □

3.2 Auxiliary Data Stores
The aim of the incremental verification approach is to verify an
evolved process without checking all the nodes. To achieve this goal,
we need to store some data for each node within a process tree and
use it during the verification step. Auxiliary data stores keep track
of the execution paths of the corresponding schema. To begin with,
let P = (N , s, f ,L,E,O) be a process schema where o1, o2, ..., on
is an enumeration of objects in O , and ō = o1o2...on . We define S̄
as an n-ary relation consisting of all possible state combinations of
objects oi ’s. We also define an extended transition relation τ̄ for each
activity (α ,O ′,τ ) in the schema P as the product of transitions in τ
and the states of objects that are not in O ′ (but arranged in the same
order as the enumeration).

EXAMPLE 3.3. Consider a schema P with a set of objects O =
{o1,o2} and a set of states S={s1, s2}. Relation S̄ = {(s1, s1), (s1, s2),
(s2, s1), (s2, s2)} (all possible state combinations of two objects), and
if we have an activity (α , {o1},τ ) where τ = {(s1), (s2)} then τ̄ =
{((s1, s1), (s2, s1)), ((s1, s2), (s2, s2))}. □

Recall that each node in a process tree is corresponding to a sub-
schema (block) in its process schema, e.g., node 9 in Fig. 1b is
corresponding to the sequence subschema of Fig. 1a consisting of
nodes 1 and 2. To construct the auxiliary data for each node of a
tree, one idea is to store: (1) all possible execution paths within
the corresponding sub-schema and (2) information on whether each
execution path satisfies a given constraint or not. Although the idea
works, it suffers from two main issues. First, storing all the state
transitions within each execution path consumes significant storage,
and second, updating the execution paths after each change is costly.
A more efficient way is to store only the first and the last state
relations of each execution path instead of all the state transitions.
Since we might have several execution paths with the same first and
last state relations, a counter is used to store the number of each
path. Note that without the counter, if a path is removed at evolving
time, we cannot decide to either keep or remove that path from the
auxiliary store, because there might be other paths with the same
first and last states which still exist in the schema.
To define auxiliary data store, we first define a notion of “snapshot”
for processes. A snapshot of P is a pair Σ = (D, I ) where D : O 7→ S
assigns each object in P a state, and I is a set of edges in P .

DEFINITION 3.4. Let P = (N , s, f ,L,E,O) be a process schema
where u has an incoming edge from s and v has an outgoing edge to
f , and r be the root node of the corresponding tree. An auxiliary data
store of node r is a relation Dr that consists of a set of tuples (x̄ , ȳ,C)
where x̄ , ȳ ∈ S̄ are two state relations, and C counts execution paths
within the schema P from a snapshot (D1, {(s,u)}) to (Dn , {(v, f )})
such that for each i ∈ [1 : n], D1(oi ) = xi and Dn (oi ) = yi .

Element C is defined based on the class of constraint we want to
check. In the following, we briefly explain C for different classes of
constraints.
For the cardinality constraints, e.g., Lb(α), C is a bag of natural
numbers where each c in C shows the number of α’s in a distinct
path.
In the existence constraints, e.g., Ex(α , β), C is an array of size 4
where C[0], C[1], C[2] and C[3] are the number of distinct paths
consisting α but not β , β but not α , both α and β , and neither α nor
β respectively. We keep information about paths that satisfy a part of
the constraint, e.g., paths consisting α but not β , because these paths
might compose with other paths and construct satisfiable paths.
In the ordering constraints, e.g., Res(α , β), C is an array of size 6
where in C[0] paths there is an α without a following β , and each β
is preceded by an α , in C[1] paths there is a β without a preceding
α , and each α is followed by a β , in C[2] paths there is an α without
a following β , and there is a β without a preceding α , in C[3] paths
each α is followed by a β , and each β is preceded by an α ,C[4] paths
have neither α nor β , andC[5] counts the paths that never satisfy the
constraint.
In the alternating constraints, e.g., aRes(α , β), also C is an array of
size 6 which is defined similar to ordering constraints, except that
the following and preceding α and β are distinct. Here, C[5] also
counts paths where there are two subsequent α’s without any β in
between or there are two subsequent β’s without any α in between
(paths that never satisfy the constraint).
Element C for the chain constraints is an array of size 7 where C[0]
to C[5] are defined similar to ones in the alternating constraints,
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Figure 4: Execution Paths within Schema of Fig. 1a

except that the following and preceding α and β are immediate and
C[6] counts paths with no activity nodes. Note that in other classes
of constraints we ignore activity nodes other than α or β , but in the
chain constraints since the immediate occurrences of activities is
important, e.g., αβ is different from αγ β , we distinguish between
paths with activity nodes other than α or β (C[4]) and paths without
any activity nodes (C[6]).

EXAMPLE 3.5. Fig. 4 shows all the execution paths of process
schema P in Fig. 1a. Since the process has only one object, we
represent each snapshot using a tuple ([s], {u,v}) where s is the
state of object o in that snapshot and {u,v} is an edge. As can be
seen, the process has totally six complete executions where two of
them are from ([b], {s, 5}) to ([c], {6, f }) and four of them are from
([a], {s, 5}) to ([c], {6, f }). Here since the process has two initial
states, there are two initial snapshots. Note that there is also an-
other path starting from ([b], {s, 5}) which is stuck in activity node
2 (since node 2 has no transition with incoming state a) and not
counted as a complete execution (the algorithm ignores such paths
because they are not successful executions). We now show the aux-
iliary stores of the root node 5 for two classes of constraints. If the
constraint is a cardinality constraint "Ub(α4) = 1", (activity α4 is
executed at most once) then D5 = {(a, c, {0, 1, 1, 2}), (b, c, {0, 0})}.
Tuple (b, c, {0, 0}) is in D5, because there are two execution paths
from ([b], {s, 5}) to ([c], {6, f }) where neither of them go through
activity α4. On the other hand, there are four execution paths from
([a], {s, 5}) to ([c], {6, f }) where one of them does not visit ac-
tivity α4, two of them visit activity α4 once, and one path vis-
its activity α4 twice, so (a, c, {0, 1, 1, 2}) is in D5. Note that since
there is an execution path that goes through activity α4 twice,
the constraint Ub(α4) is not verified. For the existence constraint
Ex(α3,α4), relation D5 is {(a, c, [1, 0, 3, 0]), (b, c, [0, 0, 0, 2])}. Here
tuple (b, c, [0, 0, 0, 2]) shows that there are two execution paths from
([b], {s, 5}) to ([c], {6, f }) consisting neither activity α3 nor α4,
and tuple (a, c, [1, 0, 3, 0]) represents that there are four paths from
([a], {s, 5}) to ([c], {6, f }): one path contains activity α3 but not α4,
and three paths contain both activities α3 and α4. Similarly, D5 can
be constructed for other types of constraints. □

3.3 Bottom-up Construction of Auxiliary Data
Auxiliary data stores can be constructed for the nodes of a tree in the
bottom-up fashion. We first construct the auxiliary data for the leaf
(activity) nodes and then construct an auxiliary data store for each
internal node using that of its child(ren). Here we assume the process
schemas have the liveness property, i.e., executions never enter an
infinite loop. Before we explain the algorithm, we discuss schemas

Algorithm 1 Bottom-up Construction of Auxiliary Data
Input: Process Schema P , Process Tree T (P), Constraint class φ

Output: Process Tree T (P) with auxiliary data stores
1: Let Q be an empty queue
2: Add all activity nodes within process P to Q
3: while Q is not empty do
4: u = Q .deque()
5: if u is an activity node where L(u) = (α ,O,τ ) then
6: for all (x̄ , ȳ) ∈ τ̄ do
7: Add (x̄ , ȳ,C) to Du
8: end for
9: else if u is a sequence node with child nodes v1 and v2 then

10: Du (x̄ , ȳ, fQ (C1,C2,φ)) ← Dv1 (x̄ , z̄,C1),Dv2 (z̄, ȳ,C2)
11: else if u is a conditional node with child nodes v1 and v2

where L(u) = (xi , χ ) then
12: Du (x̄ , ȳ,C) ← Dv1 (x̄ , ȳ,C), χ1(xi )
13: Du (x̄ , ȳ,C) ← Dv2 (x̄ , ȳ,C), χ2(xi )
14: else if u is a parallel node with child nodes v1 and v2 then
15: Du (x̄ , ȳ, fP (C1,C2,φ)) ← Dv1 (x̄ , z̄,C1),Dv2 (z̄, ȳ,C2)
16: else if u is a loop with a child v1 where L(u) = (xi , χ ) then
17: Tu (x̄ , ȳ,C) ← Dv1 (x̄ , ȳ,C), χ1(xi )
18: Tu (x̄ , ȳ, fQ (C1,C2,φ))←Tu (x̄ , z̄,C1),Dv1 (z̄, ȳ,C2), χ1(xi )
19: Tu (x̄ , x̄ ,C0(φ)) ← (x̄ , x̄), χ2(xi )
20: Du (x̄ , ȳ,C) ← Tu (x̄ , ȳ,C), χ2(yi )
21: end if
22: Q .enque(u .parent)
23: end while

containing parallel compositions. Note that parallel sub-schemas
have no common objects, so the order of the execution of different
nodes in different branches does not affect the states of objects in
the corresponding join node. Considering this fact, since for the
cardinality and existence constraints the order of activities is not
important, we could conveniently replace the parallel composition
by a sequential one of the same sub-schemas. In the last three classes
of constraints, we still can replace a parallel composition by a se-
quential one, but the computation of element C is different from the
sequence node. In the case of ordering constraints on activity nodes
α and β , if one branch has α and the other one has β , since they
could be executed in any order (α→β or β→α), the ordering con-
straint cannot be satisfied for all execution paths. In the alternating
constraints, a parallel schema might satisfy a constraint, only if one
branch has no α nor β , and in the chain constraints if there is any α
or β in either branch, the constraint will never be satisfied since the
activity nodes of the other branch can be executed immediately after
the α or β node. As a result, in the algorithm, we treat the parallel
composition as a sequence one, but the computation ofC is different
for sequence and parallel nodes.
Algorithm 1 shows the bottom-up construction of the auxiliary data
stores. We first add all the activity nodes to queue Q . Then, we
choose a node from Q , let us call it u, since we have not added
any other types of nodes to the queue yet, u is an activity node.
For each transition (x̄ , ȳ) of u, we add a tuple (x̄ , ȳ,C) to Du (lines
6-7) where C is constructed depending on the class of constraint
φ. When the auxiliary data is constructed, we add the parent node
of u to queue Q (line 22). If the chosen node u is a sequence node
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Figure 5: Tree of Fig. 1b Augmented with Auxiliary Data

(line 9), we join tuples in Dv1 (x̄ , z̄,C1) and Dv2 (z̄, ȳ,C2) relations
to construct Du (x̄ , ȳ, fQ (C1,C2,φ)). Here, function fQ is used to
construct C using the auxiliary data of child nodes and the class
of constraint φ. For a conditional node, we just collect tuples in
Dv1 whose input states are in χ (satisfy the condition) and tuples in
Dv2 whose input states are not in χ (lines 12-13). Unary relations
χ1(xi ) and χ2(xi ) consist of sets of states χ and S − χ respectively.
The auxiliary data of the parallel nodes is computed similar to the
sequence nodes, except that we use a different function fP (C1,C2,φ)
to compute C. If the node u is a loop node with a child node v1, we
first collect tuples in Dv1 whose input states are in χ in a temporally
relationTu (line 17). These paths can enter to the loop schema. Then
in the second rule (line 18) we recursively construct the transitive
closure of Tu to find the set of all possible distinct paths through
the loop. The third rule (line 19) captures all the possible execution
paths that did not enter the loop schema (xi < χ ). Here C0(φ) refers
to the element C with only one path where the path does not visit
any nodes, i.e., for the cardinality constraints C0(φ) = {0}, for
the existence constraints C0(φ) = [0, 0, 0, 1], for the ordering and
alternating constraints C0(φ) = [0, 0, 0, 0, 1, 0], and for the chain
constraints C0(φ) = [0, 0, 0, 0, 0, 0, 1]. Finally, in line 20 we select
the paths ofTu that can go out of the loop (yi < χ ) and put them into
Du . For simplicity, we use Datalog syntax to explain the rules.

EXAMPLE 3.6. Fig. 5a shows the process tree of Fig. 1b augmented
with auxiliary data for two different classes of constraints. Recall that
each record in an auxiliary data store is a tuple (x̄ , ȳ,C)where x̄ and ȳ
are states (here, a, b, or c) andC counts the execution paths. In Fig. 5a
the auxiliary data stores for the cardinality constraint regarding of
activity α4 (for example Ub(α4) = 1) are shown. For the activity
nodes, i.e., nodes 1, 2, 3, and 4, the auxiliary data stores contain
the transitions and count either {0} (for all activity nodes except
4) or {1} (for node 4). To compute C for sequence node 9 we use
function fQ where for the cardinality constraints, fQ (C1,C2,φ) =
{m + n |m ∈ C1,n ∈ C2} which basically adds the counts of two
child nodes. Here D9 = (b, c, {0, 0}) where (b, c) is the join of the
transitions of nodes 1 and 2. Since (b, c) is resulted by two different
paths and neither of them go through node 4, element C for D9 is
{0, 0}. For the loop node 8, we have four execution paths: one from
b to c which is created by the first rule (line 17 of the algorithm), two
transitions from a to c: one comes from the child node 4, and one is
the composition of (a,b) and (b, c), and one transition (c, c) which
is created by the third rule. Sequence node 10 joins the transitions
of nodes 3 and 8 resulting in four transitions from a to c. Element

Algorithm 2 Incremental Propagation of Auxiliary Data
Input: Process Tree T (P), Auxiliary data store Dv for each node v
in T (P), Updated node u with auxiliary data store D ′u , Relations D+u

and D−u , and Constraint class φ
Output: Process Tree T (P) with updated auxiliary data stores

1: Let Q be an empty queue
2: Add all activity nodes within process P to Q
3: curr = u
4: while curr .parent , null do
5: curr = curr .parent
6: Let v1 (and v2) be the child node(s) of curr where v1 is the

updated node
7: if curr is a sequence node then
8: D+curr (x̄ , ȳ, fQ (C1,C2,φ))←D+v1 (x̄ , z̄,C1),Dv2 (z̄, ȳ,C2)
9: else if curr is a conditional node and L(curr ) = (xi , χ ) then

10: D+curr (x̄ , ȳ,C) ← D+v1 (x̄ , ȳ,C), χ1(xi )
11: else if curr is a parallel node then
12: D+curr (x̄ , ȳ, fP (C1,C2,φ))←D+v1 (x̄ , z̄,C1),Dv2 (z̄, ȳ,C2)
13: else if curr is a loop node where L(curr ) = (xi , χ ) then
14: T+curr (x̄ , ȳ,C)←D+v1 (x̄ , ȳ,C), χ1(xi )
15: T+curr (x̄ , ȳ, fQ (C1,C2,φ)) ← T+curr (x̄ , z̄,C1),D ′v1 (z̄, ȳ,

C2), χ1(zi )
16: T+curr (x̄ , ȳ, fQ (C1,C2,φ)) ← D∗v1 (x̄ , z̄,C1),T+curr (z̄, ȳ,

C2), χ1(xi ) (where D∗ = D ′ − D+)
17: D+curr (x̄ , ȳ,C) ← T+curr (x̄ , ȳ,C), χ2(yi )
18: end if
19: end while

C = {0, 1, 1, 2} shows the number of occurrences of node 4 in these
four transitions. The conditional node 5 (root node) simply collects
the tuples of its child nodes 9 and 10.
Fig. 5b shows the auxiliary data stores for the existence constraint
Ex(α3,α4)where elementC for the transitions of activity nodes 1 and
2 is [0, 0, 0, 1], for node 3 is [1, 0, 0, 0], and for node 4 is [0, 1, 0, 0].
Function fQ (C1,C2,φ) returns [1, 0, 3, 0] as element C of the aux-
iliary data of node 10 which is constructed from auxiliary data of
nodes 3 and 8. Here, 1 is the join of (a, c) and (c, c) and 3 is the
sum of two joins: first join of (a,a) and (a, c), and second join of
(a,b) and (b, c). Element C for the loop and the conditional nodes
are constructed in a straightforward manner. Similarly, we construct
the auxiliary data stores for the other three classes of constraints. □

4 Incremental Construction of Auxiliary Data
In this section, we first propose an incremental approach to update
auxiliary data stores, and then show how to verify processes by
checking only the root node of the corresponding tree.
The incremental approach is useful when a schema is updated. When
a process is modified, the leaf level (activity) nodes and their auxil-
iary data are updated, and the changes in auxiliary data are propa-
gated incrementally only along the path to the root node. Therefore,
we do not need to check the whole process again. In this approach
for each node u we define two relations D+u and D−u to contain the
elements which are added to or removed from auxiliary data store
Du respectively. Relations D+ and D− of each node are then used to
construct: (1) the updated auxiliary data store D ′ of the node, and
(2) the relations D+ and D− of the parent node. We first explain the
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Figure 6: Incremental Construction of Auxiliary Data

incremental approach to create the auxiliary data store for the leaf
node(s) and then propagate the changes along the path to the root in
the process tree.
If the change operation is a RevActivity or a shrink operation, we con-
struct the auxiliary data for the resulted (new) activity node where
for each transition (x̄ , ȳ), a tuple (x̄ , ȳ,C) is added to the updated
auxiliary data store D ′ of the activity. Same as before element C
is constructed depending on the class of constraint. For expand op-
erations where a single activity node is replaced by a (sub-)tree
corresponding to a sequential, conditional, parallel, or loop compo-
sition of activity node(s), we first construct the auxiliary data for the
activity node(s) and then, use that to construct the auxiliary data of
the internal node. Since both the activity and the internal nodes are
new, we use the bottom-up algorithm to construct auxiliary data of
them. We now proceed to formulate the propagation of the auxiliary
data updates to the nodes along the path to the root. Since we have
four different types of internal nodes, four different cases for propa-
gation are needed. Algorithm 2 presents the incremental propagation
of auxiliary data. In the algorithm, we assume that D ′u is the updated
auxiliary data of node u, and D+u and D−u are the tuples which are
added to or removed from Du respectively. Now, we want to update
auxiliary data of nodes along the path from u to the root. The al-
gorithm only shows the construction of the relation D+curr for each
node curr . To construct the relation D−curr we just need to replace
+ with − in the relations. In addition, for the sequence, conditional
and parallel nodes, we assume that the left child of the current node
has been updated. We can use the similar rules for the right node as
well. Let us call the current node curr , if curr node is a sequence
node, a join of D+v1 and Dv2 is suffice to construct relation D+curr . To
constructC we use the same function fQ (C1,C2,φ) as before. For the
conditional node we just collect the tuples in D+v1 whose input states
are in χ (unary relation χ1(xi )). The relation D+curr for the parallel
nodes is constructed in the similar way as the sequence node, except
that function fP (C1,C2,φ) is used to constructC. For the loop nodes,
we collect the tuples in D+v1 whose input states are in χ in a tem-
porary relation T+curr . Then, we recursively construct the transitive
closure of T+curr to find the set of all possible distinct paths through
the loop. Finally, we select the paths that can go out of the loop
(yi < χ ) and put them into D+curr . When both D−curr and D+curr are
constructed, the relation D ′curr is defined as Dcurr −D

−
curr +D

+
curr .

EXAMPLE 4.1. Continuing with Example 3.6, let a RepBySeq
change operation evolves the process schema of Fig. 1a, by replac-
ing activity node 1 with a sequence of activity nodes 1 and 11. Let
L(11) = (α11, {o}, {(a,b), (b, c), (c, c)}), Fig. 6a and Fig. 6b represent
the updated auxiliary storages of the tree concerning the cardinality
constraint Ub(α4) = 1 and the existence constraints Ex(α3,α4). To
construct the auxiliary data storage for activity node 11 and sequence
node 12, we use the bottom-up construction algorithm. Then we com-
pute relations D+12 and D−12 for the sequence node. Since node 12 is
in the earlier position of node 1 (being left child of node 9), D+12 and
D−12 are constructed by comparing auxiliary data of node 12 and 1
resulted in D−12 = (b,a,C) and D+12 = (b, c,C). Note that since node
12 already had a path from b to c, we just update the counterC of that
path in D ′12. Relations D+12 and D−12 are then propagated to the parent
node 9 where D−12 does not affect its auxiliary data, but D+12 creates
a new path from b to c, so D−9 = ∅ and D+9 = (b, c,C). Similarly, D+9
is propagated to the root node which again causes a new path from
b to c and D+5 will be (b, c,C). As can be seen, the algorithm only
works on the auxiliary data stores of nodes along the path from node
11 to the root. □

4.1 Verification of Constraints
When the auxiliary data stores are constructed, we only need to
check the auxiliary data of the root node to verify a given constraint.
The checking is performed for the complete execution paths (from an
initial to a final snapshot). To check cardinality constraint Lb(α), all
c’s in bag C should be greater than or equal to Lb(α). Ub(α) checks
c’s to be less than or equal toUb(α), Rnд(α) combines the Lb(α) and
Ub(α), and Fix(α) requires all c’s to be the same. Ex(α , β) is satisfied
if there is no path consisting α but not β , soC[0] should be equal to 0.
To satisfy coEx(α , β), in addition to the previous condition, C[1] has
to be 0, means there is no path consisting α but not β . Res(α , β) needs
all occurrences of α to be followed by a β , i.e., C[0] = C[2] = 0.
Similarly, the remainder sets of constraints can be checked.

EXAMPLE 4.2. Continuing with Example 4.1, since D5 = {(a, c,
{0, 1, 1, 2}), (b, c, {0, 0})}, there is path with more than on occur-
rences of α4, thus Ub(α4) = 1 is not verified. Existence constraint
Ex(α3,α4) is also not verified because D5 is {(a, c, [1, 0, 3, 0]), (b, c,
[0, 0, 0, 2])} and there is path that goes through α3, but not α4. □

5 Experimental Evaluations
In this section, several experiments are conducted to evaluate the
performance of the DecSerFlow constraints checking approaches.
Three main types of algorithms, the Spin-based, the bottom up
and the incremental construction, are implemented. The Spin-based
algorithm is implemented as explained in Section 2.4 and the other
two algorithms are implemented in Java. All algorithms are executed
on a computer with 8G RAM and dual 2.9 GHz Intel processors.
The data sets (i.e., process schemas) used in experiments are ran-
domly generated considering the following 5 parameters: number of
activities (#A), number of objects (#O), average number of states
per object (#S), average number of transitions per activity (#T), and
number of loops (#L).
In the experiments we measure the impact of each parameter inde-
pendently by fixing four of the above parameters and changing the
remaining one. To measure the impact of process size (#A) sequen-
tial process models with #O=3, #S=10, and #T=3 are considered, and
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Figure 7: Process size
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Figure 8: Objects
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Figure 9: States
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Figure 10: Transitions
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Figure 11: Loops

to perform experiments regarding the last four parameters, process
models consisting of all sequential, parallel, conditional, and loop
fragments with #A=10, #O=3, #S=10, #T=3, and #L=1 is considered,
and each time one of the #O, #S, #T, or #L is changed.
Each experiment records the time needed for an algorithm to check
a set of 10 input constraints (2 constraints from each of the 5 classes)
on an input schema. Input constraints are chosen in such a way that
eight of them are verified, but two of them are not. Note that in the
bottom-up construction we collect the time to construct tree and
auxiliary data, and check the constraint, whereas in the incremental
algorithm we collect the time to update tree, update auxiliary data,
retrieve data from and store data into database, and check the con-
straint after a change operation. In order to collect more accurate
results, each experiment is done 9 times, each time with a different
change operation (there are totally 9 different change operations)
to obtain an average time result with the same parameters. We now
report the findings.

Expanding the size of process affects the verification time more in
the Spin-based approach than the other approaches
We compute the times needed for the approaches for sequential
input schemas with n activities, (1 ⩽ n ⩽ 256). Fig. 7 shows the
results of all three approaches where although for small processes
Spin takes less time, by increasing the process size (#A ⩾ 8), the
incremental algorithm shows a better performance. Note that in very
small processes (#A ⩽ 4) the incremental algorithm takes more
time even more than the bottom-up construction, since it has some
overhead to store and retrieve data.

Bottom-up approach has an exponential growth rate in the size of
the state space
The state space is affected by two parameters: objects and states.
Fig. 8 and Fig. 9 show the results of all three approaches for schemas
with 1 ⩽ #O ⩽ 6 and 1⩽ #S ⩽ 64 respectively (in Fig. 8, #S = 10
and in Fig. 9, #O = 3). Notice the logarithmic scale for the y axis,
that we use to better highlight the behavior of various algorithms.
In comparison to the bottom-up, Spin takes less time to verify the
process with large state space, because the bottom-up construction
has an exponential grow rate in terms of the number of objects. For
example if #O = 3 and #S = 10, there will be totally 103 possible state
relations and in the worst case 106 possible transitions which means
to join the auxiliary data of two nodes, 1012 comparisons might
be needed (O((|S | |O |)4)). However, since the incremental approach
computes only the updated tuples, its performance is better than both
Spin and the bottom-up algorithms.

Spin-based algorithm is more expensive in terms of the number of
transitions and loops

Fig. 10 and Fig. 11 show the time needed for all three approaches to
verify the schemas with 1⩽ #T ⩽ 32 and 1⩽ #L⩽ 10 respectively (in
Fig. 10, #L=1 and in Fig. 11, #T=3) where the incremental algorithm
takes less time to verify schemas. The number of transitions directly
affects the state space of Spin whereas in our algorithms, although it
affects the number of leaf level joins, the resulted paths may not be
affected much.
The number of loops mostly affects the number of visited states
in Spin, but in the other algorithms it causes more complicated
computation to obtain transitive closure of paths and to update the
resulted paths. However, the results show that even the bottom-up
construction has a better performance than Spin.
It should be noted that Spin reports results as soon as it finds the first
error (unsatisfied constraint), however, in our algorithms, checking
is the last step, therefore, Spin could have a better performance for
erroneous processes. On the other hand, (1) Spin checking time
strongly depends on the developer experience and how the process
is translated to the input language Promela, and (2) to check several
constraints from the same class, while Spin takes much longer time to
verify, the time does not increase in our algorithms (the verification
time is negligible in comparison to the auxiliary data construction
time in our algorithms).

6 Related Work
Business process modeling frameworks can be divided into three
groups of activity-based, object-aware, and artifact-centric, where
activity-based [33] and object-aware [4] verification techniques
mostly focus on the soundness of business processes. Artifact-centric
paradigm treats data as first-class citizens [9]. Since the domain of
data is infinite, in general verification is undecidable [9]. However,
different techniques are presented to verify temporal logic proper-
ties on artifact systems. These techniques are either applied to the
restricted classes of artifact systems [16] or reduce the verification
problem to standard model checking [5].
Incremental evaluation is a technique that uses online algorithms
to evaluate or verify a system. Incremental evaluation of database
queries and maintenance of views [11] has been studied for more
than two decades. In [15] an algorithm to compute changes to a view
in response to relations updates, and a counting algorithm to count
the modified tuples for non-recursive views is presented which is
adapted in our approach. Incremental verification of software sys-
tems is studied especially for model checking and program analysis
[26], [34]. A syntactic-semantic approach [6] is also presented for
the incremental verification of workflows where the approach fo-
cuses on the probabilistic verification of the reliability requirements
of processes. In addition, an incremental method to verify BPEL
processes is presented in [20]. However that method only checks
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whether two parallel activities have access to the same object or not
(the non-conflict property).
The problem of verifying whether a process model satisfies the
requested compliance rules, e.g., laws, regulations, and service level
agreements, is studied [24] [17] [14] form both control flow [2] and
data [1] [3] [27] aspects of processes. Furthermore, recent techniques
use the event log of processes to check compliance [10][25].
Our work is also related to process evolution, activity-centric [8] or
object-aware [23] frameworks. While in this paper a set of primitive
update operations are introduced, some researches propose advanced
change patterns like swap fragments [31]. However advanced pat-
terns can be replaced by a sequence of our update operations. An
approach for propagating changes from an internal, private process to
its public process view is also developed in [13] that only considers
activity-centric processes.
7 Conclusions
Incremental computation is an effective method and has many ap-
plications from online computation to database query evaluation.
This paper makes an initial application of this approach to process
verification. We present VIEW, an incremental approach to verify
workflows. We model a process schema as a process tree and con-
struct auxiliary data stores for nodes of the tree based on the input
constraint. When a schema change happens, we construct auxiliary
data stores for new nodes, then, we incrementally update auxiliary
data stores of nodes along the path to the root, and finally, we verify
the given constraint by checking only the root of the tree. Our exper-
iment shows the efficiency of the incremental approach for a large
class of processes.
VIEW has two main limitations. First, it supports only well-
structured business processes. Although several algorithms are pro-
posed to convert unstructured processes to well-structured ones [22]
[12], these methods are not able to fully convert all classes of busi-
ness processes. Second, the domain of data values has to be finite.
Note that “finite domain” data can be captured using object states by
assigning a state to each value.
Many interesting questions remain. Generalizing the supported con-
straints makes the approach more practical. We currently support
a set of LTL constraints regarding the cardinality, existence, and
ordering of the activities. The approach could simply be extended
to support the same set of constraints regarding the object states. To
support other kinds of constraints we might need to change the struc-
ture of our auxiliary data. Another practical problem is to suggest
a set of change operations on a process to make the specified con-
straints satisfiable. In addition, since we count all the paths within a
process model, the techniques presented in this paper can easily be
applied to the model counting problems.
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