
Object-aware Identification of Microservices
Mohammad Javad Amiri

Department of Computer Science
University of California at Santa Barbara

Email: amiri@cs.ucsb.edu

Abstract—Microservices is an architectural style inspired by
service-oriented computing that structures an application as a
collection of cohesive and loosely coupled components, which
implement business capabilities. One of today’s problems in
designing microservice architectures is to decompose a system
into cohesive, loosely coupled, and fine-grained microservices.
Identification of microservices is usually performed intuitively,
based on the experience of the system designers, however, if
the functionalities of a system are highly interconnected, it is
a challenging task to decompose the system into appropriate
microservices. To tackle this challenge, we present a microservice
identification method that decomposes a system using clustering
technique. To this end, we model a system as a set of business
processes and take two aspects of structural dependency and data
object dependency of functionalities into account. Furthermore,
we conduct a study to evaluate the effect of process characteristics
on the accuracy of identification approaches.

Index Terms—Microservice; Identification; Business Process;
Clustering

I. INTRODUCTION

Microservice architecture is a style that is increasingly gain-
ing popularity, both in academia and in the industrial world
[1] by trying to overcome the shortcomings of centralized,
monolithic architectures [2]. It can be defined as an approach
for developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms [3]. Microservices architecture forms
a software system as a group of fine-grained, cohesive, and
loosely coupled services where each service implements a
small business capability. The architecture is built on three
simple principles [4]: (1) Bounded Context: focus on business
capabilities. Related functionalities are combined into a single
business capability which is then implemented as a service.
(2) Size: If a service is too large, it should be refined into two
or more services, thus preserving granularity and maintaining
focus on providing only a single business capability. (3)
Independence: This concept encourages loose coupling and
high cohesion by stating that each service in microservice
architectures is operationally independent of others.

Partitioning the system into microservices is usually per-
formed intuitively, based on the experience of the system
designers, however, if the functionalities of a system are highly
interconnected, it is a challenging task to decompose the
system into appropriate microservices [5][6], this problem is
known as microservice identification. Although the problem
has recently been studied, the existing methods [7][8][9] do not
consider the underlying business functionalities of the system.
This paper studies the problem of identifying microservices

from the business processes point of view. A related but
different problems exist in SOA domain where researchers
use different techniques to discover [10], identify [11], and
compose [12] services.

This paper identifies microservices from business processes.
A business process consists of a set of activities performed in
coordination in an organizational environment to accomplish
a business goal [13]. Each activity in a business process plays
the role of an operation in a microservice. The goal is to
decompose business processes into fine-grained, cohesive, and
loosely coupled components which are called microservices.

A business process can be partitioned by considering the
structural relations between activities within the process: if
there is a direct edge between two activities, these two activ-
ities are more likely to partition into the same microservice.
Each activity also performs read and write operations on some
data objects to execute where these data objects are shared
among different activities. Since we want the resulting parti-
tions (microservices) to be independent and loosely coupled,
activities with similar data access should be partitioned into
the same microservice.

Technically, we consider BPMN business processes with
data object reads and writes. We then define two relations to
show structural and object dependencies between activities,
and aggregate these two relations. The final relation is clus-
tered and each resulted cluster is identified as a microservice.

A key contribution of this paper is to show that it is
possible to use underlying business processes of a system for
microservice identification. Technically, this paper makes the
following contributions: (1) Notions of “structural dependen-
cy” and “object dependency” between activities are defined,
(2) Three approaches to identify microservices from a business
process are introduced, (3) An Extended approach to identify
microservices from a set of business processes is presented,
and (4) The accuracy of different microservice identification
approaches, i.e, user-driven, process-driven, object-driven, and
the proposed method, for different processes is studied.

The remainder of the paper is organized as follows. Section
2 illustrates the problem with a concrete example. Section 3
defines a model for business processes. Section 4 introduces
our approach to identify microservices. Section 5 performs a
study on accuracy of the identification approaches, and Section
6 concludes the paper.

Fig. 1: The Process PlanApproval (Est: Estimation, Eval: Evaluation, Ord: Order)

II. MOTIVATIONS

Fig. 1 shows a BPMN process model for a PlanApproval

process in some part supplier company where the company
needs yearly estimations for purchasing required parts. Let’s
assume the company wants to develop a system for its business
and the developers are considering microservices as their soft-
ware architecture. Here the problem is to identify appropriate
microservices by decomposing each business process in a way
such that the identified microservices are cohesive, loosely
coupled, and fine-grained. In other words, each activity of a
business process plays the role of an operation (functionality)
in one microservice and we want to cluster all the activities
of a business process. Each cluster is then introduced as a
microservice.

To find such microservices, one may take the structural
dependency of activities into account and cluster activities
based on the edges in the process model: if there is a direct
edge between two activities within a business process, those
two activities are more likely two be clustered in the same
microservice. Fig. 2(a) shows the microservices identified from
the PlanApproval process using this approach where the
process decompose into 4 microservices.

Another approach is to consider data object dependencies
and put activities in the same cluster if they access to a similar
set of data objects. We use object-driven approach to identify
microservices of the PlanApproval process. The resulting
microservices can be seen in Fig. 2(b).

Now the question is which one is the most appropriate
approach to identify cohesive, loosely coupled, and fine-
grained microservices? In the following sections, we try to
propose a method to identify such microservices.

Fig. 2: Microservices identified from the PlanApproval

III. A MODEL FOR BUSINESS PROCESSES

In this section, we introduce a model for business processes.
Each business process comprises a set of tasks, gateways,
events, and connectors. In BPMN [14], a process is modeled
as a graph whose nodes and edges are of different types. In
this paper, we focus on one type of edges corresponding to
sequence flow in BPMN, and three types of nodes: event,
activity, and gateway. Process schemas here are also BPMN
processes in [15].

An activity node represents a unit of work. Each activity
reads a set of objects and updates another set of objects. We
consider two special events in BPMN: start and end events that
signal the start and the end of a process respectively, and four
kinds of frequently used gateways in BPMN: choice, merge,
split, and join which are used to control the divergence and
convergence of sequence flows.
Definition: A process schema is a tuple P = (N, s, f , F,O, ρ,
ω) where N is a finite set of nodes, s and f are the start and
the end nodes respectively, F ⊆ N × N is a set of flow edges,
O is a finite set of objects identifier, and ρ and ω are two data
mappings that assign each activity node a set of objects that
are read or written by the node respectively.

Example: Consider the Plan Approval process (Fig. 1).
Nodes s and f are the start and end nodes, ti’s (1 6 i 6 8) and
g j’s (1 6 j 6 4) are activity and gateway nodes in N where g1
and g3 are merge gateways and g2 and g4 are choice gateways.
Est, Eval, Plan, and Ord are the objects in O, and
functions ρ, ω are used to assign objects to activity nodes. For
example: ρ(t7)={Plan,Ord}, and ω(t8)={Ord,Est,Plan}.

IV. MICROSERVICE IDENTIFICATION

In this section, a method to identify microservices from
business processes is proposed. For each pair of activities
in a process model we define two relations regarding their
structural and data dependencies and then by aggregating
these relations, the final relation between activities is defined.
We then use that relation to cluster activities and identify
microservices.

First, a relation TP that shows the structural dependency
of activities within a business process is defined. If there is
direct edge between two activities or there is path between
them containing only gateways, then those two activities are
inter-connected.
Definition: Given a schema P = (N, s, f , F,O, ρ, ω), for each
pair of activities ai, a j ∈ N, if (ai, a j) ∈ F or there is a path
(ai, n1, ..., np, a j) in P such that ∀k ∈ [1...p] : nk is a gateway,
then TP(ai, a j) = 1, else TP(ai, a j) = 0.

Then, a relation TD is defined to show the dependency of
activities based on their used data objects where for each pair
of activities, we assign weight 1 to the objects that are written
by both activities, 0.5 to the objects that are written by one
and read by the other activity, and 0.25 to the objects that are
read by both activities. If an object is read and written by an
activity we only consider the written (major) operation.

2

TABLE I: TP of PlanApproval

t1 t2 t3 t4 t5 t6 t7 t8
t1 0 1 0 0 0 0 0 0
t2 0 0 1 0 0 0 0 0
t3 0 0 0 1 0 0 0 0
t4 0 0 0 0 1 1 0 0
t5 0 0 1 0 0 0 0 0
t6 0 0 0 0 0 0 1 0
t7 0 0 0 0 0 1 0 1
t8 0 0 0 0 0 0 0 0

TABLE II: TD for the PlanApproval

t1 t2 t3 t4 t5 t6 t7 t8
t1 0 1/4 1/4 1/4 1/4 0 0 1/2
t2 1/4 0 3/4 3/4 5/4 1/2 1/2 3/2
t3 1/4 3/4 0 3/2 5/4 1/4 1/4 1
t4 1/4 3/4 3/2 0 5/4 1/4 1/4 1
t5 1/4 5/4 5/4 5/4 0 1/2 1/2 3/2
t6 0 1/2 1/4 1/4 1/2 0 5/4 3/2
t7 0 1/2 1/4 1/4 1/2 5/4 0 3/2
t8 1/2 3/2 1 1 3/2 3/2 3/2 0

TABLE III: T for the PlanApproval

t1 t2 t3 t4 t5 t6 t7 t8
t1 0 5/4 1/4 1/4 1/4 0 0 1/2
t2 1/4 0 7/4 3/4 5/4 1/2 1/2 3/2
t3 1/4 3/4 0 5/2 5/4 1/4 1/4 1
t4 1/4 3/4 3/2 0 9/4 5/4 1/4 1
t5 1/4 5/4 9/4 5/4 0 1/2 1/2 3/2
t6 0 1/2 1/4 1/4 1/2 0 9/4 3/2
t7 0 1/2 1/4 1/4 1/2 9/4 0 5/2
t8 1/2 3/2 1 1 3/2 3/2 3/2 0

Definition: Given a schema P = (N, s, f , F,O, ρ, ω), for each
pair of activities ai, a j ∈ N, TD(ai, a j) =|ω(ai) ∩ ω(a j)| +
0.5×|(ρ(ai) ∩ ω(a j)) ∪ (ω(ai) ∩ ρ(a j))| + 0.25×|ρ(ai) ∩ ρ(a j)|

Finally, we aggregate these two relations to define the final
relation T .
Definition: Given a schema P = (N, s, f , F,O, ρ, ω), for each
pair of activities ai, a j ∈ N, T (i, j) = TP(i, j) + TD(i, j).

Example: Continuing with the PlanApproval process,
Table I shows the relation TP for the process. For example,
TP(t4, t6) = 1, because there is a path t4, g2, g3, t6 in P where
both g2 and g3 are gateway nodes. Table II shows the relation
TD for the process. For example, TD(t1, t2) = 1/4, because
the only shared object between t1 and t2 is Est where both
activities read Est, and Table III show the relation T for
the PlanApproval process. For example T (t6, t7) = 9/4,
because TP(t6, t7) = 1 and TD(t6, t7) = 5/4.

A microservice has a set of operations where each operation
is an activity node in the corresponding process schema. To
identify microservices, final relation (T) is clustered using a
genetic algorithm and turbo-MQ [16] fitness function. The
algorithm randomly partitions activities into K clusters and
use Turbo-MQ to measure the fitness of the identified clusters.
Then, in each iteration, the algorithm tries to increase the
fitness by making changes in the previous partitions. This
process continues till the fitness converges. To calculate Turbo-
MQ, we sum up the Cluster Factor for each cluster k (CFk)
as it follows in Eq 1.

Turbo-MQ =
k∑

i=1

CFi, CFi =

 0 µ = 0
2µi

2µi+
∑k

i=1,i, j(δi, j+δ j,i)
otherwise

(1)

In this relation, CFi is the cluster number i, µi indicates the
number of intra-relations between activities within the cluster
i and δi, j represents the number of inter-relations between
activities in cluster i and cluster j.
Example: Continuing with the PlanApproval process, 3
microservices can be identified, Receive Estimation and
Provide Plan are operations of the first identified microser-
vice. Evaluate Quality, Evaluate Budget, and Edit

Plan are operations of the second service, and Provide

Order, Check Order, and Sign Order construct the third
service.

We now proceed to identify microservices from multiple
processes. Software systems are combination of different

Fig. 3: Identification of microservices from multiple processes
business processes where these processes may have shared
activities or objects. In the previous part, we considered only
a single business process and identified microservices from
that process. However, our method can be extended to identify
microservices from a set of business processes. We only need
to consider all the processes together and redefine relations
TP, TD, and T . Consider Fig. 3(a)-(c) where we have three
processes P1, P2, and P3 and there are totally 7 activities A to
G in these three processes. Fig. 3(d) shows the data object
reads and writes. As can be seen the set of all objects is
{O1, ...,O5}. To compute TP(ai, a j) for each pair of activities
ai and a j we just aggregate TPk (ai, a j) of all process Pk in
the set of business processes. For example, since there is a
direct edge between activities A and B in both P2 and P3,
TP(A, B) = 2. For each pair of activities ai and a j the value
of TD(ai, a j) is same in all the processes (if the process has
both activities), because an activity even in different processes
use the same set of objects, therefore the final relation TD is
the union of relations TD of the processes. Finally, relation
T can be define as before by aggregating TP and TD. The
resulted microservices are shown in Fig. 3(e) where A and B
construct the first microservice, C and D are the operations of
the second microservice, and the third service consists of E,
F, and G.

V. EXPERIMENTAL EVALUATIONS

In this section, four experiments are conducted to evaluate
the accuracy of the microservice identification approaches. We
consider four parameters: number of activities (#A), number
of gateways (#G), number of objects (#O), and number of
processes (#P) and in each experiment we study the effect of
one parameter on the accuracy of the identification approaches.

3

0 5 10 15 20 25 30
60

70

80

90

100

#A

ac
cu

ra
cy

(%
)

Proposed
Process
Object
User

Fig. 4: # of Activities

0 4 8 12 16 20
50

60

70

80

90

100

#G

ac
cu

ra
cy

(%
)

Proposed
Process
Object
User

Fig. 5: # of Gateways

0 2 4 6 8 10
50

60

70

80

90

100

#O

ac
cu

ra
cy

(%
)

Proposed
Process
Object
User

Fig. 6: # of Objects

1 2 3 4 5 6 7 8 9 10
40

60

80

100

#P

ac
cu

ra
cy

(%
)

Proposed
Process
Object
User

Fig. 7: # of Processes

Here, accuracy means the number of operations (activities) that
are clustered in the correct microservice to the total number of
operations. To find the correct microservices we asked a group
of domain experts to identify microservices. We also take four
approaches into account: (1) a user-driven method where 3
developers are asked to identify microservices, (2) process-
driven where we consider only the structural dependency
of activities within processes (relation Tp), (3) object-driven
where we consider only the dependency of activities based
on their used data objects (relation Td), and (4) the proposed
method which is the combination of methods (2) and (3).

In the first experiment, we identify microservices from a
set of processes with a different number of activities, 1 6
#A 6 30, but same number of gateways (#G = 4) and objects
(#O = 3). Fig. 4 shows the results of the first experiment where
the accuracy of the proposed method is almost independent of
the size of the process.

The next experiment studies the effect of process complexity
(number of gateways) on the accuracy where a set of processes
with 0 6 #G 6 20, but similar number of activities (#A ∼ 20)
and data objects (#O = 3) are taken into account. Fig. 5
demonstrates the results where the accuracy of the proposed
method is almost independent of the complexity of processes.
Here, the accuracy of the object-driven method is also indepen-
dent of the process complexity, because it does not consider
the structure of the processes.

In the third experiment, we study the effect of the number of
objects on the accuracy where we consider a set of processes
with 0 6 #O 6 10, similar number of activities (#A ∼ 20)
and gateways (#G = 4). Fig. 6 presents the results of this
comparison where the proposed method is almost independent
of the number of objects. Since we ignore the degree of
importance of different objects, increasing the number of
objects has more affect on the accuracy of the proposed
method in this experiment.

Finally, in the last experiment, we observe the effect of the
number of processes (#P) on the accuracy in a system with
multiple processes. The settings is similar as before, i.e., on
average, in each process: #A ∼ 20, #G = 4, and #O = 3. Fig.
7 shows the results of this experiment.

VI. CONCLUSIONS

This article aims to provide a method to identify an
independent collection of highly inter-related activities as
microservices. To this end, dependencies between activities

are measured not only regarding inter-connections between
activities within business process models but also considering
their dependencies in terms of accessing to same data objects.
Our experiments show that the proposed method can identify
cohesive, loosely coupled, and fine-grained microservices from
a single business process, or a set of processes.

Although in the proposed method two aspects of process
structure and object access are taken into account, the method
can be easily generalized to other aspects such as require-
ments, resources, or ownerships.

REFERENCES

[1] M. Mazzara, R. Mustafin, L. Safina, and I. Lanese, “Towards microser-
vices and beyond”, 2017.

[2] S. Hassan and R. Bahsoon, “Microservices and their design trade-offs:
A self-adaptive roadmap”, in 2016 IEEE International Conference on
Services Computing (SCC). IEEE, 2016, pp. 813–818.

[3] J. Lewis and M. Fowler, “Microservices: a definition of this new
architectural term”, MartinFowler.com, vol. 25, 2014.

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row”, in Present and Ulterior Software Engineering. Springer, 2017,
pp. 195–216.

[5] S. Newman, “Building microservices: designing fine-grained systems”.
O’Reilly Media, Inc., 2015.

[6] N. Dmitry and S.-S. Manfred, “On micro-services architecture”, Inter-
national Journal of Open Information Technologies, vol. 2, no. 9, 2014.

[7] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique for
extracting microservices from monolithic enterprise systems”, arXiv
preprint arXiv:1605.03175, 2016.

[8] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
cutter: A systematic approach to service decomposition”, in European
Conference on Service-Oriented and Cloud Computing. Springer, 2016,
pp. 185–200.

[9] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from
monolithic software architectures,” in International Conference on Web
Services (ICWS). IEEE, 2017, pp. 524–531.

[10] Z. Cong, A. Fernandez, H. Billhardt, and M. Lujak, “Service discovery
acceleration with hierarchical clustering”, Information Systems Frontiers,
vol. 17, no. 4, pp. 799–808, 2015.

[11] M. J. Amiri, S. Parsa, and A. M. Lajevardi, “Multifaceted service
identification: process, requirement and data”, Computer Science and
Information Systems, vol. 13, no. 2, pp. 335–358, 2016.

[12] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for
qos-based web service composition”, in Proceedings of the 19th inter-
national conference on World wide web. ACM, 2010, pp. 11–20.

[13] M. Weske, “Business process management architectures”, Business
Process Management. Springer, 2012, pp. 333–371.

[14] B. P. Model, “Notation (bpmn) version 2.0”, OMG Specification, Object
Management Group, pp. 22–31, 2011.

[15] M. J. Amiri and M. Koupaee, “Data-driven business process similarity”,
IET Software, vol. 11, no. 6, pp. 309–318, 2017.

[16] B. Mitchell, M. Traverso, and S. Mancoridis, “An architecture for
distributing the computation of software clustering algorithms”, in
Proceedings of Working IEEE/IFIP Conference on Software Architecture
IEEE, 2011, pp. 181–190.

4

