
Virtual Machines

Concepts

• Virtualization:

– Creation of flexible substitutes for actual resources.

• The substitutes and their actual counterparts:
– have same functions and external interfaces

– differ in size, performance, cost etc.

• Resources to virtualize
– CPU

– Memory

– I/O

Concepts

• System Virtualization

– System virtualization creates several virtual systems within
a single physical one.

• VMM (or hypervisor)

– Virtual machine monitor is the software layer providing the
virtualization.

• VM

– Virtual machine is the virtual systems running on top of
VMM

Brief History
• 1960s, first introduced, for main frames
– Motivation: hardware cost etc.

• 1970s, an active research area

• 1980s, underestimated
– Multitask modern operating systems took its place

– Decreasing in hardware cost

• late 1990s, resurgence: software techniques for x86
virtualization
– Many applications: mixed-OS develop environment,

security, fault tolerance etc.

• mid 2000s, hardware support from both Intel and AMD

Types of Virtualization
• Process virtualization (virtualize one process)

– The VM supports an ABI: user instructions plus system calls

– Dynamic translators, JVM, …

• OS or Namespace virtualization (multiple logical VMs that share
share the same OS kernel)

– Isolates VMs by partitioning all objects (not just files) into
namespaces

– Linux containers and vServer, Solaris zones, FreeBSD jails, Docker

• System (or full) virtualization (whole system: OS+apps)

– The VM supports a complete ISA: user+system instructions

– Classic VMs, whole system emulators (and many others we discuss in
next slides)

Architectures

• Type I: The VMM runs on bare hardware
(“bare-metal hypervisor”)

Architectures
• Type II: The VMM runs as an ordinary application inside

host OS (hosted hypervisor)

Key Issues in CPU Virtualization
• Protection levels
– Ring 0 (most privileged)

Ring 3 (user mode)

• Requirement for efficient/
effective virtualization
– Privileged instructions

• Trap if executed in user mode

– Sensitive instructions
• affect important “system state”

– If privileged==sensitive, can
support efficient “trap and emulate” approach
• Virtualized execution = native execution+exception handling code that

emulates privileged instructions

• For x86, not all sensitive instructions are privileged
– Some instructions simply exhibit different behaviors in user and

privileged mode

Virtualization Approaches
• Full virtualization using binary translation

– Problem instructions translated into a sequence of instructions that
achieve the intended function

– Example: VMware, QEMU

Virtualization Approaches

• Paravirtualization: OS modified to run on VMM

– Example: Xen

Paravirtualization

• No longer 100% interface compatible, but better
performance

– Guest OSes must be modified to use VMM’s interface

– Note that ABI is unchanged

• Applications need not to be modified

• Guest OSes are aware of virtualization

– privileged instructions are replaced by hypervisor calls

– therefore, no need for binary translation

Xen and the Art of Virtualization

Virtualization Approaches

• Hardware-assisted virtualization

Hardware-assisted Virtualization

• Processor

– AMD virtualization (AMD-V)

– Intel virtualization (VT-x)

AMD-V: CPU virtualization

• Separates CPU execution into two modes

– hypervisor executes in host mode

– all VMs execute in guest mode

• Both hypervisor and VMs can execute in any of the four
rings

• Hypervisor can

– explicitly switch from host mode to guest mode

– specify which events (e.g. interrupts) cause exist from guest
mode

Memory Virtualization

• Access to MMU needs to be virtualized

– Otherwise guest OS may directly access physical memory
and/or otherwise subvert VMM

• Physical Memory is divided among multiple VMs

– Two levels of translation

• Guest OS: guest virtual addr guest physical addr

• VMM: guest physical addr machine addr

Memory Virtualization
• Shadow page table needed to avoid 2-step translation

– When guest attempts to update, VMM intercepts and emulate the
effects on the corresponding shadow page table

AMD-V: Memory Virtualization
– CPU is aware of

• the existence of VM

• two-level address translation

• AMD’s nested page table

– (Intel VT-x has a similar scheme called Extended Page
Table)

– managed by VMM

– guest physical addr -> machine addr

– guest OS directly updates its guest page table

– therefore, no need for a shadow page table

I/O Virtualization

• The VMM

– intercepts a guest’s I/O action

– converts it from a virtual device action to a real device
action

Security Applications
• Honeypot systems and Malware analysis
– VM technology provides strong isolation that is necessary

to run malware without undue risks
• Strong resource isolation: CPU, memory, storage

• Snapshot/restore features to speed up testing and recovery

• High-assurance VMs
– On a single workstation, can run high assurance VMs that

support some security functions, but may not provide
general-purpose functions
• single-purpose VM scheme facilitates stricter security policies

• In contrast, security policies that are compatible with the range
of desktop applications being used today will likely be too
permissive.

Security Applications

• Protection from compromised OSes

– Modern OSes are too complex to secure

– Malware-infested OS may subvert security software (virus
and malware scanners)

– Instead, rely on VMM

• run malware and rootkit detection techniques in VMM

• enforce security properties from within the VMM

Security Challenges

• Virtualization leads to co-tenancy

– VMs belonging to distinct principals use the same hardware

• Strong isolation is necessary or else attacks become too easy
– Containers don’t offer enough security if some principals can be

downright malicious

• Even with strong isolation, provide increased opportunities for
side-channel attacks

• Denial of service is difficult to prevent
– But often, it is not a problem in practice as bad behavior is expensive,

and/or is detected and the culprit punished

Docker Security
• Isolation of containers

– namespaces: each container cannot see entities (files, processes, pids,
network interfaces, ...) in other containers

– cgroup: enables resource accounting and limiting --- including CPU, memory,
disk I/O, etc.

• one bad container cannot use up all resources

• Container infrastructure and services (docker daemon)

– containers can share files/directories with the host OS, but this can be very
dangerous, e.g., allow root user in a container to change critical host OS files

– administrative services (e.g., creation of containers) can be abused, so
interface to docker daemon should be restricted

• Limit further using Linux capabilities

– programs running with containers typically don’t need root privilege

– we can use Linux capabilities to take away almost all of the power of the
root

	Virtual Machines
	Concepts
	Slide 3
	Brief History
	Types of Virtualization
	Architectures
	Slide 7
	Key Issues in CPU Virtualization
	Virtualization Approaches
	Slide 10
	Paravirtualization
	Xen and the Art of Virtualization
	Slide 13
	Hardware-assisted Virtualization
	AMD-V: CPU virtualization
	Memory Virtualization
	Slide 17
	AMD-V: Memory Virtualization
	I/O Virtualization
	Security Applications
	Slide 21
	Slide 22
	Slide 23

