
CSE509 : Computer System
Security

CSE509 - Computer System Security - Slides: R Sekar

OS Security and Access Controls

CSE509 - Computer System Security - Slides: R Sekar

Terminology and concepts
q Principals, Subjects, Objects
q Principle of least privilege

o Throughout execution, each subject should be given the minimal
access necessary to accomplish its task
§ Needs mechanisms for rights amplification and attenuation

q Reference monitors
o Abstract machine that mediates all access

q Security kernel
o Hardware, firmware and software elements that implement the

reference monitor

CSE509 - Computer System Security - Slides: R Sekar

Terminology and concepts
q Trusted Computing Base

o Totality of protection mechanisms in the system
o Smaller TCB => Greater assurance that the system is secure

CSE509 - Computer System Security - Slides: R Sekar

Overview
q Access control

o Mandatory Vs Discretionary policies
q Capabilities
q Information flow
q Least privilege principle

o Domain and type enforcement (DTE)
o POSIX Capabilities

q Other policies
o Chinese wall
o Clark-Wilson

CSE509 - Computer System Security - Slides: R Sekar

Overview
q Policies for containing untrusted code
q Manageability

o Role-based access control (RBAC)
o Delegation and trust management

CSE509 - Computer System Security - Slides: R Sekar

Access control
q Typically, three kinds of entities

o User (principal)
o Subject: typically, a process acting on behalf of user
o Object: files, network sockets, devices, …

q Goal: Control access to operations performed by
subjects on objects
o Examples of operations
o Read
o Write
o Append
o Execute
o Delete
o Change permission
o Change ownership

CSE509 - Computer System Security - Slides: R Sekar

Discretionary Access Control
q Permissions specified by users

o permission on an object is set by its owner
o typical on most OSes (UNIX, Windows, …)

q Represented using a matrix
o Indexes by subject and object
o Each element specifies the rights available to subject on that

object (read, write, etc.)
o Implementations

§ ACL (associated with an object, represents a column)
§ Capabilities (associated with subject, represents a row)

CSE509 - Computer System Security - Slides: R Sekar

Discretionary Access Control
q Improve manageability using indirection

o Groups
o Roles (RBAC)
o Inheritance
o Negative permissions

CSE509 - Computer System Security - Slides: R Sekar

Implementation of DAC on UNIX
q All resources are “files”
q Each file has a owner and group owner
q Permissions divided into 3 parts

o For owner, group, and everybody else
o 3 bits per part: read/write/execute

q Subjects inherit the userid of parent
o Programs that perform user authentication need to set this

info
o Exception: setuid programs (privilege delegation/amplification

mechanism)
§ Suid and sgid bits

CSE509 - Computer System Security - Slides: R Sekar

Implementation of DAC on UNIX
q No permission checks on superuser (userid 0)

o Permission checks based on userid --- usernames used only for
login

q Defaults (umask)
q Changing permission
q Changing ownership
q Recent additions

o Access control lists
o Sticky bit

CSE509 - Computer System Security - Slides: R Sekar

Effective, Real and Saved
UID/GID

q Effective: the uid used for determining access
privileges

q Real: the “real” user that is logged on, and on whose
behalf a process is running

q Saved: allows processes to temporarily relinquish
privileges but then restore original privileges
o When executing a setuid executable, original euid is saved (or it

could be explicitly saved)
o Setting userid to saved userid is permitted

CSE509 - Computer System Security - Slides: R Sekar

DAC on Windows Vs UNIX
q OO-design: permissions can differ, depending on type

of object
o NTFS files offer additional rights: delete, modify ACL, take

ownership
§ Files inherit permission from directory

o Use of Registry for configuration data
§ Richer set of access permissions for registry entries (e.g.,

enumerate, create subkey, notify, …)

q Mandatory file system locks
q No setuid mechanism

CSE509 - Computer System Security - Slides: R Sekar

Capabilities
q “Tickets:” subject presents capabilities to the resource

to gain access
o Must be unforgeable
o Transferable

q Examples
o File descriptors
o Passwords

CSE509 - Computer System Security - Slides: R Sekar

Capabilities
q Not widely used in OSes

o More difficult to implement than ACLs
§ Need forever unique object ids that don’t change
§ Need to use crypto or rely on OS primitives that may be hard to

realize
o Difficult to manage

§ How do we determine the permissions held by a user?
§ Do we want to allow them to pass around their capability? What

about theft?
§ How long do we store them?
§ How can we revoke permissions?

CSE509 - Computer System Security - Slides: R Sekar

Capabilities
q Provide a better framework than ACLs when policy

enforcement is NOT centralized
o Kerberos uses capabilities for access across hosts

§ Uses capabilities with different time scales
§ Accesses within a host typically based on ACL mechanism of host

OS
o Web applications use cookies containing sessionids to indicate

when a user has successfully authenticated

CSE509 - Computer System Security - Slides: R Sekar

Mandatory Access Control (MAC)
q DAC Limitations

o provides no protection if a resource owner did not bother to set
the ACL properly

o assumes that users are in full control of programs
§ What if a program changes permissions without user’s knowledge?
§ In general, “Trojan horse” programs can subvert DAC

q To overcome these problems, MAC moves the
responsibility to a central point, typically the system
administrator
o Organizations want to control access to their resources
o Don’t want to rely on individual employees to ensure that

organizational policies are enforced

CSE509 - Computer System Security - Slides: R Sekar

MAC Example: MLS
q Motivation: DAC does not provide any way to control the

manner in which information is used – it only says
whether it can be accessed or not.

q MLS policies control information flow, and hence control
how information is used

q Developed originally in the context of protecting
secrets in the military

CSE509 - Computer System Security - Slides: R Sekar

MLS: Confidentiality Policies
q Objects are labeled with a level

o Labels correspond to points in a lattice
o Typical levels used in military include:

§ unclassified, classified, secret, top secret

q Subjects associated with clearance levels
o A subject can access an object is his clearance level is equal to

or above the object’s level
q Information is also compartmentalized

o “Need-to-know” principle is used to decide who gets to access
what information
§ e.g., top-secret information regarding nuclear fuel processing is

made available to those working on nuclear-related projects

CSE509 - Computer System Security - Slides: R Sekar

MLS: Bell-LaPadula Model [1973]
q To ensure that sensitive information does not leak, we

need to ensure:
o No “read-up:”

§ A subject S can read object O only if C[S] >= L[O]
o No “write-down:”

§ A subject can write an object O only if C[S] <= L[O]
§ Prevents indirect flows where a top-secret-clearance subject

reads a top-secret file and writes to a secret file, which may then
be read by someone with a lower (ie secret) clearance

o Based on the idea that any subject that reads information at a
certain level has the potential to leak information at that level
whenever it outputs anything.

CSE509 - Computer System Security - Slides: R Sekar

MLS: Biba Model (Integrity)
q Designed to ensure integrity rather than confidentiality

o In non-military settings, integrity is more important
q Conditions

o No “read-down:”
§ A subject S can read object O only if C[S] <= L[O]
§ A subject’s integrity can be compromised by reading lower

integrity data, so this is disallowed
o No “write-up:”

§ A subject can write an object O only if C[S] >= L[O]
§ The integrity of a subject’s output can’t be greater than that of

the subject itself.

q Variation: Low Water-Mark Policy (LOMAC)
o Allow read-downs, but downgrade subject to the level of object

q Both policies ensure system integrity

CSE509 - Computer System Security - Slides: R Sekar

Problems with Information Flow

q In a nutshell: difficult to set up/use
o “Label creep:” More and more objects become sensitive, making

it difficult for the system to be used by lower-clearance
subjects

o Exceptions need to be made, e.g., an encryption programs
§ “Trusted” programs are allowed to be exempted from “*”-property
§ But exceptions are misused widely, since it is hard to configure

whole systems carefully so that “*”-property can be enforced
without breaking functionality

q Motivate alternate approaches, or hybrid approaches

CSE509 - Computer System Security - Slides: R Sekar

Alternative Approaches
q Key goal: Mitigate damage that may result from all-

powerful root privileges
o Break down root privilege into a number of sub-privileges
o Decouple user privileges from program privileges

q Examples
o Domain and type enforcement

§ SELinux
o “Linux capabilities”

§ not to be confused with capabilities as described earlier

CSE509 - Computer System Security - Slides: R Sekar

Domain and Type Enforcement
q Subjects belong to domains

o Users have default domains, but not all their processes belong
to the same domain
§ Some processes transition to another domain, typically when

executing another program

q Objects belong to types
q Policies specify

o Which domains have what access rights on which types
o Domain transitions

q Domain transitions are an important feature
o Enable application of least-privilege principle
o Example: a media player may need to write its configuration or

data files, but not libraries or config files of other applications

CSE509 - Computer System Security - Slides: R Sekar

DTE and SELinux
q Security-enhanced Linux combines standard UNIX DAC

with DTE
q Intuitively, the idea is to make access rights a function

of (user, program, object)
q Roughly speaking, MLS requires us to trust a program

(and not enforce “*”-property), or fully trust it (ie it
may do whatever it wants with information that it read)
o In contrast, DTE allows us to express limited trust, i.e., grant a

program only those rights that it needs to carry out its function

CSE509 - Computer System Security - Slides: R Sekar

DTE/SELinux Vs Information Flow
q In practice DTE has turned out to be “one policy per

application”
o Scalability is clearly an issue
o In addition, SELinux policies are quite complex
o While DTE is able to gain additional power because it captures

the fact that trust is not transitive, this very feature makes
DTE policies difficult to manage
§ What overall system-wide assurances can be obtained, given a set

of DTE policies developed independent of each other

q In contrast, information flow policies are simple, easier
to understand, and more closely relate to higher level
objectives
o Confidentiality or Integrity

CSE509 - Computer System Security - Slides: R Sekar

Linux (POSIX) Capabilities
q Decompose root privilege into a number of “capabilities”

o CAP_CHOWN
o CAP_DAC_OVERRIDE
o CAP_NET_BIND_SERVICE
o CAP_SETUID
o CAP_SYS_MODULE
o CAP_SYS_PTRACE
o ...

q Effective, Permitted and Inheritable capabilities
o Effective: accesses will be checked against this set
o Permitted: superset of effective, cannot be increased

§ Effective set can be set to include any subset of permitted
o Inheritable: capabilities retained after execve

§ at execve, permitted and effective sets are masked with
inheritable

CSE509 - Computer System Security - Slides: R Sekar

Linux (POSIX) Capabilities
q attaching capabilities to executables

o Allowed: capabilities not in this set are taken away on execve
o Forced: “setuid” like feature --- given to executable even if

parent does not have the capability
o Effective: Indicates which of the permitted bits are to be

transferred to effective

CSE509 - Computer System Security - Slides: R Sekar

Commercial Policies
q High-level policies in commercial environments are

somewhat different from those suitable for military
environments

q Examples
o Chinese Wall (conflict of interest)
o Clark-Wilson

q Common principles
o Separation of duty: critical functions need to be performed by

multiple users
o Auditing: ensure actions can be traced and attributed, and if

necessary, reverted (recoverability)

CSE509 - Computer System Security - Slides: R Sekar

Clark-Wilson Policy
q Focuses on data integrity rather than confidentiality

o Based on the observation that in the “real-world,” errors and
fraud are associated with loss of data integrity

q Based on the concept of well-formed transactions
o Data is processed by a series of WFTs
o Each WFT takes the system from one consistent state to

another
§ Operations within a WFT may temporarily make system state

inconsistent
o While the use of WFTs guarantee consistency of system state,

we need other mechanisms to ensure integrity of WFTs
themselves
§ Was that a fraudulent money transfer? Was that travel voucher

properly inspected?
Ø Relies primarily on separation of duty

o Auditing to verify integrity of transactions
o Maintain adequate logs so that WFTs in error can be undone

CSE509 - Computer System Security - Slides: R Sekar

Chinese Wall Policy
q Addresses “conflict of interest”

o Common in the context of financial industry
o Regulatory compliance, auditing, advising, consulting,..

q Defined in terms of
o CD: objects related to a single company
o COI classes: sets of companies that are competitors
o Policy: no person can have access to two CDs in the same COI

class
§ Implies past, present or future access

CSE509 - Computer System Security - Slides: R Sekar

Policies and Mechanisms for
Untrusted Code

q Isolation
o Two-way isolation

§ Chroot jails
§ Userid-based isolation
§ Virtual machines

o One-way isolation
§ Read access permitted, but write access denied

q System-call sandboxing
o Linux seccomp and seccomp-bpf
o Delegation

q Information flow

CSE509 - Computer System Security - Slides: R Sekar

chroot jails
q Makes the specified directory to be the root

o Process (and its children) can no longer access files outside this
directory

q Requires root privilege to chroot
o For security, relinquish root privilege after chroot
o All programs, libraries, configuration and data files used by this

process should be within this chroot’ed dir
q Isolation limited to file system

§ e.g., it does not block interprocess interactions
o For this reason, chroot jail is useful mainly to limit privilege

escalation; but the mechanisms is insecure against malicious
code.

CSE509 - Computer System Security - Slides: R Sekar

Userid based isolation
q Create a new userid for running untrusted code

o Real user’s userid is not used, so the “Trojan horse” problem of
altering permissions on user’s files is avoided

q Android uses one userid for each app
o Default permissions are set so that each app can read and write

only the files it owns (except a few system directories)
q Protects against malicious interprocess interactions

o kill, ptrace, …

CSE509 - Computer System Security - Slides: R Sekar

Userid based isolation
q Better than chroot, but still insufficient against

malicious code
o Can subvert benign processes by creating malicious files that

may be accidentally consumed by them
§ Many sandbox escape techniques work this way

o Too much information available via /proc, as well as system
directories that are public: Can use this info to exploit benign
processes via IPC

CSE509 - Computer System Security - Slides: R Sekar

One-way isolation
q Full isolation impacts usability

o untrusted applications are unable to access user’s files
o makes it difficult to use nonmalicious untrusted applications

q One-way isolation
o Untrusted application can read any data, but writes are limited

§ cannot overwrite user files
§ More importantly, benign applications don’t ever see untrusted files

Ø Eliminates the possibility of accidental compromise

CSE509 - Computer System Security - Slides: R Sekar

One-way isolation
q Key issues:

o Ensuring consistent view
§ Application creates a file and then reads it, or lists the directory
§ Inconsistencies typically lead to application failures

o Failures due to denied write permission
§ Can overcome by creating a private copy of the file

q Both issues overcome using copy-on-write file system
q Note: does not protect against lost of confidential data

o Needs additional policies (which files should be unreadable for
untrusted code)

q Note: securing user interactions is always a challenge,
especially because of how X-windows is designed

CSE509 - Computer System Security - Slides: R Sekar

System-call sandboxing: seccomp
q Seccomp is a Linux mechanisms for limiting system calls

that can be made by a process
o Processes in the seccomp sandbox can be make very few system

calls (exit, sigreturn, read, write).
q More secure than previous mechanisms, but greatly

limits actions that can be performed by a sandboxed
process
o Useful if setup properly, e.g., in Chrome, Docker, NativeClient

CSE509 - Computer System Security - Slides: R Sekar

System-call sandboxing: seccomp
q Seccomp-bpf is a more recent version that permits

configurable policies
o Allowable syscalls specified in the Berkeley packet filter

language
o Policies can reference syscall name and arguments in registers

q Unfortunately, most interesting policies are out-of-
scope, as they reference data in process memory, e.g.,
file names
o For this reason, seccomp-bpf is not much more useful than

seccomp

CSE509 - Computer System Security - Slides: R Sekar

System-call delegation
q Used in conjunction with strict syscall sandboxing

o Key idea: Delegate dangerous system calls to a helper process
o Helper process is trusted

§ it cannot be manipulated by untrusted process
§ can implement arbitrary, application-specific access control logic
§ avoids race conditions

q Works only if
o System call semantics permits delegation

§ e.g., not applicable fork or execve
o Results can be transferred back transparently to untrusted

process
§ e.g., file descriptors can be sent over UNIX domain sockets using

sendmsg

CSE509 - Computer System Security - Slides: R Sekar

Securing untrusted code using
information flow

q Untrusted code = low integrity, benign code = high
integrity

q Enforce the usual information flow policy that
o Deny low integrity subject’s writes to high integrity objects

§ Prevents “active subversion”
o Deny high integrity subject’s read of low integrity objects

§ Prevents “passive subversion”
Ø fooling a user (or a benign application) to perform an action, e.g., click

an icon on desktop
Ø exploit a benign process, e.g, benign image viewer compromised by

reading a malicious image file

q Can provide strong guarantee of integrity
o Not subject to “sandbox escapes”

q Usability issues still need to be addressed
CSE509 - Computer System Security - Slides: R Sekar

Policy Management

q Goal: simplify the set up and administration of security
policies

q Topics
o Role-based access control (RBAC)
o Administrative policies

§ Who can change what policies
o Delegation and trust management

CSE509 - Computer System Security - Slides: R Sekar

RBAC
q Roles vs groups: Very closely related concepts, but we

can make a distinction
o Role: a set of permissions
o Group: a set of users

q Roles and groups provide a level of indirection that
simplifies policy management
o Based on the functions performed by a user, he/she is given one

or more roles
§ When the user’s responsibilities change, the user’s roles are

updated
§ When the permissions needed to perform a function are changed,

the corresponding role’s permissions are updated
Ø Does not require any updating of user information

CSE509 - Computer System Security - Slides: R Sekar

Delegation
q Ability to transfer certain rights to another entity so

that it may act on behalf of the first entity
q Delegation is necessary for managing authorizations in a

distributed system
o Decentralized/distributed control

q How to implement delegation
o The issue is one of trust and granularity
o Multiple levels of delegation rely on a chain of trust

§ Can be implemented using certificates

q Trust management
o Systems designed to manage delegation, and enforce security

policies in the presence of delegation rules and certificates

CSE509 - Computer System Security - Slides: R Sekar

Questions?

CSE509 - Computer System Security - Slides: R Sekar

