CSE509 : Computer System Security

Authentication

Identity and Authentication

- Access rights granted on the basis of identity of the entity performing access (principal)
- Authentication mechanisms used to establish that a principal is who he/she claims to be
- Alternatively, one may be interested in proving that they have certain rights
- Covers
- User authentication
- Main focus in the next few pages
- Primary problem within single administrative domain where "the system" is trusted, but users are not
- Authentication between systems
- Primarily in the context of networked system, i.e., multiple domains with limited trust between them

Evolution of Password Schemes

- Early systems (1960-) stored plaintext passwords
- Frustrated by hackers that were able to get to this file
- UNIX (1970s): store only hashes of passwords
- Hash: one way function that is infeasible to revert
- Originally used DES, subsequently shifted to MD5
- MD5 now considered weak for this purpose, use SHA-512 or bcrypt
- Use of salt to thwart offline dictionary attacks
- Salt = different random value for each user, used in hashing: stored together with hashed password

Issues in Password-based Authentication

- Confidentiality of stored passwords
- Difficult to protect stored passwords
- Accidental disclosures (temporary copies left behind, accidental misconfiguration of file permissions)
- Motivated attacks on a high-value target
- Illicit copies made by system staff
- Stealing from backup tapes
- Solution
- Don't store plaintext passwords
- Original proposal: store DES25 Password(0)
- More recently, use hashes (MD5crypt, SHA-512crypt)
- For authentication, apply same process to usersupplied password, compare with stored value (in /etc/passwd)

Categories of Attacks on Passwords

- Offline attacks: attacker has access to hashed passwords
- Can make an unbounded number of attempts at guessing the password
- guess, hash, compare with the hashed password
- Brute-force attack
- Guess password, hash, compare
- Dictionary attack
- Use an intelligent algorithm to enumerate passwords
- In early days, this meant English dictionary or phone book
- Online attacks: no access to hashed passwords, so each attack attempt requires entering the password at the password dialog
- Systems limit number of attempts, so online attacks need to succeed within a few attempts.

CSE509 - Computer System Security - Slides: R Sekar

Password weaknesses [Morris, Thompson 79]

- In a collection of 3,289 passwords:
- 15 were a single ASCII character
- 72 were strings of two ASCII characters
- 464 were strings of three ASCII characters
- 477 were strings of four alphamerics
- 706 were five letters, all upper-case or all lowercase
- 605 were six letters, all lower-case
- 492 in various common dictionaries
- 86% of the 3,289 passwords were thus easy to crack
- Cracked in seconds in some cases, and 100 hours in the best case --- on computers of the 70s.

CSE509 - Computer System Security - Slides: R Sekar

Password weaknesses [www.troyhunt.com]

- Use of weak passwords is largely unchanged
- OK, there are almost no passwords of length < 4

Length

CSE509 - Computer System Security - Slides: R Sekar

Password weaknesses [www.troyhunt.com]

Character type exclusivity

\square Lowercase only \quad Numbers only ■Uppercase only \square Other

CSE509 - Computer System Security - Slides: R Sekar

Password weaknesses [www.troyhunt.com]

Password reuse across Sony and Gawker

■ Identical password ■ Unique password

Password weaknesses [www.troyhunt.com]

Sony passwords reused at Yahoo! Voices

■ Reused (case sensitive)

- Reused (different case)
- Unique

CSE509 - Computer System Security - Slides: R Sekar

Password weaknesses [www.troyhunt.com]

- Easy-to-remember passwords rely on patterns or algorithms
- that can be used to generate a candidate list
- Dictionary can also be built from passwords stolen from other sites

Prevalence of password in dictionaries

■ In password dictionary \quad Not in password dictionary

Password weaknesses [Gosney 12]

- Brute-force, dictionary attacks greatly speeded by GPUs

CSE509 - Computer System Security - Slides: R Sekar

Password weaknesses [Gosney 12]

- Even GPUs are not too fast for some hash algorithms

CSE509 - Computer System Security - Slides: R Sekar

Defending against Offline attacks

- Slow down offline attacks
- Make hash algorithm slower
- Make attacker repeat work for every user ("salt")
- Each user assigned a random salt value (which is stored in the password file)
- Original proposal: DES25 (Password||salt)(0)
- Eliminates attacks that hash once, compare against passwords of all users
- Protect password file
- letc/passwd is world-readable, so easy to steal
- Modern UNIX versions separate password hashes into an letc/shadow that is readable only by root

Online attacks

- Guessing is typically unsuccessful except for the most easily guessed password
- Delays: remove login prompt after 3 failed attempts
- Increase delay (e.g., double) after additional failures
- Lock outs: prevent user from login after N failures
- CAPTCHAs: make user solve CAPTCHA after N failures
- Password stealing is the most viable approach for succeeding in online attacks
- Network sniffers (solutions discussed later)
- Phishing (fake password dialogs)
- Keyloggers and other malware
- Password reset

Password Theft and Trusted Path

- How to make sure that your password is not stolen when it is used
- Key challenge today due to spyware, spoofing, phishing, etc.
- Trusted path: a secure way for a user to communicate with the subsystem performing user authentication
- Ctrl-Alt-Del on Windows
- Provided that the OS is not infected ...
- And the BIOS is not infected ...
- And the hardware is not malicious ...

Phishing and Trusted Path

- Phishing attacks typically involve tricking a user into revealing their passwords
- Attacker sets up a web site that looks like attack target, e.g., a bank web site
- Attacker steals the password when the user tries to log into the fake web site

Phishing Defenses

- Two-stage login with personalized prompts
- Security skins, site-keys (personalized images)
- Requires user vigilance
- Phisher may say "system failure, so we can't retrieve your image at this time"
- Small "key space" for possible images
- Security questions
- pain to use
- small key space
- answers easily guessed, especially by family/friends

Phishing Defenses

- SSL provides strong defense (completes trusted path)
- people lulled into accepting self-signed certificates
- But today's browsers provide stronger warning (or silenty suppress) sites that change a CA-provided certificate into a self-signed one
- social engineering ("our SSL servers are down today")
- DNS redirects!
- Compromise of Certification Authorities
- Once thought unlikely, but is increasingly being used against highvalue targets

Summary of Password weaknesses

- Offline
- Brute-force and dictionary attacks greatly speeded up by GPUs
- Dictionary attacks speed up the search, especially if they are based on passwords revealed in data breaches
- Online and offline:
- Use of weak passwords
- Keyloggers (and formerly, network sniffers)
- Social engineering (phishing)
- Password reset mechanisms

More password problems

- Easy-to-remember passwords may be easy to guess
- Dictionary attacks
- Password management
- Dealing with multiple passwords
- Writing passwords down (should I?)
- Password selection rules
- Password expiry rules

Password weaknesses: Non-solutions

- CAPTCHAs to defeat guessing attacks
- Increasingly, becoming too hard for humans!
- Security questions
- Often, answers are available on social media
- Password rules
- A nightmare for users
- Questionable increase in password strength
- Users often add easily guessed prefix or suffix to a simple password, e.g., "0-" or "\#1"
- Alternative password schemes
- Face or picture recognition

Improving basic password schemes

- Using master password
- Generate random passwords, encrypt them using master password, store them
- One-time (single-use) passwords (OTP)
- Biometrics (?)
- Visual passwords (??)
- Two-factor authentication: Require two forms of authentication
- Password + small device or smartcard
- Password + biometrics
- Password + OTP sent by email or text
- Relies on authentication needed to access email/text

Using Master Passwords

- A master password is used to encrypt all other passwords
- Focus on creating/remembering one strong password
- low tech approach: all other passwords written down in a file that is manually encrypted with the master password
- more usable approaches rely on "password managers"
- built into common applications
- ssh
- Browsers

Password managers on browsers

- Benefits
- Allows strong passwords unique to each website
- Generate a random password for each site
- Reduces theft due to practices such as writing them down
- Computers are not easily phished
- Avoids password being revealed to sites that
- look similar
- have URLs that are misspelled or have typos
- use http instead of https
- Immune to keyloggers and malware snooping on cut/paste buffers
- But key loggers can capture your master password
- Drawbacks
- Bad idea on shared devices
- False sense of security if master password can be stolen

CSE509 - Computer System Security - Slides: R Sekar

Authentication across the network

- Trust client to authenticate (avoid network transmission of password)
- Host-based authentication
- Used in NFS, also rsh/rlogin/rexec with hosts.equiv
- Not a great option today, as users often have admin privileges on client machines
- Server-side authentication of plaintext passwords
- Don't trust client computer; server performs this task
- Used by rsh/rlogin/rexec, telnet, ftp, etc.
- Bad option unless you trust all clients on the network
- Otherwise, easy password compromise by network sniffers

Authentication across the network

- Trust client to encrypt user-supplied password
- The encryption part is performed by the client, while the checking part is done by the server
- Only encrypted password transmitted over network
- But it is as good as unencrypted password!
- A rogue client can sniff and reuse this encrypted password to log into the server, without ever needing to decrypt it
- Solutions against such replay attacks
- One-time passwords (theft no longer a problem!)
- Challenge-response protocols (esp. using public keys)

One-time passwords

- Start with a password P to generate a sequence of onetime passwords $O_{1 . . .} O_{N}$
- Requirements: Ok should not provide any info about O_{k+1}, $\mathrm{O}_{\mathrm{k}+2, \ldots,}, \mathrm{O}_{\mathrm{N}}$
- Solution: $O_{k}=H^{N-k}(P)$, where H is a secure one-way hash function
- Protocol:
- System \rightarrow User: I
- User \rightarrow System: $H^{N-i}(P)$
- Even if user doesn't respond, use i+1 as next challenge
- Note: system need not store P, just the previous OTP
- check that H(current OTP) $=$ prev OTP

Challenge-response protocols

- SSH
- Password based authentication
- $S \rightarrow C: K U_{S}$
- $C \rightarrow S: E_{K U U S_{S}}\left(K_{S E S}=\right.$ random()), $E_{K_{S E S}}$ (password)
- All subsequent communication encrypted using $K_{\text {SES }}$
- Problems: integrity of KU_{S} not assured. SSH asks user to confirm the key the first time a server is accessed, and saves the key for use in future accesses to same server
- Public key based authentication
- $C \rightarrow$ S: KUUSER
- $S \rightarrow C$: Verify presence in ~user/.ssh/authorized_keys,
- send challenge $=E_{K U \text { USER }}$ (random)
- $C \rightarrow$ S: decrypt and send the result

Challenge-response protocols

- Web sites use password authentication over https
- $S \rightarrow C$: Public key certificate $E_{K R}\left(K_{S A}\right)$
- $C \rightarrow S: E_{K U_{S}}\left(K_{\text {SES }}=\right.$ random())
- All subsequent communication encrypted using K Kes
- Similar to SSH password authentication
- Protocols such as telnet can be made secure by simply carrying their traffic over https
- Challenges
- Certificates cost \$\$, so there were self-signed certs
- Users got used to certificate violations, ignored warnings
- Recently, certificates are available for free, so this problem is gradually disappearing
- Recent browsers make it difficult to ignore warnings
- Some violations silently disallowed, e.g., changes to certificates of certain servers

CSE509 - Computer System Security - Slides: R Sekar

Two-factor authentication: SecureID

- A hand-held device sold by RSA
- Widely deployed in enterprises
- Well-publicized hack on this system in early 2011 led to attacks on high-profile businesses
- Uses a device-specific secret to generate authentication token every minute or so
- E.g., AES ks $_{s}$ (Time)
- Tamper-resistant device, so one cannot steal K_{s}
- Server must know device-specific secret
- Combined with a PIN or password

Summary of User Authentication Approaches

- Something you know
- A secret key (password)
- Issues: difficulty of guessing, ease of remembering
- Something you have
- key, magnetic card, RFID chip, smart card, cell phone, ...
- Issue: possibility of losing
- Combine with a secret to minimize damage due to loss
- Something you are
- Fingerprint, photo, voice, handwriting, ...
- Issues: accuracy of recognition, possibility of stealing
- Works best in a supervised setting

Biometrics

- Authenticate by recognizing some aspect of human physiology, anatomy, skill or trait
- Physiological (fingerprint, iris, retina, face, hand geometry, DNA)
- Behavioral (keystroke, voice/speech, ...)
- Benefits:
- Convenience
- protection against poor choice of passwords
- more difficult to steal, particularly in controlled (supervised) setting
- Drawbacks
- Need for special equipment
- Not 100% reliable (false positives and negatives)
- User acceptance

CSE509 - Computer System Security - Slides: R Sekar

Biometrics: Terminology, Issues

- False match or acceptance rate (FMR/FAR)
- "fraud rate"
- False non-match/rejection rate (FNMR/FRR)
- "insult rate"
- trade-off between the two: equal error rate
- verification (pair-wise comparison) Vs
- identification (one-to-many comparison)
- even very small error rates get magnified for the latter, and hence become unacceptable.
- Issues
- User acceptance
- Privacy and discrimination
- Can't be canceled/changed if stolen
- Danger of physical harm to owner

CSE509 - Computer System Security - Slides: R Sekar

Handwritten signatures

- Routinely used in transactions and contracts for centuries
- Recognition may be manual, machine assisted or completely mechanical
- Different approaches may be warranted based on application
- legal Vs check-out counter Vs check-clearing for small checks
- Signature tablets
- record signature dynamics as well as the resulting image

Fingerprints

- most commonly used biometric
- Issues:
- even low error rates can compound when doing a oneto-many match
- manipulation: lift prints artificially and deposit where they are needed.
- ++ mature
- ++ as always, deterrent effect can be higher than actual effect

Iris recognition

- Benefits
- unique for each person
- does not wear out or is exposed to external environment
- easy to make out from a picture.
- many times the number of degrees of freedom as fingerprint
- minimally influenced by genetics
- stable through lifetime

Iris recognition

- Gabor filters -- a signal processing technique to transform an image of the iris into a 256-byte code. Two codes computed from same iris will match in 90% of the bits
- Compare with fingerprints, where detection, classification and orientation of minutiae is hard.
- Can achieve very high accuracy in controlled settings, but real-world performance not as good
- Other issues:
- Requires camera-to-eye distance of approx. 2ft or less (intrusive)
- Can potentially be copied

Voice Recognition

- text-dependent recognition (challengeresponse)
- noise can be a problem (may need microphone held close to mouth)
- one-to-many comparisons are not very accurate
- affected by stress, cold, alcohol or other drugs, ...

Other

- Keystroke dynamics
- Hand geometry
- Hand-drawn pictures
- Retina
- DNA

Problems with Biometrics

- age of reference data (eg fingerprint)
- age of data (when was that fingerprint left? yesterday when the bank robbery took place, or last week when there was a legitimate visit to the bank?)
- Recordings
- collusions (voluntarily provide bad writing samples or photos)
- birthday problem
- combining biometrics does not necessarily help: it may reduce false accepts, but at the cost of increased false rejects (or vice-versa)
- may not work for all users ("goats")
- objections based on social and religious concerns CSE509 - Computer System Security - Slides: R Sekar

Visual Passwords

- Leverage highly evolved visual perception
- Pictures seem so much easier to remember than the details in an arbitrary text password
- Several schemes
- Passpoints: select points on an image
- Select images from an array
- Passfaces: leverage human capacity to recall faces
- Random art
- Concrete nouns

Issues with Graphical Passwords

- Many of the basic attack techniques continue to work
- Dictionary attacks, guessing, social engineering, ...
- Shoulder-surfing
- Entropy
- User studies have revealed that users tend to favor some images over others, e.g., pretty faces of people from one's own race
- Memorability has not been conclusively demonstrated

Password weaknesses: Solutions

- Password managers, master passwords
- Often thwarted by lawyers and administrators
- Public keys, e.g., SSH or PGP
- Two-factor authentication
- Tokens, cards, biometrics, ...
- One-time passwords or PINs
- Especially useful if a channel trusted by both sender and receiver is always available, e.g., SMS

Summary of User Authentication

- Purpose: bind physical-world entities with cyber-world entities
- Means: Present "credentials"
- Secret
- Passwords
- Possession
- Key-card
- Biometrics
- Attacks: theft, guessing attacks,...
- Defenses
- Multi-factor authentication
- Password managers
- One-time passwords

CSE509 - Computer System Security - Slides: R Sekar

Questions?

