CSE509 : Computer System Security

Authentication

Identity and Authentication

- Access rights granted on the basis of identity of the entity performing access (principal)
- Authentication mechanisms used to establish that a principal is who he/she claims to be
 - Alternatively, one may be interested in proving that they have certain rights
- Covers
 - User authentication
 - Main focus in the next few pages
 - Primary problem within single administrative domain where "the system" is trusted, but users are not
 - Authentication between systems
 - Primarily in the context of networked system, i.e., multiple domains with limited trust between them

Evolution of Password Schemes

- Early systems (1960-) stored plaintext passwords
 - Frustrated by hackers that were able to get to this file
- UNIX (1970s): store only hashes of passwords
 - Hash: one way function that is infeasible to revert
 - Originally used DES, subsequently shifted to MD5
 - MD5 now considered weak for this purpose, use SHA- 512 or bcrypt
 - Use of salt to thwart offline dictionary attacks
 - Salt = different random value for each user, used in hashing; stored together with hashed password

Issues in Password-based Authentication

- Confidentiality of stored passwords
 - Difficult to protect stored passwords
 - Accidental disclosures (temporary copies left behind, accidental misconfiguration of file permissions)
 - Motivated attacks on a high-value target
 - Illicit copies made by system staff
 - Stealing from backup tapes
 - Solution
 - Don't store plaintext passwords
 - Original proposal: store DES25 Password(0)
 - More recently, use hashes (MD5crypt, SHA-512crypt)
 - For authentication, apply same process to usersupplied password, compare with stored value (in /etc/passwd)

Categories of Attacks on Passwords

- Offline attacks: attacker has access to hashed passwords
 - Can make an unbounded number of attempts at guessing the password
 - guess, hash, compare with the hashed password
 - Brute-force attack
 - Guess password, hash, compare
 - Dictionary attack
 - Use an intelligent algorithm to enumerate passwords
 - In early days, this meant English dictionary or phone book
- Online attacks: no access to hashed passwords, so each attack attempt requires entering the password at the password dialog
 - Systems limit number of attempts, so online attacks need to succeed within a few attempts.

Password weaknesses [Morris, Thompson 79]

- In a collection of 3,289 passwords:
 - 15 were a single ASCII character
 - 72 were strings of two ASCII characters
 - 464 were strings of three ASCII characters
 - 477 were strings of four alphamerics
 - 706 were five letters, all upper-case or all lowercase
 - 605 were six letters, all lower-case
 - 492 in various common dictionaries
- 86% of the 3,289 passwords were thus easy to crack
 - Cracked in seconds in some cases, and 100 hours in the best case --- on computers of the 70s.

- Use of weak passwords is largely unchanged
 - OK, there are almost no passwords of length < 4

Length

CSE509 - Computer System Security - Slides: R Sekar

Character type exclusivity

Password reuse across Sony and Gawker

Identical password Unique password

Sony passwords reused at Yahoo! Voices

- Easy-to-remember passwords rely on patterns or algorithms
 - that can be used to generate a candidate list
 - Dictionary can also be built from passwords stolen from other sites

In password dictionary

Not in password dictionary

Password weaknesses [Gosney 12]

 Brute-force, dictionary attacks greatly speeded by GPUs

Password weaknesses [Gosney 12]

• Even GPUs are not too fast for some hash algorithms

Defending against Offline attacks

- Slow down offline attacks
 - Make hash algorithm slower
 - Make attacker repeat work for every user ("salt")
 - Each user assigned a random salt value (which is stored in the password file)
 - Original proposal: DES²⁵ (Password||salt)(0)
 - Eliminates attacks that hash once, compare against passwords of all users
- Protect password file
 - /etc/passwd is world-readable, so easy to steal
 - Modern UNIX versions separate password hashes into an /etc/shadow that is readable only by root

Online attacks

- Guessing is typically unsuccessful except for the most easily guessed password
 - Delays: remove login prompt after 3 failed attempts
 - Increase delay (e.g., double) after additional failures
 - Lock outs: prevent user from login after N failures
 - CAPTCHAs: make user solve CAPTCHA after N failures
- Password stealing is the most viable approach for succeeding in online attacks
 - Network sniffers (solutions discussed later)
 - Phishing (fake password dialogs)
 - Keyloggers and other malware
 - Password reset

Password Theft and Trusted Path

- How to make sure that your password is not stolen when it is used
 - Key challenge today due to spyware, spoofing, phishing, etc.
- Trusted path: a secure way for a user to communicate with the subsystem performing user authentication
 - Ctrl-Alt-Del on Windows
 - Provided that the OS is not infected ...
 - And the BIOS is not infected ...
 - And the hardware is not malicious ...

Phishing and Trusted Path

- Phishing attacks typically involve tricking a user into revealing their passwords
 - Attacker sets up a web site that looks like attack target, e.g., a bank web site
 - Attacker steals the password when the user tries to log into the fake web site

Phishing Defenses

- Two-stage login with personalized prompts
 - Security skins, site-keys (personalized images)
 - Requires user vigilance
 - Phisher may say "system failure, so we can't retrieve your image at this time"
 - Small "key space" for possible images
 - Security questions
 - pain to use
 - small key space
 - answers easily guessed, especially by family/friends

Phishing Defenses

- SSL provides strong defense (completes trusted path)
 - people lulled into accepting self-signed certificates
 - But today's browsers provide stronger warning (or silenty suppress) sites that change a CA-provided certificate into a self-signed one
 - social engineering ("our SSL servers are down today")
 - DNS redirects!
 - Compromise of Certification Authorities
 - Once thought unlikely, but is increasingly being used against highvalue targets

Summary of Password weaknesses

- Offline
 - Brute-force and dictionary attacks greatly speeded up by GPUs
 - Dictionary attacks speed up the search, especially if they are based on passwords revealed in data breaches
- Online and offline:
 - Use of weak passwords
 - Keyloggers (and formerly, network sniffers)
 - Social engineering (phishing)
 - Password reset mechanisms

More password problems

- Easy-to-remember passwords may be easy to guess
 - Dictionary attacks
- Password management
 - Dealing with multiple passwords
 - Writing passwords down (should I?)
 - Password selection rules
 - Password expiry rules

Password weaknesses: Non-solutions

- CAPTCHAs to defeat guessing attacks
 - Increasingly, becoming too hard for humans!
- Security questions
 - Often, answers are available on social media
- Password rules
 - A nightmare for users
 - Questionable increase in password strength
 - Users often add easily guessed prefix or suffix to a simple password, e.g., "0-" or "#1"
- Alternative password schemes
 - Face or picture recognition

Improving basic password schemes

- Using master password
 - Generate random passwords, encrypt them using master password, store them
- One-time (single-use) passwords (OTP)
- Biometrics (?)
- Visual passwords (??)
- Two-factor authentication: Require two forms of authentication
 - Password + small device or smartcard
 - Password + biometrics
 - Password + OTP sent by email or text
 - Relies on authentication needed to access email/text

Using Master Passwords

- A master password is used to encrypt all other passwords
 - Focus on creating/remembering one strong password
 - low tech approach: all other passwords written down in a file that is manually encrypted with the master password
 - more usable approaches rely on "password managers"
 - built into common applications
 - ssh
 - Browsers

Password managers on browsers

- Benefits
 - Allows strong passwords unique to each website
 - Generate a random password for each site
 - Reduces theft due to practices such as writing them down
 - Computers are not easily phished
 - Avoids password being revealed to sites that
 - look similar
 - have URLs that are misspelled or have typos
 - use http instead of https
 - Immune to keyloggers and malware snooping on cut/paste buffers
 - But key loggers can capture your master password
- Drawbacks
 - Bad idea on shared devices
 - False sense of security if master password can be stolen

Authentication across the network

- Trust client to authenticate (avoid network transmission of password)
 - Host-based authentication
 - Used in NFS, also rsh/rlogin/rexec with hosts.equiv
 - Not a great option today, as users often have admin privileges on client machines
- Server-side authentication of plaintext passwords
 - Don't trust client computer; server performs this task
 - Used by rsh/rlogin/rexec, telnet, ftp, etc.
 - Bad option unless you trust all clients on the network
 - Otherwise, easy password compromise by network sniffers

Authentication across the network

- Trust client to encrypt user-supplied password
 - The encryption part is performed by the client, while the checking part is done by the server
 - Only encrypted password transmitted over network
 - But it is as good as unencrypted password!
 - A rogue client can sniff and reuse this encrypted password to log into the server, without ever needing to decrypt it
- Solutions against such replay attacks
 - One-time passwords (theft no longer a problem!)
 - Challenge-response protocols (esp. using public keys)

One-time passwords

- Start with a password P to generate a sequence of one-time passwords $O_1 ... O_N$
 - Requirements: Ok should not provide any info about O_{k+1} , O_{k+2} ,..., O_N
- Solution: $O_k = H^{N-k}(P)$, where H is a secure one-way hash function
- Protocol:
 - System \rightarrow User: I
 - User \rightarrow System: $H^{N-i}(P)$
 - Even if user doesn't respond, use i+1 as next challenge
- Note: system need not store P, just the previous OTP
 - check that H(current OTP) = prev OTP

Challenge-response protocols

SSH

- Password based authentication
 - $S \rightarrow C: KU_S$
 - $C \rightarrow S: E_{KU_S}(K_{SES} = random()), E_{K_{SES}}(password)$
 - All subsequent communication encrypted using K_{SES}
 - Problems: integrity of KU_S not assured. SSH asks user to confirm the key the first time a server is accessed, and saves the key for use in future accesses to same server
- Public key based authentication
 - $C \rightarrow S$: KU_{USER}
 - $S \rightarrow C$: Verify presence in ~user/.ssh/authorized_keys,
 - send challenge = $E_{KU_{USFR}}$ (random)
 - $C \rightarrow S$: decrypt and send the result

Challenge-response protocols

- Web sites use password authentication over https
 - $S \rightarrow C$: Public key certificate $E_{KR_{CA}}(KU_S)$
 - $C \rightarrow S: E_{KU_S}(K_{SES} = random())$
 - All subsequent communication encrypted using K_{SES}
- Similar to SSH password authentication
- Protocols such as telnet can be made secure by simply carrying their traffic over https
- Challenges
 - Certificates cost \$\$, so there were self-signed certs
 - Users got used to certificate violations, ignored warnings
 - Recently, certificates are available for free, so this problem is gradually disappearing
 - Recent browsers make it difficult to ignore warnings
 - Some violations silently disallowed, e.g., changes to certificates of certain servers

Two-factor authentication: SecureID

- A hand-held device sold by RSA
 - Widely deployed in enterprises
 - Well-publicized hack on this system in early 2011 led to attacks on high-profile businesses
- Uses a device-specific secret to generate authentication token every minute or so
 - E.g., AES_{Ks}(Time)
 - Tamper-resistant device, so one cannot steal K_s
 - Server must know device-specific secret
- Combined with a PIN or password

Summary of User Authentication Approaches

- Something you know
 - A secret key (password)
 - Issues: difficulty of guessing, ease of remembering
- Something you have
 - key, magnetic card, RFID chip, smart card, cell phone, ...
 - Issue: possibility of losing
 - Combine with a secret to minimize damage due to loss
- Something you are
 - Fingerprint, photo, voice, handwriting, ...
 - Issues: accuracy of recognition, possibility of stealing
 - Works best in a supervised setting

Biometrics

- Authenticate by recognizing some aspect of human physiology, anatomy, skill or trait
 - Physiological (fingerprint, iris, retina, face, hand geometry, DNA)
 - Behavioral (keystroke, voice/speech, ...)
- Benefits:
 - Convenience
 - protection against poor choice of passwords
 - more difficult to steal, particularly in controlled (supervised) setting
- Drawbacks
 - Need for special equipment
 - Not 100% reliable (false positives and negatives)
 - User acceptance

Biometrics: Terminology, Issues

- False match or acceptance rate (FMR/FAR)
 - "fraud rate"
- False non-match/rejection rate (FNMR/FRR)
 - "insult rate"
- trade-off between the two: equal error rate
- verification (pair-wise comparison) Vs
- identification (one-to-many comparison)
 - even very small error rates get magnified for the latter, and hence become unacceptable.
- Issues
 - User acceptance
 - Privacy and discrimination
 - Can't be canceled/changed if stolen
 - Danger of physical harm to owner

Handwritten signatures

- Routinely used in transactions and contracts for centuries
- Recognition may be manual, machine assisted or completely mechanical
- Different approaches may be warranted based on application
 - legal Vs check-out counter Vs check-clearing for small checks
- Signature tablets
 - record signature dynamics as well as the resulting image

Fingerprints

- most commonly used biometric
- Issues:
 - even low error rates can compound when doing a oneto-many match
 - manipulation: lift prints artificially and deposit where they are needed.
 - ++ mature
 - ++ as always, deterrent effect can be higher than actual effect

Iris recognition

- Benefits
 - unique for each person
 - does not wear out or is exposed to external environment
 - easy to make out from a picture.
 - many times the number of degrees of freedom as fingerprint
 - minimally influenced by genetics
 - stable through lifetime

Iris recognition

- Gabor filters -- a signal processing technique to transform an image of the iris into a 256-byte code. Two codes computed from same iris will match in 90% of the bits
 - Compare with fingerprints, where detection, classification and orientation of minutiae is hard.
- Can achieve very high accuracy in controlled settings, but real-world performance not as good
- Other issues:
 - Requires camera-to-eye distance of approx. 2ft or less (intrusive)
 - Can potentially be copied

Voice Recognition

- text-dependent recognition (challengeresponse)
- noise can be a problem (may need microphone held close to mouth)
- one-to-many comparisons are not very accurate
- affected by stress, cold, alcohol or other drugs, ...

Other

- Keystroke dynamics
- Hand geometry
- Hand-drawn pictures
- Retina
- DNA

Problems with Biometrics

- age of reference data (eg fingerprint)
- age of data (when was that fingerprint left? yesterday when the bank robbery took place, or last week when there was a legitimate visit to the bank?)
- Recordings
- collusions (voluntarily provide bad writing samples or photos)
- birthday problem
- combining biometrics does not necessarily help: it may reduce false accepts, but at the cost of increased false rejects (or vice-versa)
- may not work for all users ("goats")
- objections based on social and religious concerns

Visual Passwords

- Leverage highly evolved visual perception
 - Pictures seem so much easier to remember than the details in an arbitrary text password
- Several schemes
 - Passpoints: select points on an image
 - Select images from an array
 - Passfaces: leverage human capacity to recall faces
 - Random art
 - Concrete nouns

Issues with Graphical Passwords

- Many of the basic attack techniques continue to work
 - Dictionary attacks, guessing, social engineering, ...
- Shoulder-surfing
- Entropy
 - User studies have revealed that users tend to favor some images over others, e.g., pretty faces of people from one's own race
- Memorability has not been conclusively demonstrated

Password weaknesses: Solutions

- Password managers, master passwords
 - Often thwarted by lawyers and administrators
- Public keys, e.g., SSH or PGP
- Two-factor authentication
 - Tokens, cards, biometrics, ...
- One-time passwords or PINs
 - Especially useful if a channel trusted by both sender and receiver is always available, e.g., SMS

Summary of User Authentication

- Purpose: bind physical-world entities with cyber-world entities
- Means: Present "credentials"
 - Secret
 - Passwords
 - Possession
 - Key-card
 - Biometrics
- Attacks: theft, guessing attacks,...
- Defenses
 - Multi-factor authentication
 - Password managers
 - One-time passwords

Questions?