
CSE509 : Computer System 
Security



Security
• Communication security
• security of data channel
• typical assumption: adversary has access to the 

physical link over which data is transmitted
• cryptographic separation is necessary

• System Security
• security at the end points
• information cannot be encrypted, as it needs to 

be accessed by applications on the end system
• logical separation is typically the basis

CSE509 - Computer System Security - Slides: R Sekar



Security Concerns

CSE509 - Computer System Security - Slides: R Sekar

Availability                                     Confidentiality

Authenticity, integrity                          Nonrepudiability



How to achieve security

• Basis is separation
• Separate adversarial entities

• How to separate adversaries?
• Physical separation
• Temporal separation
• Cryptographic separation
• Logical separation

• Security vs Functionality
• Controlled sharing
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Cryptography
• Encode the data in a manner that makes it 

accessible only to authorized parties
• Encryption algorithm
• Encryption key

• Why it is not a good idea to rely on 
secrecy of algorithm
• Hard to develop good encryption algorithm
• Does not scale beyond a few users
• Security by obscurity

• Key point: need to preserve secrecy of key
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Crypto
q Cryptology ¾ The art and science of 

making and breaking “secret codes”
q Cryptography ¾ making “secret codes”
• Encryption (Ek(X)) Vs Decryption (Dk(X))
• Key Vs Algorithm

q Cryptanalysis ¾ breaking “secret codes” -
Discover k, X or both

q Crypto ¾ all of the above (and more)
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How to Speak Crypto
q A cipher or cryptosystem is used to encrypt 

the plaintext 
q The result of encryption is ciphertext
q We decrypt ciphertext to recover plaintext
q A key is used to configure a cryptosystem
q A symmetric key cryptosystem uses the same 

key to encrypt as to decrypt
q A public key cryptosystem uses a public key

to encrypt and a private key to decrypt
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Crypto
q Basic assumptions

o The system is completely known to the attacker
o Only the key is secret
o That is, crypto algorithms are not secret

q This is known as Kerckhoffs’ Principle
q Why do we make such an assumption?

o Experience has shown that secret algorithms 
tend to be weak when exposed

o Secret algorithms never remain secret
o Better to find weaknesses beforehand
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Crypto as Black Box

plaintext

keykey

plaintext

ciphertext

A generic view of symmetric key crypto

encrypt decrypt
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Simple Substitution
q Plaintext: fourscoreandsevenyearsago
q Key:

a b c d e f g h i j k l m n o p q r s t u v w x y

D E F G H I J K L M N O P Q R S T U V W X Y Z A B

z

C

q Ciphertext: 
IRXUVFRUHDQGVHYHQBHDUVDJR

q Shift by 3 is “Caesar’s cipher”

Plaintext

Ciphertext
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Ceasar’s Cipher Decryption

q Plaintext: spongebobsquarepants

a b c d e f g h i j k l m n o p q r s t u v w x y

D E F G H I J K L M N O P Q R S T U V W X Y Z A B

z

C

Plaintext

Ciphertext

q Suppose we know a Caesar’s cipher is 
being used:

q Given ciphertext:
VSRQJHEREVTXDUHSDQWV
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Not-so-Simple Substitution
q Shift by n for some n Î {0,1,2,…,25}
q Then key is n
q Example: key n = 7

a b c d e f g h i j k l m n o p q r s t u v w x y

H I J K L M N O P Q R S T U V W X Y Z A B C D E F

z

G

Plaintext

Ciphertext
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Cryptanalysis I: Try Them All
q A simple substitution (shift by n) is used

o But the key is unknown
q Given ciphertext: CSYEVIXIVQMREXIH
q How to find the key?
q Only 26 possible keys ¾ try them all!
q Exhaustive key search
q Solution: key is n = 4
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Simple Substitution: General Case
q In general, simple substitution key can be 

any permutation of letters
o Not necessarily a shift of the alphabet

q For example

a b c d e f g h i j k l m n o p q r s t u v w x y

J I C A X S E Y V D K W B Q T Z R H F M P N U L G

z

O

Plaintext

Ciphertext

q Then 26! > 288 possible keys
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Cryptanalysis II: Be Clever
q We know that a simple substitution is used
q But not necessarily a shift by n
q Find the key given the ciphertext: 

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOX
BTFXQWAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQ
WAEBIPBFXFQVXGTVJVWLBTPQWAEBFPBFHCVLXBQUFEVWLXGD
PEQVPQGVPPBFTIXPFHXZHVFAGFOTHFEFBQUFTDHZBQPOTHXTY
FTODXQHFTDPTOGHFQPBQWAQJJTODXQHFOQPWTBDHHIXQV
APBFZQHCFWPFHPBFIPBQWKFABVYYDZBOTHPBQPQJTQOTOGHF
QAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWF
LQHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAITIXPFH
XAFQHEFZQWGFLVWPTOFFA
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Cryptanalysis II
q Cannot try all 288 simple substitution keys
q Can we be more clever?
q English letter frequency counts…

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
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Cryptanalysis II
q Ciphertext: 

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOXBTFXQ
WAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFQ
VXGTVJVWLBTPQWAEBFPBFHCVLXBQUFEVWLXGDPEQVPQGVPPBFTIXPFH
XZHVFAGFOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFQPBQW
AQJJTODXQHFOQPWTBDHHIXQVAPBFZQHCFWPFHPBFIPBQWKFABVYY
DZBOTHPBQPQJTQOTOGHFQAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFF
ACFCCFHQWAUVWFLQHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFH
FQAITIXPFHXAFQHEFZQWGFLVWPTOFFA

A B C D E F G H I J K L M N O P Q R S T U V W X Y
21 26 6 10 12 51 10 25 10 9 3 10 0 1 15 28 42 0 0 27 4 24 22 28 6

Z
8

Ciphertext frequency counts:

q Analyze this message using statistics below



What if…
q We encrypted ‘Gadsby’? A 50,000 

word novel WITHOUT the letter ‘e’?
q https://en.wikipedia.org/wiki/Gadsby

_(novel)
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https://en.wikipedia.org/wiki/Gadsby_(novel)
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Cryptanalysis: Terminology
q Cryptosystem is secure if best know 

attack is to try all keys
o Exhaustive key search, that is

q Cryptosystem is insecure if any
shortcut attack is known

q But then insecure cipher might be 
harder to break than a secure cipher!
o What the … ?
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Claude Shannon
q The founder of Information Theory
q 1949 paper: Comm. Thy. of Secrecy Systems
q Fundamental concepts

o Confusion ¾ obscure relationship between 
plaintext and ciphertext

o Diffusion ¾ spread plaintext statistics through 
the ciphertext

q Proved one-time pad is secure
q One-time pad is confusion-only, while double 

transposition is diffusion-only

http://www.cs.ucla.edu/~jkong/research/security/shannon1949.pdf
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Taxonomy of Cryptography
q Symmetric Key

o Same key for encryption and decryption
o Modern types: Stream ciphers, Block ciphers

q Public Key (or “asymmetric” crypto)
o Two keys, one for encryption (public), and one 

for decryption (private)
o And digital signatures ¾ nothing comparable in 

symmetric key crypto
q Hash algorithms

o Can be viewed as “one way” crypto
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Taxonomy of Cryptanalysis
q From perspective of info available to Trudy…

o Ciphertext only ¾ Trudy’s worst case scenario
o Known plaintext
o Chosen plaintext

§ “Lunchtime attack”
§ Some protocols will encrypt chosen data

o Adaptively chosen plaintext
o Related key
o Forward search (public key crypto)
o And others…
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Symmetric Key Crypto
q Stream cipher ¾ generalize one-time pad

o Except that key is relatively short
o Key is stretched into a long keystream
o Keystream is used just like a one-time pad

q Block cipher ¾ generalized codebook
o Block cipher key determines a codebook
o Each key yields a different codebook
o Employs both “confusion” and “diffusion”
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Stream Ciphers
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Stream Ciphers
q Once upon a time, not so very long ago… 

stream ciphers were the king of crypto
q Today, not as popular as block ciphers
q We’ll discuss two stream ciphers:
q A5/1

o Based on shift registers
o Used in GSM mobile phone system

q RC4
o Based on a changing lookup table
o Used many places
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A5/1: Shift Registers
q A5/1 uses 3 shift registers
o X: 19 bits (x0,x1,x2,…,x18)
o Y: 22 bits (y0,y1,y2,…,y21)
o Z: 23 bits (z0,z1,z2,…,z22)
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A5/1: Keystream
q At each iteration: m = maj(x8, y10, z10)

o Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1
q If x8 = m then X steps

o t = x13 Å x16 Å x17 Å x18
o xi = xi-1 for i = 18,17,…,1 and x0 = t

q If y10 = m then Y steps
o t = y20 Å y21
o yi = yi-1 for i = 21,20,…,1 and y0 = t

q If z10 = m then Z steps
o t = z7 Å z20 Å z21 Å z22
o zi = zi-1 for i = 22,21,…,1 and z0 = t

q Keystream bit is x18 Å y21 Å z22
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A5/1

q Each variable here is a single bit
q Key is used as initial fill of registers
q Each register steps (or not) based on maj(x8, y10, z10)
q Keystream bit is XOR of rightmost bits of registers

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22

X

Y

Z

Å

Å

Å

Å

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18
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A5/1

q In this example, m = maj(x8, y10, z10) = maj(1,0,1) = 1
q Register X steps, Y does not step, and Z steps
q Keystream bit is XOR of right bits of registers
q Here, keystream bit will be 0 Å 1 Å 0 = 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1

X

Y

Z

Å

Å

Å

Å

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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Shift Register Crypto
q Shift register crypto efficient in hardware
q Often, slow if implemented in software
q In the past, very, very popular
q Today, more is done in software due to 

fast processors
q Shift register crypto still used some

o Especially in resource-constrained devices
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RC4
q A self-modifying lookup table
q Table always contains a permutation of the 

byte values 0,1,…,255
q Initialize the permutation using key
q At each step, RC4 does the following

o Swaps elements in current lookup table
o Selects a keystream byte from table

q Each step of RC4 produces a byte
o Efficient in software

q Each step of A5/1 produces only a bit
o Efficient in hardware
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RC4 Initialization
q S[] is permutation of 0,1,...,255
q key[] contains N bytes of key

for i = 0 to 255
S[i] = i
K[i] = key[i (mod N)]

next i
j = 0
for i = 0 to 255

j = (j + S[i] + K[i]) mod 256
swap(S[i], S[j])

next i
i = j = 0
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RC4 Keystream
q At each step, swap elements in table and 

select keystream byte
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap(S[i], S[j])
t = (S[i] + S[j]) mod 256
keystreamByte = S[t]

q Use keystream bytes like a one-time pad
q Note: first 256 bytes should be discarded

o Otherwise, related key attack exists



CSE509 - Part I Cryptography - Slides: Mark Stamp

Stream Ciphers
q Stream ciphers were popular in the past

o Efficient in hardware
o Speed was needed to keep up with voice, etc.
o Today, processors are fast, so software-based 

crypto is usually more than fast enough

q Future of stream ciphers?
o Shamir declared “the death of stream ciphers”
o May be greatly exaggerated…
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Block Ciphers
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(Iterated) Block Cipher
q Plaintext and ciphertext consist of 

fixed-sized blocks
q Ciphertext obtained from plaintext 

by iterating a round function
q Input to round function consists of 

key and output of previous round
q Usually implemented in software
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Feistel Cipher: Encryption
q Feistel cipher is a type of block cipher

o Not a specific block cipher
q Split plaintext block into left and right 

halves: P = (L0, R0)
q For each round i = 1, 2, ..., n, compute

Li = Ri-1
Ri = Li-1 Å F(Ri-1, Ki)
where F is round function and Ki is subkey

q Ciphertext: C = (Ln, Rn)
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Feistel Cipher: Decryption
q Start with ciphertext C = (Ln, Rn)
q For each round i = n, n-1, …, 1, compute

Ri-1 = Li
Li-1 = Ri Å F(Ri-1, Ki)
where F is round function and Ki is subkey

q Plaintext: P = (L0, R0)
q Decryption works for any function F

o But only secure for certain functions F
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Data Encryption Standard
q DES developed in 1970’s
q Based on IBM’s Lucifer cipher
q DES was U.S. government standard
q Development of DES was controversial

o NSA secretly involved 
o Design process was secret
o Key length reduced from 128 to 56 bits
o Subtle changes to Lucifer algorithm
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DES Numerology
q DES is a Feistel cipher with…

o 64 bit block length
o 56 bit key length
o 16 rounds
o 48 bits of key used each round (subkey)

q Round function is simple (for block cipher)
q Security depends heavily on “S-boxes”

o Each S-box maps 6 bits to 4 bits



CSE509 - Part I Cryptography - Slides: Mark Stamp

L R
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key

key

S-boxes

compress

L R
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DES Expansion Permutation
q Input 32 bits

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

q Output 48 bits
31  0  1  2  3  4  3  4  5  6  7  8
7  8  9 10 11 12 11 12 13 14 15 16

15 16 17 18 19 20 19 20 21 22 23 24
23 24 25 26 27 28 27 28 29 30 31  0
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DES S-box
q 8 “substitution boxes” or S-boxes
q Each S-box maps 6 bits to 4 bits
q Here is S-box number 1
input bits (0,5)
¯ input bits (1,2,3,4)

| 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
------------------------------------------------------------------------------------
00 | 1110 0100 1101 0001 0010 1111 1011 1000 0011 1010 0110 1100 0101 1001 0000 0111
01 | 0000 1111 0111 0100 1110 0010 1101 0001 1010 0110 1100 1011 1001 0101 0011 1000
10 | 0100 0001 1110 1000 1101 0110 0010 1011 1111 1100 1001 0111 0011 1010 0101 0000
11 | 1111 1100 1000 0010 0100 1001 0001 0111 0101 1011 0011 1110 1010 0000 0110 1101
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DES P-box
q Input 32 bits

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

q Output 32 bits
15  6 19 20 28 11 27 16  0 14 22 25  4 17 30  9
1  7 23 13 31 26  2  8 18 12 29  5 21 10  3 24
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DES Subkey
q 56 bit DES key, numbered 0,1,2,…,55
q Left half key bits, LK

49 42 35 28 21 14  7  
0 50 43 36 29 22 15
8  1 51 44 37 30 23

16  9  2 52 45 38 31

q Right half key bits, RK
55 48 41 34 27 20 13
6 54 47 40 33 26 19

12  5 53 46 39 32 25
18 11  4 24 17 10  3
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DES Subkey
q For rounds i=1,2,...,16

o Let LK = (LK circular shift left by ri)

o Let RK = (RK circular shift left by ri)

o Left half of subkey Ki is of LK bits
13 16 10 23  0  4  2 27 14  5 20  9
22 18 11  3 25  7 15  6 26 19 12  1

o Right half of subkey Ki is RK bits
12 23  2  8 18 26  1 11 22 16  4 19
15 20 10 27  5 24 17 13 21  7  0  3
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DES Subkey
q For rounds 1, 2, 9 and 16 the shift ri is 1, 

and in all other rounds ri is 2
q Bits 8,17,21,24 of LK omitted each round
q Bits 6,9,14,25 of RK omitted each round
q Compression permutation yields 48 bit 

subkey Ki from 56 bits of LK and RK
q Key schedule generates subkey
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DES Last Word (Almost)
q An initial permutation before round 1
q Halves are swapped after last round
q A final permutation (inverse of initial 

perm) applied to (R16, L16)
q None of this serves any security 

purpose
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Security of DES
q Security depends heavily on S-boxes

o Everything else in DES is linear
q 35+ years of intense analysis has revealed 

no back door
q Attacks, essentially exhaustive key search
q Inescapable conclusions

o Designers of DES knew what they were doing
o Designers of DES were way ahead of their time 

(at least wrt certain cryptanalytic techniques)
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Block Cipher Notation
q P = plaintext block 
q C = ciphertext block
q Encrypt P with key K to get ciphertext C

o C = E(P, K)

q Decrypt C with key K to get plaintext P
o P = D(C, K)

q Note: P = D(E(P, K), K) and C = E(D(C, K), K)
o But P ¹ D(E(P, K1), K2) and C ¹ E(D(C, K1), K2) when 

K1 ¹ K2
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Triple DES
q Today, 56 bit DES key is too small

o Exhaustive key search is feasible
q But DES is everywhere, so what to do?
q Triple DES or 3DES (112 bit key)

o C = E(D(E(P,K1),K2),K1)
o P = D(E(D(C,K1),K2),K1)

q Why Encrypt-Decrypt-Encrypt with 2 keys?
o Backward compatible: E(D(E(P,K),K),K) = E(P,K)
o And 112 is a lot of bits
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3DES
q Why not C = E(E(P,K),K) instead?

o Trick question ¾ still just 56 bit key
q Why not C = E(E(P,K1),K2) instead?
q A (semi-practical) known plaintext attack

o Pre-compute table of E(P,K1) for every possible 
key K1 (resulting table has 256 entries) 

o Then for each possible K2 compute D(C,K2) until 
a match in table is found

o When match is found, have E(P,K1) = D(C,K2)
o Result gives us keys: C = E(E(P,K1),K2)
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Advanced Encryption Standard
q Replacement for DES
q AES competition (late 90’s)

o NSA openly involved
o Transparent selection process
o Many strong algorithms proposed
o Rijndael Algorithm ultimately selected 

(pronounced like “Rain Doll” or “Rhine Doll”)
q Iterated block cipher (like DES)
q Not a Feistel cipher (unlike DES)
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AES: Executive Summary
q Block size: 128 bits (others in Rijndael)
q Key length: 128, 192 or 256 bits 

(independent of block size in Rijndael)
q 10 to 14 rounds (depends on key length)
q Each round uses 4 functions (3 “layers”)

o ByteSub (nonlinear layer)
o ShiftRow (linear mixing layer)
o MixColumn (nonlinear layer)
o AddRoundKey (key addition layer)
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AES ByteSub

q ByteSub is AES’s “S-box”
q Can be viewed as nonlinear (but invertible) 

composition of two math operations

q Treat 128 bit block as 4x4 byte array
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AES “S-box”

First 4
bits of
input

Last 4 bits of input



CSE509 - Part I Cryptography - Slides: Mark Stamp

AES ShiftRow
q Cyclic shift rows
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AES MixColumn

q Implemented as a (big) lookup table

q Invertible, linear operation applied to 
each column



AES MixColumn
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AES AddRoundKey

q RoundKey (subkey) determined by key 
schedule algorithm

q XOR subkey with block

Block Subkey
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AES Decryption
q To decrypt, process must be invertible
q Inverse of MixAddRoundKey is easy, since 

“Å” is its own inverse
q MixColumn is invertible (inverse is also 

implemented as a lookup table)
q Inverse of ShiftRow is easy (cyclic shift 

the other direction)
q ByteSub is invertible (inverse is also 

implemented as a lookup table)
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A Few Other Block Ciphers
q Briefly…

o IDEA
o Blowfish
o RC6
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IDEA
q Invented by James Massey

o One of the giants of modern crypto
q IDEA has 64-bit block, 128-bit key
q IDEA uses mixed-mode arithmetic
q Combine different math operations

o IDEA the first to use this approach
o Frequently used today
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Blowfish
q Blowfish encrypts 64-bit blocks
q Key is variable length, up to 448 bits
q Invented by Bruce Schneier
q Almost a Feistel cipher

Ri = Li-1 Å Ki
Li = Ri-1 Å F(Li-1 Å Ki)

q The round function F uses 4 S-boxes
o Each S-box maps 8 bits to 32 bits

q Key-dependent S-boxes
o S-boxes determined by the key
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RC6
q Invented by Ron Rivest
q Variables

o Block size
o Key size
o Number of rounds

q An AES finalist
q Uses data dependent rotations

o Unusual for algorithm to depend on plaintext
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Block Cipher Modes
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Multiple Blocks
q How to encrypt multiple blocks?
q Do we need a new key for each block?

o If so, as impractical as a one-time pad!

q Encrypt each block independently?
q Is there any analog of codebook “additive”?
q How to handle partial blocks?

o We won’t discuss this issue
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Modes of Operation
q Many modes ¾ we discuss 3 most popular
q Electronic Codebook (ECB) mode

o Encrypt each block independently
o Most obvious approach, but a bad idea

q Cipher Block Chaining (CBC) mode
o Chain the blocks together
o More secure than ECB, virtually no extra work

q Counter Mode (CTR) mode
o Block ciphers acts like a stream cipher
o Popular for random access
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ECB Mode
q Notation: C = E(P, K)
q Given plaintext P0, P1, …, Pm, …
q Most obvious way to use a block cipher:

Encrypt Decrypt
C0 = E(P0, K) P0 = D(C0, K) 
C1 = E(P1, K) P1 = D(C1, K)
C2 = E(P2, K)  … P2 = D(C2, K)  …

q For fixed key K, this is “electronic” version 
of a codebook cipher (without additive)
o With a different codebook for each key
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ECB Cut and Paste
q Suppose plaintext is 

Alice digs Bob. Trudy digs Tom.
q Assuming 64-bit blocks and 8-bit ASCII:

P0 = “Alice di”, P1 = “gs Bob. ”,
P2 = “Trudy di”, P3 = “gs Tom. ”

q Ciphertext: C0, C1, C2, C3
q Trudy cuts and pastes: C0, C3, C2, C1

q Decrypts as
Alice digs Tom. Trudy digs Bob.
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ECB Weakness
q Suppose Pi = Pj

q Then Ci = Cj and Trudy knows Pi = Pj

q This gives Trudy some information, 
even if she does not know Pi or Pj

q Trudy might know Pi

q Is this a serious issue?
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Alice Hates ECB Mode
q Alice’s uncompressed image, and ECB encrypted (TEA)

q Why does this happen?
q Same plaintext yields same ciphertext!
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CBC Mode
q Blocks are “chained” together
q A random initialization vector, or IV, is 

required to initialize CBC mode
q IV is random, but not secret

Encryption Decryption
C0 = E(IV Å P0, K), P0 = IV Å D(C0, K),
C1 = E(C0 Å P1, K), P1 = C0 Å D(C1, K),
C2 = E(C1 Å P2, K),… P2 = C1 Å D(C2, K),…

q Analogous to classic codebook with additive
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CBC Mode
q Identical plaintext blocks yield different 

ciphertext blocks ¾ this is very good!
q But what about errors in transmission?

o If C1 is garbled to, say, G then
P1 ¹ C0 Å D(G, K), P2 ¹ G Å D(C2, K)

o But P3 = C2 Å D(C3, K), P4 = C3 Å D(C4, K), …
o Automatically recovers from errors!

q Cut and paste is still possible, but more 
complex (and will cause garbles)
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Alice Likes CBC Mode
q Alice’s uncompressed image, Alice CBC encrypted (TEA)

q Why does this happen?
q Same plaintext yields different ciphertext!
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Counter Mode (CTR)
q CTR is popular for random access
q Use block cipher like a stream cipher

Encryption Decryption
C0 = P0 Å E(IV, K), P0 = C0 Å E(IV, K),
C1 = P1 Å E(IV+1, K), P1 = C1 Å E(IV+1, K),
C2 = P2 Å E(IV+2, K),… P2 = C2 Å E(IV+2, K),…

q Note: CBC also works for random access
o But there is a significant limitation…



Data Integrity
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Data Integrity
q Integrity ¾ detect unauthorized writing 

(i.e., detect unauthorized mod of data)
q Example: Inter-bank fund transfers

o Confidentiality may be nice, integrity is critical
q Encryption provides confidentiality

(prevents unauthorized disclosure)
q Encryption alone does not provide integrity

o One-time pad, ECB cut-and-paste, etc., etc.
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MAC
q Message Authentication Code (MAC)

o Used for data integrity 
o Integrity not the same as confidentiality

q MAC is computed as CBC residue
o That is, compute CBC encryption, saving 

only final ciphertext block, the MAC
o The MAC serves as a cryptographic 

checksum for data
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MAC Computation
q MAC computation (assuming N blocks)

C0 = E(IV Å P0, K),
C1 = E(C0 Å P1, K),
C2 = E(C1 Å P2, K),…
CN-1 = E(CN-2 Å PN-1, K) = MAC

q Send IV, P0, P1, …, PN-1 and MAC
q Receiver does same computation and 

verifies that result agrees with MAC
q Both sender and receiver must know K
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Does a MAC work?
q Suppose Alice has 4 plaintext blocks
q Alice computes

C0 = E(IVÅP0, K), C1 = E(C0ÅP1, K),
C2 = E(C1ÅP2, K), C3 = E(C2ÅP3, K) = MAC

q Alice sends IV, P0, P1, P2, P3 and MAC to Bob 
q Suppose Trudy changes P1 to X
q Bob computes

C0 = E(IVÅP0, K), C1 = E(C0ÅX, K),
C2 = E(C1ÅP2, K), C3 = E(C2ÅP3, K) = MAC ¹ MAC

q It works since error propagates into MAC
q Trudy can’t make MAC == MAC without K
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Confidentiality and Integrity
q Encrypt with one key, MAC with another key 
q Why not use the same key?

o Send last encrypted block (MAC) twice? 
o This cannot add any security!

q Using different keys to encrypt and 
compute MAC works, even if keys are 
related
o But, twice as much work as encryption alone
o Can do a little better ¾ about 1.5 “encryptions”

q Confidentiality and integrity with same work 
as one encryption is a research topic
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Uses for Symmetric Crypto
q Confidentiality

o Transmitting data over insecure channel
o Secure storage on insecure media

q Integrity (MAC)
q Authentication protocols
q Anything you can do with a hash 

function
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Public Key Cryptography



CSE509: Part I - Crypto, Slides: Mark Stamp

Public Key Cryptography
q Two keys, one to encrypt, another to decrypt

o Alice uses Bob’s public key to encrypt
o Only Bob’s private key decrypts the message

q Based on “trap door, one way function”
o “One way” means easy to compute in one direction, 

but hard to compute in other direction
o Example: Given p and q, product N = pq easy to 

compute, but hard to find p and q from N
o “Trap door” is used when creating key pairs
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Public Key Cryptography
q Encryption

o Suppose we encrypt M with Bob’s public key
o Bob’s private key can decrypt C to recover M

q Digital Signature
o Bob signs by “encrypting” with his private key
o Anyone can verify signature by “decrypting” 

with Bob’s public key
o But only Bob could have signed
o Like a handwritten signature, but much better…
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RSA
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RSA
q Invented by Clifford Cocks (GCHQ) and 

Rivest, Shamir, and Adleman (MIT)
o RSA is the gold standard in public key crypto

q Let p and q be two large prime numbers
q Let N = pq be the modulus
q Choose e relatively prime to (p−1)(q−1)
q Find d such that ed = 1 mod (p−1)(q−1)
q Public key is (N,e)
q Private key is d
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RSA
q Message M is treated as a number
q To encrypt M we compute

C = Me mod N 
q To decrypt ciphertext C, we compute

M = Cd mod N 
q Recall that e and N are public
q If Trudy can factor N = pq, she can use e

to easily find d since ed = 1 mod (p−1)(q−1)
q So, factoring the modulus breaks RSA

o Is factoring the only way to break RSA?
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Does RSA Really Work?
q Given C = Me mod N we want to show that 

M = Cd mod N = Med mod N
q We’ll need Euler’s Theorem:

If x is relatively prime to n then xj(n) = 1 mod n
q Facts: 

1) ed = 1 mod (p − 1)(q − 1)
2) By definition of “mod”, ed = k(p − 1)(q − 1) + 1
3) j(N) = (p − 1)(q − 1)

q Then ed − 1 = k(p − 1)(q − 1) = kj(N)
q So, Cd = Med = M(ed - 1) + 1 = M×Med - 1 = M×Mkj(N)

= M×(Mj(N))k mod N = M×1k mod N = M mod N
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Simple RSA Example
q Example of textbook RSA

o Select “large” primes p = 11, q = 3
o Then N =  pq = 33 and (p − 1)(q − 1) = 20
o Choose e = 3 (relatively prime to 20)
o Find d such that ed = 1 mod 20

§ We find that  d = 7 works

q Public key: (N, e) = (33, 3)
q Private key: d = 7
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Simple RSA Example
q Public key: (N, e) = (33, 3)
q Private key: d = 7
q Suppose message to encrypt is M = 8
q Ciphertext C is computed as

C = Me mod N = 83 = 512 = 17 mod 33 

q Decrypt C to recover the message M by
M = Cd mod N = 177 = 410,338,673 

= 12,434,505 * 33 + 8 = 8 mod 33 
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More Efficient RSA (1)
q Modular exponentiation example

o 520 = 95367431640625 = 25 mod 35

q A better way: repeated squaring
o 20 = 10100 base 2
o (1, 10, 101, 1010, 10100) = (1, 2, 5, 10, 20)
o Note that 2 = 1× 2, 5 = 2 × 2 + 1, 10 = 2 × 5, 20 = 2 × 10
o 51= 5 mod 35
o 52= (51)2 = 52 = 25 mod 35
o 55= (52)2 × 51 = 252 × 5 = 3125 = 10 mod 35
o 510 = (55)2 = 102 = 100 = 30 mod 35
o 520 = (510)2 = 302 = 900 = 25 mod 35

q No huge numbers and it’s efficient!
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More Efficient RSA (2)
q Use e = 3 for all users (but not same N or d)

+ Public key operations only require 2 multiplies
o Private key operations remain expensive
- If M < N1/3 then C = Me = M3 and cube root attack
- For any M, if C1, C2, C3 sent to 3 users, cube root 

attack works (uses Chinese Remainder Theorem)
q Can prevent cube root attack by padding 

message with random bits
q Note: e = 216 + 1 also used (“better” than e = 3)
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Diffie-Hellman



CSE509: Part I - Crypto, Slides: Mark Stamp

Diffie-Hellman Key Exchange
q Invented by Williamson (GCHQ) and, 

independently, by D and H (Stanford)
q A “key exchange” algorithm

o Used to establish a shared symmetric key
o Not for encrypting or signing

q Based on discrete log problem 
o Given: g, p, and gk mod p
o Find: exponent k
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Diffie-Hellman
q Let p be prime, let g be a generator

o For any x Î {1,2,…,p-1} there is n s.t. x = gn mod p

q Alice selects her private value a
q Bob selects his private value b
q Alice sends ga mod p to Bob
q Bob sends gb mod p to Alice
q Both compute shared secret, gab mod p
q Shared secret can be used as symmetric key
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Diffie-Hellman
q Public: g and p
q Private: Alice’s exponent a, Bob’s exponent b

Alice, a Bob, b

ga mod p

gb mod p

q Alice computes (gb)a = gba = gab mod p
q Bob computes (ga)b = gab mod p
q They can use K = gab mod p as symmetric key 
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Diffie-Hellman
q Suppose Bob and Alice use Diffie-Hellman 

to determine symmetric key K = gab mod p
q Trudy can see ga mod p and gb mod p

o But… ga gb mod p = ga+b mod p ¹ gab mod p

q If Trudy can find a or b, she gets K
q If Trudy can solve discrete log problem, 

she can find a or b
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Diffie-Hellman
q Subject to man-in-the-middle (MiM) attack

Alice, a Bob, b

ga mod p

gb mod p

Trudy, t

gt mod p

gt mod p

q Trudy shares secret gat mod p with Alice 
q Trudy shares secret gbt mod p with Bob
q Alice and Bob don’t know Trudy is MiM



CSE509: Part I - Crypto, Slides: Mark Stamp

Diffie-Hellman
q How to prevent MiM attack?

o Encrypt DH exchange with symmetric key
o Encrypt DH exchange with public key
o Sign DH values with private key
o Other?

q At this point, DH may look pointless…
o …but it’s not (more on this later)

q You MUST be aware of MiM attack on 
Diffie-Hellman
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Elliptic Curve Cryptography
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Elliptic Curve Crypto (ECC)
q “Elliptic curve” is not a cryptosystem
q Elliptic curves provide different way 

to do the math in public key system
q Elliptic curve versions of DH, RSA, …
q Elliptic curves are more efficient

o Fewer bits needed for same security
o But the operations are more complex, 

yet it is a big “win” overall
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What is an Elliptic Curve?
q An elliptic curve E is the graph of 

an equation of the form
y2 = x3 + ax + b

q Also includes a “point at infinity”
q What do elliptic curves look like?
q See the next slide!
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Elliptic Curve Picture

q Consider elliptic curve
E: y2 = x3 - x + 1

q If P1 and P2 are on E, we 
can define addition, 

P3 = P1 + P2
as shown in picture

q Addition is all we need…

P1
P2

P3

x

y
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Points on Elliptic Curve
q Consider y2 = x3 + 2x + 3 (mod 5)
x = 0 Þ y2 = 3 Þ no solution (mod 5)
x = 1 Þ y2 = 6 = 1 Þ y = 1,4 (mod 5)
x = 2 Þ y2 = 15 = 0 Þ y = 0 (mod 5)
x = 3 Þ y2 = 36 = 1 Þ y = 1,4 (mod 5)
x = 4 Þ y2 = 75 = 0 Þ y = 0 (mod 5)

q Then points on the elliptic curve are
(1,1) (1,4) (2,0) (3,1) (3,4) (4,0) 
and the point at infinity: ¥
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Elliptic Curve Math
q Addition on: y2 = x3 + ax + b (mod p)
P1=(x1,y1), P2=(x2,y2)
P1 + P2 = P3 = (x3,y3) where

x3 = m2 - x1 - x2 (mod p)
y3 = m(x1 - x3) - y1 (mod p)

And m = (y2-y1)*(x2-x1)-1 mod p, if P1¹P2
m = (3x12+a)*(2y1)-1 mod p, if P1 = P2

Special cases: If m is infinite, P3 = ¥, and 
¥ + P = P for all P
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Elliptic Curve Addition
q Consider y2 = x3 + 2x + 3 (mod 5). 

Points on the curve are (1,1) (1,4) 
(2,0) (3,1) (3,4) (4,0) and ¥

q What is (1,4) + (3,1) = P3 = (x3,y3)?
m = (1-4)*(3-1)-1 = -3*2-1
= 2(3) = 6 = 1 (mod 5)

x3 = 1 - 1 - 3 = 2 (mod 5)
y3 = 1(1-2) - 4 = 0 (mod 5)

q On this curve, (1,4) + (3,1) = (2,0)
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ECC Diffie-Hellman
q Public: Elliptic curve and point (x,y) on curve
q Private: Alice’s A and Bob’s B

Alice, A Bob, B

A(x,y)

B(x,y)

q Alice computes A(B(x,y))
q Bob computes B(A(x,y))
q These are the same since AB = BA
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ECC Diffie-Hellman 
q Public: Curve y2 = x3 + 7x + b (mod 37) 

and point (2,5) Þ b = 3
q Alice’s private: A = 4
q Bob’s private: B = 7
q Alice sends Bob: 4(2,5) = (7,32)
q Bob sends Alice: 7(2,5) = (18,35)
q Alice computes: 4(18,35) = (22,1)
q Bob computes: 7(7,32) = (22,1)



Larger ECC Example
q Example from Certicom ECCp-109

o Challenge problem, solved in 2002
q Curve E: y2 = x3 + ax + b (mod 
p)

q Where
p = 564538252084441556247016902735257
a = 321094768129147601892514872825668
b = 430782315140218274262276694323197

q Now what? 
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ECC Example
q The following point P is on the curve E
(x,y) = (97339010987059066523156133908935,
149670372846169285760682371978898)

q Let k = 281183840311601949668207954530684

q The kP is given by
(x,y) = (44646769697405861057630861884284,
522968098895785888047540374779097)

q And this point is also on the curve E
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Really Big Numbers!
q Numbers are big, but not big enough

o ECCp-109 bit (32 digit) solved in 2002
q Today, ECC DH needs bigger numbers
q But RSA needs way bigger numbers

o Minimum RSA modulus today is 1024 bits
o That is, more than 300 decimal digits
o That’s about 10x the size in ECC example
o And 2048 bit RSA modulus is common…
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Uses for Public Key Crypto
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Uses for Public Key Crypto

q Confidentiality
o Transmitting data over insecure channel
o Secure storage on insecure media

q Authentication protocols (later)
q Digital signature 

o Provides integrity and non-repudiation
o No non-repudiation with symmetric keys
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Non-non-repudiation
q Alice orders 100 shares of stock from Bob
q Alice computes MAC using symmetric key
q Stock drops, Alice claims she did not order
q Can Bob prove that Alice placed the order?
q No! Bob also knows the symmetric key, so 

he could have forged the MAC
q Problem: Bob knows Alice placed the order, 

but he can’t prove it
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Non-repudiation
q Alice orders 100 shares of stock from Bob
q Alice signs order with her private key
q Stock drops, Alice claims she did not order
q Can Bob prove that Alice placed the order?
q Yes! Alice’s private key used to sign the 

order ¾ only Alice knows her private key
q This assumes Alice’s private key has not 

been lost/stolen
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Public Key Notation

q Sign message M with Alice’s 
private key: [M]Alice

q Encrypt message M with Alice’s 
public key: {M}Alice

q Then
{[M]Alice}Alice = M
[{M}Alice]Alice = M
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Sign and Encrypt 
vs 

Encrypt and Sign
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Confidentiality and
Non-repudiation?

q Suppose that we want confidentiality 
and integrity/non-repudiation

q Can public key crypto achieve both?
q Alice sends message to Bob

o Sign and encrypt: {[M]Alice}Bob

o Encrypt and sign: [{M}Bob]Alice

q Can the order possibly matter?
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Sign and Encrypt

Alice Bob

{[M]Alice}Bob

q Q: What’s the problem?
q A: No problem ¾ public key is public

Charlie

{[M]Alice}Charlie

q M = “I love you”
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Encrypt and Sign

Alice Bob

[{M}Bob]Alice

q Note that Charlie cannot decrypt M
q Q: What is the problem?
q A: No problem ¾ public key is public

Charlie

[{M}Bob]Charlie

q M = “My theory, which is mine….”
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Public Key Infrastructure
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Public Key Certificate
q Digital certificate contains name of user and 

user’s public key (possibly other info too)
q It is signed by the issuer, a Certificate 

Authority (CA), such as VeriSign
M = (Alice, Alice’s public key), S = [M]CA

Alice’s Certificate = (M, S)
q Signature on certificate is verified using 

CA’s public key
Must verify that M = {S}CA
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Certificate Authority
q Certificate authority (CA) is a trusted 3rd 

party (TTP) ¾ creates and signs certificates
q Verify signature to verify integrity & identity 

of owner of corresponding private key
o Does not verify the identity of the sender of 

certificate ¾ certificates are public!

q Big problem if CA makes a mistake
o CA once issued Microsoft cert. to someone else

q A common format for certificates is X.509
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PKI
q Public Key Infrastructure (PKI): the stuff 

needed to securely use public key crypto
o Key generation and management
o Certificate authority (CA) or authorities
o Certificate revocation lists (CRLs), etc.

q No general standard for PKI
q We mention 3 generic “trust models”

o We only discuss the CA (or CAs)
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PKI Trust Models
q Monopoly model

o One universally trusted organization is 
the CA for the known universe

o Big problems if CA is ever compromised
o Who will act as CA ???

§ System is useless if you don’t trust the CA!
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PKI Trust Models

q Oligarchy
o Multiple (as in, “a few”) trusted CAs
o This approach is used in browsers today
o Browser may have 80 or more CA 

certificates, just to verify certificates!
o User can decide which CA or CAs to trust 
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PKI Trust Models
q Anarchy model

o Everyone is a CA…
o Users must decide who to trust
o This approach used in PGP: “Web of trust”

q Why is it anarchy? 
o Suppose certificate is signed by Frank and you 

don’t know Frank, but you do trust Bob and Bob 
says Alice is trustworthy and Alice vouches for 
Frank. Should you accept the certificate?

q Many other trust models/PKI issues
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Confidentiality 
in the Real World
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Symmetric Key vs Public Key
q Symmetric key +’s

o Speed
o No public key infrastructure (PKI) needed 

(but have to generate/distribute keys)

q Public Key +’s
o Signatures (non-repudiation)
o No shared secret (but, do have to get 

private keys to the right user…)
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Notation Reminder
q Public key notation

o Sign M with Alice’s private key
[M]Alice

o Encrypt M with Alice’s public key
{M}Alice

q Symmetric key notation
o Encrypt P with symmetric key K

C = E(P,K)
o Decrypt C with symmetric key K

P = D(C,K)
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Real World Confidentiality
q Hybrid cryptosystem

o Public key crypto to establish a key
o Symmetric key crypto to encrypt data…

Alice Bob

I’m Alice, {K}Bob

E(Bob’s data, K)

E(Alice’s data, K)

q Can Bob be sure he’s talking to Alice?
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Hash Functions
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Hash Function Motivation
q Suppose Alice signs M

o Alice sends M and S = [M]Alice to Bob
o Bob verifies that M = {S}Alice

o Can Alice just send S?
q If M is big, [M]Alice costly to compute & send
q Suppose instead, Alice signs h(M), where h(M)

is a much smaller “fingerprint” of M
o Alice sends M and S = [h(M)]Alice to Bob
o Bob verifies that h(M) = {S}Alice
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Hash Function Motivation
q So, Alice signs h(M)

o That is, Alice computes S = [h(M)]Alice

o Alice then sends (M, S) to Bob
o Bob verifies that h(M) = {S}Alice

q What properties must h(M) satisfy?
o Suppose Trudy finds M’ so that h(M) = h(M’)
o Then Trudy can replace (M, S) with (M’, S)

q Does Bob detect this tampering?
o No, since h(M’) = h(M) = {S}Alice
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Crypto Hash Function
q Crypto hash function h(x) must provide

o Compression ¾ output length is small
o Efficiency ¾ h(x) easy to compute for any x
o One-way ¾ given a value y it is infeasible to find 

an x such that h(x) = y
o Weak collision resistance ¾ given x and h(x), 

infeasible to find y ¹ x such that h(y) = h(x)
o Strong collision resistance ¾ infeasible to find 

any x and y, with x ¹ y such that h(x) = h(y)

q Lots of collisions exist, but hard to find any
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Pre-Birthday Problem
q Suppose N people in a room
q How large must N be before the 

probability someone has same 
birthday as me is ³ 1/2 ?
o Solve: 1/2 = 1 - (364/365)N for N
o We find N = 253
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Birthday Problem
q How many people must be in a room before 

probability is ³ 1/2 that any two (or more) 
have same birthday?
o 1 - 365/365 × 364/365 × × ×(365-N+1)/365
o Set equal to 1/2 and solve: N = 23

q Surprising? A paradox? 
q Maybe not: “Should be” about sqrt(365) 

since we compare all pairs x and y
o And there are 365 possible birthdays
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Of Hashes and Birthdays
q If h(x) is N bits, then 2N different hash 

values are possible
q So, if you hash about sqrt(2N) = 2N/2 values 

then you expect to find a collision
q Implication? “Exhaustive search” attack…

o Secure N-bit hash requires 2N/2 work to “break”
o Recall that secure N-bit symmetric cipher has 

work factor of 2N-1

q Hash output length vs cipher key length?
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Non-crypto Hash (1)
q Data X = (X1,X2,X3,…,Xn), each Xi is a byte
q Define h(X) = (X1+X2+X3+…+Xn) mod 256

q Is this a secure cryptographic hash?
q Example: X = (10101010, 00001111)

q Hash is h(X) = 10111001
q If Y = (00001111, 10101010) then h(X) = h(Y)

q Easy to find collisions, so not secure…
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Non-crypto Hash (2)
q Data X = (X0,X1,X2,…,Xn-1)
q Suppose hash is defined as

h(X) = (nX1+(n-1)X2+(n-2)X3+…+2×Xn-1+Xn) mod 
256

q Is this a secure cryptographic hash?
q Note that

h(10101010, 00001111) ¹ h(00001111, 10101010)

q But hash of (00000001, 00001111) is same as 
hash of (00000000, 00010001)

q Not “secure”, but this hash is used in the 
(non-crypto) application rsync

http://samba.anu.edu.au/rsync/
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Non-crypto Hash (3)
q Cyclic Redundancy Check (CRC)
q Essentially, CRC is the remainder in a long 

division calculation
q Good for detecting burst errors

o Such random errors unlikely to yield a collision
q But easy to construct collisions

o In crypto, Trudy is the enemy, not “random”
q CRC has been mistakenly used where 

crypto integrity check is required (e.g., 
WEP)
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Popular Crypto Hashes
q MD5 ¾ invented by Rivest (of course…)

o 128 bit output
o MD5 collisions easy to find, so it’s broken

q SHA-1 ¾ A U.S. government standard, 
inner workings similar to MD5
o 160 bit output

q Many other hashes, but MD5 and SHA-1 
are the most widely used

q Hashes work by hashing message in blocks
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Crypto Hash Design
q Desired property: avalanche effect

o Change to 1 bit of input should affect about 
half of output bits

q Crypto hash functions consist of some 
number of rounds

q Want security and speed
o “Avalanche effect” after few rounds
o But simple rounds

q Analogous to design of block ciphers
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Tiger Hash
q “Fast and strong”
q Designed by Ross Anderson and Eli 

Biham ¾ leading cryptographers
q Design criteria

o Secure
o Optimized for 64-bit processors
o Easy replacement for MD5 or SHA-1
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HMAC
q Can compute a MAC of the message M with 

key K using a “hashed MAC” or HMAC

q HMAC is a keyed hash
o Why would we need a key?

q How to compute HMAC?
q Two obvious choices: h(K,M) and h(M,K)
q Which is better?
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HMAC
q Should we compute HMAC as h(K,M) ?
q Hashes computed in blocks

o h(B1,B2) = F(F(A,B1),B2) for some F and constant A
o Then h(B1,B2) = F(h(B1),B2)

q Let M’ = (M,X)
o Then h(K,M’) = F(h(K,M),X)
o Attacker can compute HMAC of M’ without K

q Is h(M,K) better? 
o Yes, but… if h(M’) = h(M) then we might have 

h(M,K)=F(h(M),K)=F(h(M’),K)=h(M’,K)  
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Correct Way to HMAC
q Described in RFC 2104 
q Let B be the block length of hash, in bytes

o B = 64 for MD5 and SHA-1 and Tiger

q ipad = 0x36 repeated B times
q opad = 0x5C repeated B times
q Then

HMAC(M,K) = h(K Å opad, h(K Å ipad, M))
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Hash Uses
q Authentication (HMAC)
q Message integrity (HMAC)
q Message fingerprint
q Data corruption detection
q Digital signature efficiency
q Anything you can do with symmetric crypto
q Also, many, many clever/surprising uses…


