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Limitations of SFI/NaCl 
Approach

q Need for compiler support
o Does not work on arbitrary binaries ---

binaries should have been compiled using 
a cooperative compiler

o Otherwise, the binary will trivially fail 
the verification step

q Question: Can we instrument 
arbitrary COTS binaries to insert 
inline security checks?
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Motivation for COTS Binary
Instrumentation

q No source code needed
o Language-neutral (C, C++ or other)

q Can be largely independent of OS
q Ideally, would provide instruction-set 

independent abstractions
o This ideal is far from today’s reality

q Benefits
o Application extension

§ Functionality
§ Security
§ Monitoring and debugging

o Instrumenting long-running programs
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Approaches
q Static analysis/transformation

o Binaries files are analyzed/transformed
o Benefits

§ No runtime performance impact
§ No need for runtime infrastructure

o Weakness
§ Error-prone, problem with signed code (can 

work around)
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Approaches
q Dynamic analysis/transformation

o Code analyzed/transformed at runtime
o Benefit: more robust/accurate
o Weakness

§ High runtime overhead
§ Runtime complexity (infrastructure)
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Previous Works (Static)
q OM/ATOM (DEC WRL)

o Proprietary and probably outdated
q EEL (Jim Larus et al, 1995)

o The precursor of most modern rewriters
o Targets RISC (SPARC)
o Provides processor independent 

abstractions
o Follow up works

§ UQBT (for RISC)
§ LEEL (for Linux/i386)
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Previous Works (Dynamic)
q LibVerify (Bell Labs/RST Corp)

o Runtime rewriting for StackGuard

q DynamoRIO (HP Labs/MIT) Disassembles 
basic blocks at runtime
o Provides API to hook into this process and transform 

executable

q Pin (Intel/U. Colorado)
q Valgrind
q A number of virtualization implementations 

rely binary translation (or used to)
q QEMU, VMWare, …
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Phases in Static Analysis of 
Binaries

q Disassembly
q Instruction decoding/understanding
q Insertion of new code
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Static Disassembly
q Core component for static analysis of 

binaries
q Principal Approaches

o Linear Sweep
o Recursive Traversal
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Linear Sweep Algorithm
q Used by GNU 

objdump
q Problem:

o There can be data 
embedded within code
§ There may also be 

padding, alignment 
bytes or junk

o Linear sweep will 
incorrectly 
disassemble such data
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Addr = startAddr;
while (Addr < endAddr ) 
{

ins=decode(addr);
addr+=LengthOf(ins);

}



Linear Sweep Algorithm
804964c: 55 push %ebp
804964d: 89 e5 mov %esp,%ebp
804964f: 53 push %ebx
8049650: 83 ec 04 sub $0x4,%esp
8049653: eb 04 jmp 0x8049658
8049655: e6 02 04 <junk>
8049658: be 05000000 mov $0x5,%esi
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804964c: 55           push %ebp
804964d: 89 e5     mov %esp,%ebp
804964f: 53.          push %ebx
8049650: 83 ec 04 sub $0x4,%esp
8049653: eb 04      jmp 0x8049658
8049655: e6 02      out 0x2, al
8049657: 04 be add al, 0xbe
8049659: 05 00000012  add eax, 0x12000000

• Incorrectly disassembles junk (or padding) bytes
• Confusion typically cascades past the padding, causing 

subsequent instructions to be missed or misinterpreted.



Self Repairing Disassembly
q Property of a disassembler where it re-

synchronizes with the actual instruction 
stream 

q Makes detecting disassembly errors 
difficult
o 216 of 256 opcodes are valid

q Observation: re-synchronization happens 
quickly, within 2-3 instructions beyond 
point of error.
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Self Repairing Disassembly 
(example)

Consider the byte stream
55 89 e5 eb 03 90 90 83 0c 03 b8 01 00 00 00 c9
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Linear Sweep output

100: push ebp
101: mov ebp, esp
103: jmp 109
105: nop
106: nop
107: or dword ptr ds:[ebx+eax*1], 0xb8
111:add dword ptr ds:[eax+eax*1], eax
113: add byte ptr ds:[eax+eax*1], al
116: leave

Correct Output

100: push ebp
101: mov ebp, esp
103: jmp 109
106: <GAP>
107: <GAP>
108: <GAP>
109: or al, 0x3
111: mov eax, 0x1
116: leave



Recursive Traversal
q Approach: Takes into account 

the control flow behavior of 
the program

q Weakness: For indirect jumps, 
jump target cannot be 
determined statically, so no 
recursive traversal of the 
target can be initiated

q Some error cases not handled, 
e.g., jump to the middle of an 
instruction
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RecursiveTraversal (addr) {
while (!visited[addr]) {

visited[addr] = true;
ins = decode (addr);
if (isControlTransfer(ins))

RecursiveTraversal (target(ins))
if (uncondJumpOrRet(ins))

return
else 

addr+=LengthOf(ins);
}

}   



Static Disassembly – Impediments
q Code/Data distinction
q Variable x86 instruction size
q Indirect Branches

o Mainly due to function pointers
§ Cross-module calls

Ø e.g., calls from executable to a library
§ GUI code (event handlers)
§ C++ code (Virtual functions)

o Functions without explicit CALL
q PIC (Position-Independent Code)
q Hand-coded Assembly CSE509 – Computer Systems Security –
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Optimized Code Example
#include <stdio.h>
void f(int c) {

printf("%d\n", c);
}
void h(int i) {

f(i+1);
}
int i(int j) {

return j+1;
}
int main(int argc, char*argv[]) {

h(i(argc));
f(argc+2);

}
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Compiled Code Example

void f(int c) {
printf("%d\n", c);

}

Function prologue

Function epilogue
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pushl %ebp
movl %esp, %ebp
subl $16, %esp

pushl 8(%ebp)
pushl $.LC0 (“%d”)
call printf

leave
ret



Optimized Code Example
void h(int i) {
f(i+1);
}

No push of arguments

No epilogue, 
not even a call!
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h:
pushl %ebp
movl %esp, %ebp
subl $8, %esp

incl 8(%ebp)

leave
jmp f



Optimized Code Example
main(int argc,

char*argv[]) {
h(i(argc));
f(argc+2);

}

Return value in eax reg,
No argument push!

No push of arguments
to f, tail call
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main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $16, %esp
movl 8(%ebp), %ebx
pushl %ebx
call i
movl %eax, (%esp)
call h
addl $2, %ebx
movl %ebx, 8(%ebp)
addl $16, %esp
movl -4(%ebp), %ebx
leave

jmp f



Static Code Transformation
Limitations

q Cannot move code
o Cannot predict the destination of indirect calls, 

so there is no safe way to move code
o Can copy code, if original is left in place

§ If the goal is to protect against vulnerabilities in 
original code, then leaving of original code defeats 
this purpose!
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Static Code Transformation
Limitations

q Code insertion is tricky
o Obvious approach: overwrite original code with 

unconditional jump, patch
o Problem: There may not be enough room for 

jump instruction (5 bytes)
o Possible solution: use INT 3 (one-byte) 

instruction
§ Higher overhead for handling (signal 

generation/handling)
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Static Code Transformation
Limitations

q Code insertion at arbitrary points is very 
difficult
o Code insertion at beginning/end of function is easy
o Other points in code are not well defined in 

optimized code
§ Loops may be unrolled
§ Switch statements translated to jump tables
§ Successive branches may be combined
§ Function arguments may not be explicitly pushed 

(nor return value popped)
§ Tail call optimization and function inlining
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Code Transformation 
Limitations

q Relocation of static data is not feasible
o Cannot identify and relocate static pointers, which 

appear as immediate constants in assembly code
o Note: These constants may be passed through several 

functions before used
q Note: Most above limitations can be removed if 

relocation information is present in binary
q Relocation of stack/heap data possible

o Change SP at program beginning
o Intercept/modify malloc and/or mmap requests
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Dynamic Transformation
Techniques
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Libverify
q Inserts (StackShield) checks in binary code

o Copy each function to heap
o Modify first and last instruction in each function to 

jump to wrapper code implementing StackShield
o Replace original copy with TRAP instructions

§ Any jump/calls to original code activates trap 
handler

§ Handler looks up corresponding address in copied 
code and transfers control there

§ If no copy exists (entry to function not discovered 
at load time), the function can be copied to heap and 
instrumented at this time
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Libverify
q Benefit: handles all indirect control 

transfers correctly
o Note: indirect transfers will go to original code 

locations, unless code pointers are identified and 
modified to point to new locations
§ As mentioned before, this is hard to do in many cases, 

so this approach of using traps and runtime 
redirection is a good trade-off between performance 
and compatibility

q Drawback: performance impact if traps are 
repeatedly executed
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DynamoRIO
q Use Libverify’s runtime handling to the 

extreme
o All code is discovered dynamically, analyzed 

dynamically, and then rewritten
o Code is transformed one basic block at a time

§ Side-steps the thorny problem of disassembly
§ Note that it is trivial to reliably disassemble a single 

basic block, which is straight-line code with no 
control-transfers in the middle.

o Only the first execution of a basis block 
requires analysis and rewriting. Subsequent 
executions can use the same rewritten block.
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DynamoRIO
q Control transfers occur in the last 

instruction of a basic block. These 
instructions need to be checked at runtime.

q Non-control-transfer instructions are 
executed natively
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RIO System Infrastructure
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DynamoRIO Operation
q Instrumented programs run in two 

contexts
o DynamoRio context (above the redline, representing 

DynamoRIO runtime). Responsible for detecting the 
execution of new basic blocks (BBs)
§ These BBs are disassembled, analyzed and then 

transformed: just-in-time disassembly/rewriting, 
just before first execution

§ DynamoRIO provides an API for instrumentation: 
one can use this API to implement custom 
instrumentation, e.g., count number of BBs 
executed, number of memory accesses, etc.
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DynamoRIO Operation
q Instrumented programs run in two 

contexts
o Application context (below the red line, 

application code executes natively)
§ Non-control-transfer instructions need no special 

treatment
§ Control-transfers need to be checked

Ø If they are direct transfers, then we check if the target 
has already been instrumented (and hence is in the code 
cache). If so, directly jump there. If not, switch into 
DynamoRIO context to perform instrumentation.

Ø Indirect transfers need to go through a translation table
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Handling Indirect CFT
q Note that indirect control transfers will use 

original code addresses
o But the instrumented code is in the code cache at a 

different address. (We cannot use the original 
addresses, even if they were available: instrumentation 
causes code to expand, => every target except the very 
first in the instrumented application will reside at a 
different location as compared to the original code.)

o As discussed, we cannot “fixup” code references either. 
Code addresses will be immediate constants in the binary, 
so no way to distinguish constants from code addresses
§ If we mistakenly “fixup” an integer value, program behavior changes
§ If we mistakenly omit the fixup of a code pointer, then code will jump to 

an incorrect location, likely leading to a crash
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Handling Indirect CFT
q Clever idea put forth by DynamoRIO

authors
o Wait until a pointer is actually used

§ If it is used as a target of control transfer, 
then it is obviously a code pointer

§ Just-in-time code pointer fixup: fixup 
happens at the very last step.
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Fixup Implementation
q Fixup is implemented using a translation 

table
o A hash table jmptab maps the original address 

of a BB to its new address in the code cache 
(corresponding to the location of the 
instrumented version of code)

o Each time DynamoRIO runtime instruments a 
BB, it enters the mapping between the original 
location and the new location in this table.
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Fixup Implementation
q At runtime, every indirect CFT to a 

location l is translated into jmptab[l]
o Each indirect jump requires a hash table 

lookup, and has a performance cost
o Fortunately, common cases (e.g., returns and 

repeated calls to same target) can be 
optimized

q If the target is not in jmptab, then control 
transferred to DynamoRIO runtime.
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DynamoRIO Context Switch
q Preserve the following conditions

o All GPRs (8 in x86-32)
o Eflags
o Some system state. Eg: error code

§ DynamoRIO uses one slot in TLS (thread local 
storage) to store error code (errno) of the 
application.

Ø DynamoRIO will use some library routines that may 
modifiy the state as error code, so it is necessary to 
preserve application’s errno
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DynamoRIO Context Switch

q Assumes that the BBs at 
0x40106f and the immediately 
following BBs are not in the code 
cache. In this case, control has to 
be transferred to DynamoRIO
runtime when execution reaches 
the end of this BB. Before 
context switch, all of the 
application state (in particular, 
registers) need to be saved.
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Transparency & OS Issues
q Transparency: application cannot tell that it is 

running inside DynamoRIO
q Why does DynamoRIO need transparency?

o Ensures that application behaves exactly the same way as 
before: it can’t even tell the difference.

o So, it can’t evade DynamoRIO, nor can it behave 
differently.

q Transparency Issues
- Library transparency
- Thread transparency
- Stack transparency
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- Address space transparency
- Context Translation
- Performance transparency

(not preserved)



Library Transparency
q Issues when both DynamoRIO and 

application enters the same non-re-entrant 
library routine
o System state might be broken (errno)
o Library routine may fail to work (malloc)

q Solution:
o Use system call on both windows and Linux
o Use stateless library routines
o Implement own memory (de)allocation routines.
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Thread Transparency
q DynamoRIO does not create its own thread
q Why?

o violate transparency when application that 
monitors all reads in a process

o Performance issue when threads double
q What about one DynamoRIO thread?

o Still violate transparency
o Performance degrades when multiple threads 

switch into DynamoRIO mode
q Therefore, use app thread with new context
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Stack Transparency
q DynamoRIO does not “touch” application stack.

o Some applications may access data beyond the top of 
stack. Eg: Microsoft office

o Usual stack conventions may not be followed by hand-
crafted assembly
§ use of esp as a GPR

o Ability to read return address off stack and use in 
computing code location (or modify it)
§ Used in PIC (position-independent code)

q Solution:
o Use a private stack for each thread in DynamoRIO

mode
o Do not modify content of original stack
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Address Space Transparency
q DynamoRIO should not “leak” information about 

itself.
o On Windows, intercept

§ NtQueryVirtualMemory() that traverse memory 
regions

§ GetModuleFileName() (library call) to check if 
library is present

o On Linux, intercept
§ mmap(). etc.

q More measures (security)
o Mark DynamoRIO code as NX, when in code cache
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Context Translation
q When exception occurs, the faulting place 

should be the original code address.
o Intercept user signal handler
o Check the address map, find the original 

address
o Modify the signal stack and go to user signal 

handler
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Transparency & OS Issues
q Operating System Issues

o Kernel Mediated Control Flow
o System Call Handling
o Thread synchronization
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Kernel Mediated Control Flow
q Signal Handling

o DynamoRIO routine will get control first
o Signals will be queued and delayed, except urgent signals

§ Eg: SIGSEGV
q When signal arrives, if the thread is at

o Code cache:
§ Unlink the current basic block, go back to DynamoRIO
§ If bb contains syscall, jump to exit stub before 

syscall.
Ø Why? Bound timing of signal handler, as syscall is expensive.

o DynamoRIO code:
§ Delay signal until reaching a safe place
§ Emulate kernel behavior
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System Call handling
q If syscall number is not statically known or on 

DynamoRIOs list
o Insert pre-syscall & post-syscall routines around the 

instruction
q Uninterested syscall: left unchanged. However:
q For signal handling, app must LEAVE code cache 

QUICKLY (for timing issue)
o Insert a jump prior to the syscall :

§ Jmp <syscall or bail>
§ Bail: jmp <exit stub>
§ Syscall:
§ <system call insruction>
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Program Shepherding:
An IRM based on DynamoRIO

q Introduces in-line checks to defend 
against common exploits
o Buffer overflow attacks
o Format string attacks
o Injection of malicious code
o Re-use of existing code (existing code 

attacks)
q Sandboxing
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Program Shepherding
Performance under Linux

q gcc is slow since it consists of many short runs 
with little code re-use
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Program Shepherding
Performance under Windows

q Windows is much less efficient at changing privileges 
on memory pages than Linux
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Caveat about performance
q DBT performance measurements usually 

based very longrunning CPU-intensive 
benchmarks

q These applications represent the “best case 
scenario” for DBT systems
o Rewrite once, execute for a long time

q Real-world performance can be bad
o 10x to 40x slowdown in the worst case

q Example DBT systems
o DynamoRIO, Pin, Valgrind, …
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Caveat about performance
q But its exceptional level of compatibility 

with arbitrary binary code can still be 
compelling for
o CPU-intensive applications with tight loops
o Coarse-granularity instrumentation (i.e., very 

small fraction of instructions instrumented)
o Debugging applications
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Other Dynamic 
Transformation Tools

q Pin
o better supported now than DynamoRIO
o better engineered for Linux

q Strata
q Valgrind

o Most popular open-source tool for finding 
memory errors and many other applications

q Qemu
o Can support whole system emulation
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DynamoRIO vs Pin
q Architecture dependency

o Pin tools: written in c/c++
o DynamoRIO: written in x86 assembly

q DynamoRIO’s tools allow users to 
operate at a lower level
o Have more control over efficiency, but 

programming can be hard, and architecture 
dependent.
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BBCount Pin Tool
q For more information, including tutorials and examples, see 

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool
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static int bbcount;
VOID PIN_FAST_ANALYSIS_CALL docount() { bbcount++; }
VOID Trace(TRACE trace, VOID *v) {

for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl);
bbl = BBL_Next(bbl)) {

BBL_InsertCall(bbl, IPOINT_ANYWHERE, AFUNPTR(docount), 
IARG_FAST_ANALYSIS_CALL, IARG_END);

}
}
int main(int argc, char *argv[]) {

PIN_InitSymbols();
PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(Trace, 0);
PIN_StartProgram();
return 0;

}

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool


BBCount DynamoRIO Tool
static int global_count;
static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,

bool for_trace, bool translating) {
instr_t *instr, *first = instrlist_first(bb);
uint flags;
/* Our inc can go anywhere, so find a spot where flags are dead. */
for (instr = first; instr != NULL; instr = instr_get_next(instr)) {

flags = instr_get_arith_flags(instr);
/* OP_inc doesn't write CF but not worth distinguishing */
if (TESTALL(EFLAGS_WRITE_6, flags) && !TESTANY(EFLAGS_READ_6, flags))

break;
}
if (instr == NULL)

dr_save_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
instrlist_meta_preinsert(bb, (instr == NULL) ? first : instr,

INSTR_CREATE_inc(drcontext, OPND_CREATE_ABSMEM((byte *)&global_count, OPSZ_4)));
if (instr == NULL)

dr_restore_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
return DR_EMIT_DEFAULT;

}
DR_EXPORT void dr_init(client_id_t id) {

dr_register_bb_event(event_basic_block);
}

CSE509 – Computer Systems 
Security – Slides: R. Sekar



Applicability of 
Static Vs Dynamic Techniques

q Some techniques require static instrumentation
o Any technique that uses static analysis to compute a 

property and then enforces it at runtime
§ CFI, some aspects of bounds-checking, some types of 

randomizations, …
q Others can use dynamic instrumentation

o Stackguard, SFI (but may be limited if CFI can’t be
assured)

q And yet others that cannot use static
instrumentation
o Obfuscated code, mainly malware
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Obfuscation against 
Disassembly

q Conditional jumps where the condition is 
always true (or false)
o Use an opaque predicate to hide this

q Instructions that fault
o Execution continues in exception handler

q Embedding data in the midst of code
o With indirect jumps that make it impossible

to distinguish between code and data
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Control-flow Obfuscation Against
Reverse Engineering

q Split or aggregate
o Basic blocks
o Loops

§ e.g., one loop becomes two loops or vice-versa
o Procedures
o Replace one procedure by two or merge two procedures
o Inline a procedure, or outline (i.e., create new 

procedure)
q Reorder
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Control-flow Obfuscation Against
Reverse Engineering

q Insert dead-code (i.e., unreachable code)
o Obfuscate using conditions

q Replace instruction sequences w/ alternate ones
q Insert conditional jumps using “opaque” 

predicates
q Insert indirect jumps
q Exploit aliasing and memory errors
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Data Obfuscation
q Rename variables
q Split or aggregate variables

o Split structures into individual variables or 
vice-versa

q Split individual variables
o E.g., A = B - C – instead of A, use B and C
o Clone a variable

q Pad arrays (and possibly structures) with junk
elements

q “Encrypt” data values
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Data Obfuscation
q Introduce extra levels of indirection
q Instead of a simple variable, declare a pointer
q Introduce aliasing
q Introduce memory errors
q Introduce additional (or remove) function

parameters
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Questions
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