
CSE509 : Computer System
Security

CSE509 – Computer Systems Security – Slides: R. Sekar

Binary Instrumentation
q R. Sekar
q Stony Brook University

CSE509 – Computer Systems Security – Slides: R. Sekar

Limitations of SFI/NaCl
Approach

q Need for compiler support
o Does not work on arbitrary binaries ---

binaries should have been compiled using
a cooperative compiler

o Otherwise, the binary will trivially fail
the verification step

q Question: Can we instrument
arbitrary COTS binaries to insert
inline security checks?

CSE509 – Computer Systems Security – Slides: R. Sekar

Motivation for COTS Binary
Instrumentation

q No source code needed
o Language-neutral (C, C++ or other)

q Can be largely independent of OS
q Ideally, would provide instruction-set

independent abstractions
o This ideal is far from today’s reality

q Benefits
o Application extension

§ Functionality
§ Security
§ Monitoring and debugging

o Instrumenting long-running programs
CSE509 – Computer Systems
Security – Slides: R. Sekar

Approaches
q Static analysis/transformation

o Binaries files are analyzed/transformed
o Benefits

§ No runtime performance impact
§ No need for runtime infrastructure

o Weakness
§ Error-prone, problem with signed code (can

work around)

CSE509 – Computer Systems Security – Slides: R. Sekar

Approaches
q Dynamic analysis/transformation

o Code analyzed/transformed at runtime
o Benefit: more robust/accurate
o Weakness

§ High runtime overhead
§ Runtime complexity (infrastructure)

CSE509 – Computer Systems Security – Slides: R. Sekar

Previous Works (Static)
q OM/ATOM (DEC WRL)

o Proprietary and probably outdated
q EEL (Jim Larus et al, 1995)

o The precursor of most modern rewriters
o Targets RISC (SPARC)
o Provides processor independent

abstractions
o Follow up works

§ UQBT (for RISC)
§ LEEL (for Linux/i386)

CSE509 – Computer Systems Security – Slides: R. Sekar

Previous Works (Dynamic)
q LibVerify (Bell Labs/RST Corp)

o Runtime rewriting for StackGuard

q DynamoRIO (HP Labs/MIT) Disassembles
basic blocks at runtime
o Provides API to hook into this process and transform

executable

q Pin (Intel/U. Colorado)
q Valgrind
q A number of virtualization implementations

rely binary translation (or used to)
q QEMU, VMWare, …

CSE509 – Computer Systems Security – Slides: R. Sekar

Phases in Static Analysis of
Binaries

q Disassembly
q Instruction decoding/understanding
q Insertion of new code

CSE509 – Computer Systems Security – Slides: R. Sekar

Static Disassembly
q Core component for static analysis of

binaries
q Principal Approaches

o Linear Sweep
o Recursive Traversal

CSE509 – Computer Systems Security – Slides: R. Sekar

Linear Sweep Algorithm
q Used by GNU

objdump
q Problem:

o There can be data
embedded within code
§ There may also be

padding, alignment
bytes or junk

o Linear sweep will
incorrectly
disassemble such data

CSE509 – Computer Systems Security – Slides: R. Sekar

Addr = startAddr;
while (Addr < endAddr)
{

ins=decode(addr);
addr+=LengthOf(ins);

}

Linear Sweep Algorithm
804964c: 55 push %ebp
804964d: 89 e5 mov %esp,%ebp
804964f: 53 push %ebx
8049650: 83 ec 04 sub $0x4,%esp
8049653: eb 04 jmp 0x8049658
8049655: e6 02 04 <junk>
8049658: be 05000000 mov $0x5,%esi

CSE509 – Computer Systems Security – Slides: R. Sekar

804964c: 55 push %ebp
804964d: 89 e5 mov %esp,%ebp
804964f: 53. push %ebx
8049650: 83 ec 04 sub $0x4,%esp
8049653: eb 04 jmp 0x8049658
8049655: e6 02 out 0x2, al
8049657: 04 be add al, 0xbe
8049659: 05 00000012 add eax, 0x12000000

• Incorrectly disassembles junk (or padding) bytes
• Confusion typically cascades past the padding, causing

subsequent instructions to be missed or misinterpreted.

Self Repairing Disassembly
q Property of a disassembler where it re-

synchronizes with the actual instruction
stream

q Makes detecting disassembly errors
difficult
o 216 of 256 opcodes are valid

q Observation: re-synchronization happens
quickly, within 2-3 instructions beyond
point of error.
CSE509 – Computer Systems Security – Slides: R. Sekar

Self Repairing Disassembly
(example)

Consider the byte stream
55 89 e5 eb 03 90 90 83 0c 03 b8 01 00 00 00 c9

CSE509 – Computer Systems Security – Slides: R. Sekar

Linear Sweep output

100: push ebp
101: mov ebp, esp
103: jmp 109
105: nop
106: nop
107: or dword ptr ds:[ebx+eax*1], 0xb8
111:add dword ptr ds:[eax+eax*1], eax
113: add byte ptr ds:[eax+eax*1], al
116: leave

Correct Output

100: push ebp
101: mov ebp, esp
103: jmp 109
106: <GAP>
107: <GAP>
108: <GAP>
109: or al, 0x3
111: mov eax, 0x1
116: leave

Recursive Traversal
q Approach: Takes into account

the control flow behavior of
the program

q Weakness: For indirect jumps,
jump target cannot be
determined statically, so no
recursive traversal of the
target can be initiated

q Some error cases not handled,
e.g., jump to the middle of an
instruction

CSE509 – Computer Systems Security – Slides: R. Sekar

RecursiveTraversal (addr) {
while (!visited[addr]) {

visited[addr] = true;
ins = decode (addr);
if (isControlTransfer(ins))

RecursiveTraversal (target(ins))
if (uncondJumpOrRet(ins))

return
else

addr+=LengthOf(ins);
}

}

Static Disassembly – Impediments
q Code/Data distinction
q Variable x86 instruction size
q Indirect Branches

o Mainly due to function pointers
§ Cross-module calls

Ø e.g., calls from executable to a library
§ GUI code (event handlers)
§ C++ code (Virtual functions)

o Functions without explicit CALL
q PIC (Position-Independent Code)
q Hand-coded Assembly CSE509 – Computer Systems Security –

Slides: R. Sekar

Optimized Code Example
#include <stdio.h>
void f(int c) {

printf("%d\n", c);
}
void h(int i) {

f(i+1);
}
int i(int j) {

return j+1;
}
int main(int argc, char*argv[]) {

h(i(argc));
f(argc+2);

}

CSE509 – Computer Systems Security – Slides: R. Sekar

Compiled Code Example

void f(int c) {
printf("%d\n", c);

}

Function prologue

Function epilogue

CSE509 – Computer Systems Security – Slides: R. Sekar

pushl %ebp
movl %esp, %ebp
subl $16, %esp

pushl 8(%ebp)
pushl $.LC0 (“%d”)
call printf

leave
ret

Optimized Code Example
void h(int i) {
f(i+1);
}

No push of arguments

No epilogue,
not even a call!

CSE509 – Computer Systems Security – Slides: R. Sekar

h:
pushl %ebp
movl %esp, %ebp
subl $8, %esp

incl 8(%ebp)

leave
jmp f

Optimized Code Example
main(int argc,

char*argv[]) {
h(i(argc));
f(argc+2);

}

Return value in eax reg,
No argument push!

No push of arguments
to f, tail call

CSE509 – Computer Systems Security – Slides: R. Sekar

main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $16, %esp
movl 8(%ebp), %ebx
pushl %ebx
call i
movl %eax, (%esp)
call h
addl $2, %ebx
movl %ebx, 8(%ebp)
addl $16, %esp
movl -4(%ebp), %ebx
leave

jmp f

Static Code Transformation
Limitations

q Cannot move code
o Cannot predict the destination of indirect calls,

so there is no safe way to move code
o Can copy code, if original is left in place

§ If the goal is to protect against vulnerabilities in
original code, then leaving of original code defeats
this purpose!

CSE509 – Computer Systems Security – Slides: R. Sekar

Static Code Transformation
Limitations

q Code insertion is tricky
o Obvious approach: overwrite original code with

unconditional jump, patch
o Problem: There may not be enough room for

jump instruction (5 bytes)
o Possible solution: use INT 3 (one-byte)

instruction
§ Higher overhead for handling (signal

generation/handling)

CSE509 – Computer Systems Security – Slides: R. Sekar

Static Code Transformation
Limitations

q Code insertion at arbitrary points is very
difficult
o Code insertion at beginning/end of function is easy
o Other points in code are not well defined in

optimized code
§ Loops may be unrolled
§ Switch statements translated to jump tables
§ Successive branches may be combined
§ Function arguments may not be explicitly pushed

(nor return value popped)
§ Tail call optimization and function inlining

CSE509 – Computer Systems Security – Slides: R. Sekar

Code Transformation
Limitations

q Relocation of static data is not feasible
o Cannot identify and relocate static pointers, which

appear as immediate constants in assembly code
o Note: These constants may be passed through several

functions before used
q Note: Most above limitations can be removed if

relocation information is present in binary
q Relocation of stack/heap data possible

o Change SP at program beginning
o Intercept/modify malloc and/or mmap requests

CSE509 – Computer Systems Security – Slides: R. Sekar

Dynamic Transformation
Techniques

CSE509 – Computer Systems Security – Slides: R. Sekar

Libverify
q Inserts (StackShield) checks in binary code

o Copy each function to heap
o Modify first and last instruction in each function to

jump to wrapper code implementing StackShield
o Replace original copy with TRAP instructions

§ Any jump/calls to original code activates trap
handler

§ Handler looks up corresponding address in copied
code and transfers control there

§ If no copy exists (entry to function not discovered
at load time), the function can be copied to heap and
instrumented at this time

CSE509 – Computer Systems Security – Slides: R. Sekar

Libverify
q Benefit: handles all indirect control

transfers correctly
o Note: indirect transfers will go to original code

locations, unless code pointers are identified and
modified to point to new locations
§ As mentioned before, this is hard to do in many cases,

so this approach of using traps and runtime
redirection is a good trade-off between performance
and compatibility

q Drawback: performance impact if traps are
repeatedly executed

CSE509 – Computer Systems Security – Slides: R. Sekar

DynamoRIO
q Use Libverify’s runtime handling to the

extreme
o All code is discovered dynamically, analyzed

dynamically, and then rewritten
o Code is transformed one basic block at a time

§ Side-steps the thorny problem of disassembly
§ Note that it is trivial to reliably disassemble a single

basic block, which is straight-line code with no
control-transfers in the middle.

o Only the first execution of a basis block
requires analysis and rewriting. Subsequent
executions can use the same rewritten block.

CSE509 – Computer Systems Security – Slides: R. Sekar

DynamoRIO
q Control transfers occur in the last

instruction of a basic block. These
instructions need to be checked at runtime.

q Non-control-transfer instructions are
executed natively

CSE509 – Computer Systems Security – Slides: R. Sekar

RIO System Infrastructure

CSE509 – Computer Systems Security – Slides: R. Sekar

DynamoRIO Operation
q Instrumented programs run in two

contexts
o DynamoRio context (above the redline, representing

DynamoRIO runtime). Responsible for detecting the
execution of new basic blocks (BBs)
§ These BBs are disassembled, analyzed and then

transformed: just-in-time disassembly/rewriting,
just before first execution

§ DynamoRIO provides an API for instrumentation:
one can use this API to implement custom
instrumentation, e.g., count number of BBs
executed, number of memory accesses, etc.

CSE509 – Computer Systems Security – Slides: R. Sekar

DynamoRIO Operation
q Instrumented programs run in two

contexts
o Application context (below the red line,

application code executes natively)
§ Non-control-transfer instructions need no special

treatment
§ Control-transfers need to be checked

Ø If they are direct transfers, then we check if the target
has already been instrumented (and hence is in the code
cache). If so, directly jump there. If not, switch into
DynamoRIO context to perform instrumentation.

Ø Indirect transfers need to go through a translation table

CSE509 – Computer Systems Security – Slides: R. Sekar

Handling Indirect CFT
q Note that indirect control transfers will use

original code addresses
o But the instrumented code is in the code cache at a

different address. (We cannot use the original
addresses, even if they were available: instrumentation
causes code to expand, => every target except the very
first in the instrumented application will reside at a
different location as compared to the original code.)

o As discussed, we cannot “fixup” code references either.
Code addresses will be immediate constants in the binary,
so no way to distinguish constants from code addresses
§ If we mistakenly “fixup” an integer value, program behavior changes
§ If we mistakenly omit the fixup of a code pointer, then code will jump to

an incorrect location, likely leading to a crash

CSE509 – Computer Systems Security – Slides: R. Sekar

Handling Indirect CFT
q Clever idea put forth by DynamoRIO

authors
o Wait until a pointer is actually used

§ If it is used as a target of control transfer,
then it is obviously a code pointer

§ Just-in-time code pointer fixup: fixup
happens at the very last step.

CSE509 – Computer Systems Security – Slides: R. Sekar

Fixup Implementation
q Fixup is implemented using a translation

table
o A hash table jmptab maps the original address

of a BB to its new address in the code cache
(corresponding to the location of the
instrumented version of code)

o Each time DynamoRIO runtime instruments a
BB, it enters the mapping between the original
location and the new location in this table.

CSE509 – Computer Systems Security – Slides: R. Sekar

Fixup Implementation
q At runtime, every indirect CFT to a

location l is translated into jmptab[l]
o Each indirect jump requires a hash table

lookup, and has a performance cost
o Fortunately, common cases (e.g., returns and

repeated calls to same target) can be
optimized

q If the target is not in jmptab, then control
transferred to DynamoRIO runtime.

CSE509 – Computer Systems Security – Slides: R. Sekar

DynamoRIO Context Switch
q Preserve the following conditions

o All GPRs (8 in x86-32)
o Eflags
o Some system state. Eg: error code

§ DynamoRIO uses one slot in TLS (thread local
storage) to store error code (errno) of the
application.

Ø DynamoRIO will use some library routines that may
modifiy the state as error code, so it is necessary to
preserve application’s errno

CSE509 – Computer Systems Security – Slides: R. Sekar

DynamoRIO Context Switch

q Assumes that the BBs at
0x40106f and the immediately
following BBs are not in the code
cache. In this case, control has to
be transferred to DynamoRIO
runtime when execution reaches
the end of this BB. Before
context switch, all of the
application state (in particular,
registers) need to be saved.

CSE509 – Computer Systems Security – Slides: R. Sekar

Transparency & OS Issues
q Transparency: application cannot tell that it is

running inside DynamoRIO
q Why does DynamoRIO need transparency?

o Ensures that application behaves exactly the same way as
before: it can’t even tell the difference.

o So, it can’t evade DynamoRIO, nor can it behave
differently.

q Transparency Issues
- Library transparency
- Thread transparency
- Stack transparency

CSE509 – Computer Systems Security – Slides: R. Sekar

- Address space transparency
- Context Translation
- Performance transparency

(not preserved)

Library Transparency
q Issues when both DynamoRIO and

application enters the same non-re-entrant
library routine
o System state might be broken (errno)
o Library routine may fail to work (malloc)

q Solution:
o Use system call on both windows and Linux
o Use stateless library routines
o Implement own memory (de)allocation routines.

CSE509 – Computer Systems Security – Slides: R. Sekar

Thread Transparency
q DynamoRIO does not create its own thread
q Why?

o violate transparency when application that
monitors all reads in a process

o Performance issue when threads double
q What about one DynamoRIO thread?

o Still violate transparency
o Performance degrades when multiple threads

switch into DynamoRIO mode
q Therefore, use app thread with new context

CSE509 – Computer Systems Security – Slides: R. Sekar

Stack Transparency
q DynamoRIO does not “touch” application stack.

o Some applications may access data beyond the top of
stack. Eg: Microsoft office

o Usual stack conventions may not be followed by hand-
crafted assembly
§ use of esp as a GPR

o Ability to read return address off stack and use in
computing code location (or modify it)
§ Used in PIC (position-independent code)

q Solution:
o Use a private stack for each thread in DynamoRIO

mode
o Do not modify content of original stack
CSE509 – Computer Systems Security – Slides: R. Sekar

Address Space Transparency
q DynamoRIO should not “leak” information about

itself.
o On Windows, intercept

§ NtQueryVirtualMemory() that traverse memory
regions

§ GetModuleFileName() (library call) to check if
library is present

o On Linux, intercept
§ mmap(). etc.

q More measures (security)
o Mark DynamoRIO code as NX, when in code cache

CSE509 – Computer Systems Security – Slides: R. Sekar

Context Translation
q When exception occurs, the faulting place

should be the original code address.
o Intercept user signal handler
o Check the address map, find the original

address
o Modify the signal stack and go to user signal

handler

CSE509 – Computer Systems Security – Slides: R. Sekar

Transparency & OS Issues
q Operating System Issues

o Kernel Mediated Control Flow
o System Call Handling
o Thread synchronization

CSE509 – Computer Systems Security – Slides: R. Sekar

Kernel Mediated Control Flow
q Signal Handling

o DynamoRIO routine will get control first
o Signals will be queued and delayed, except urgent signals

§ Eg: SIGSEGV
q When signal arrives, if the thread is at

o Code cache:
§ Unlink the current basic block, go back to DynamoRIO
§ If bb contains syscall, jump to exit stub before

syscall.
Ø Why? Bound timing of signal handler, as syscall is expensive.

o DynamoRIO code:
§ Delay signal until reaching a safe place
§ Emulate kernel behavior

CSE509 – Computer Systems Security – Slides: R. Sekar

System Call handling
q If syscall number is not statically known or on

DynamoRIOs list
o Insert pre-syscall & post-syscall routines around the

instruction
q Uninterested syscall: left unchanged. However:
q For signal handling, app must LEAVE code cache

QUICKLY (for timing issue)
o Insert a jump prior to the syscall :

§ Jmp <syscall or bail>
§ Bail: jmp <exit stub>
§ Syscall:
§ <system call insruction>

CSE509 – Computer Systems Security – Slides: R. Sekar

Program Shepherding:
An IRM based on DynamoRIO

q Introduces in-line checks to defend
against common exploits
o Buffer overflow attacks
o Format string attacks
o Injection of malicious code
o Re-use of existing code (existing code

attacks)
q Sandboxing

CSE509 – Computer Systems Security – Slides: R. Sekar

Program Shepherding
Performance under Linux

q gcc is slow since it consists of many short runs
with little code re-use

CSE509 – Computer Systems Security – Slides: R. Sekar

Program Shepherding
Performance under Windows

q Windows is much less efficient at changing privileges
on memory pages than Linux
CSE509 – Computer Systems Security – Slides: R. Sekar

Caveat about performance
q DBT performance measurements usually

based very longrunning CPU-intensive
benchmarks

q These applications represent the “best case
scenario” for DBT systems
o Rewrite once, execute for a long time

q Real-world performance can be bad
o 10x to 40x slowdown in the worst case

q Example DBT systems
o DynamoRIO, Pin, Valgrind, …
CSE509 – Computer Systems Security – Slides: R. Sekar

Caveat about performance
q But its exceptional level of compatibility

with arbitrary binary code can still be
compelling for
o CPU-intensive applications with tight loops
o Coarse-granularity instrumentation (i.e., very

small fraction of instructions instrumented)
o Debugging applications

CSE509 – Computer Systems Security – Slides: R. Sekar

Other Dynamic
Transformation Tools

q Pin
o better supported now than DynamoRIO
o better engineered for Linux

q Strata
q Valgrind

o Most popular open-source tool for finding
memory errors and many other applications

q Qemu
o Can support whole system emulation
CSE509 – Computer Systems Security – Slides: R. Sekar

DynamoRIO vs Pin
q Architecture dependency

o Pin tools: written in c/c++
o DynamoRIO: written in x86 assembly

q DynamoRIO’s tools allow users to
operate at a lower level
o Have more control over efficiency, but

programming can be hard, and architecture
dependent.

CSE509 – Computer Systems Security – Slides: R. Sekar

BBCount Pin Tool
q For more information, including tutorials and examples, see

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

CSE509 – Computer Systems Security – Slides: R. Sekar

static int bbcount;
VOID PIN_FAST_ANALYSIS_CALL docount() { bbcount++; }
VOID Trace(TRACE trace, VOID *v) {

for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl);
bbl = BBL_Next(bbl)) {

BBL_InsertCall(bbl, IPOINT_ANYWHERE, AFUNPTR(docount),
IARG_FAST_ANALYSIS_CALL, IARG_END);

}
}
int main(int argc, char *argv[]) {

PIN_InitSymbols();
PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(Trace, 0);
PIN_StartProgram();
return 0;

}

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

BBCount DynamoRIO Tool
static int global_count;
static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,

bool for_trace, bool translating) {
instr_t *instr, *first = instrlist_first(bb);
uint flags;
/* Our inc can go anywhere, so find a spot where flags are dead. */
for (instr = first; instr != NULL; instr = instr_get_next(instr)) {

flags = instr_get_arith_flags(instr);
/* OP_inc doesn't write CF but not worth distinguishing */
if (TESTALL(EFLAGS_WRITE_6, flags) && !TESTANY(EFLAGS_READ_6, flags))

break;
}
if (instr == NULL)

dr_save_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
instrlist_meta_preinsert(bb, (instr == NULL) ? first : instr,

INSTR_CREATE_inc(drcontext, OPND_CREATE_ABSMEM((byte *)&global_count, OPSZ_4)));
if (instr == NULL)

dr_restore_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
return DR_EMIT_DEFAULT;

}
DR_EXPORT void dr_init(client_id_t id) {

dr_register_bb_event(event_basic_block);
}

CSE509 – Computer Systems
Security – Slides: R. Sekar

Applicability of
Static Vs Dynamic Techniques

q Some techniques require static instrumentation
o Any technique that uses static analysis to compute a

property and then enforces it at runtime
§ CFI, some aspects of bounds-checking, some types of

randomizations, …
q Others can use dynamic instrumentation

o Stackguard, SFI (but may be limited if CFI can’t be
assured)

q And yet others that cannot use static
instrumentation
o Obfuscated code, mainly malware

CSE509 – Computer Systems Security – Slides: R. Sekar

Obfuscation against
Disassembly

q Conditional jumps where the condition is
always true (or false)
o Use an opaque predicate to hide this

q Instructions that fault
o Execution continues in exception handler

q Embedding data in the midst of code
o With indirect jumps that make it impossible

to distinguish between code and data

CSE509 – Computer Systems Security – Slides: R. Sekar

Control-flow Obfuscation Against
Reverse Engineering

q Split or aggregate
o Basic blocks
o Loops

§ e.g., one loop becomes two loops or vice-versa
o Procedures
o Replace one procedure by two or merge two procedures
o Inline a procedure, or outline (i.e., create new

procedure)
q Reorder

CSE509 – Computer Systems Security – Slides: R. Sekar

Control-flow Obfuscation Against
Reverse Engineering

q Insert dead-code (i.e., unreachable code)
o Obfuscate using conditions

q Replace instruction sequences w/ alternate ones
q Insert conditional jumps using “opaque”

predicates
q Insert indirect jumps
q Exploit aliasing and memory errors

CSE509 – Computer Systems Security – Slides: R. Sekar

Data Obfuscation
q Rename variables
q Split or aggregate variables

o Split structures into individual variables or
vice-versa

q Split individual variables
o E.g., A = B - C – instead of A, use B and C
o Clone a variable

q Pad arrays (and possibly structures) with junk
elements

q “Encrypt” data values
CSE509 – Computer Systems Security – Slides: R. Sekar

Data Obfuscation
q Introduce extra levels of indirection
q Instead of a simple variable, declare a pointer
q Introduce aliasing
q Introduce memory errors
q Introduce additional (or remove) function

parameters

CSE509 – Computer Systems Security – Slides: R. Sekar

Questions

CSE509 – Computer Systems Security – Slides: R. Sekar

