
CSE509 : Computer System 
Security

CSE509 – Computer Systems Security – Slides: R. Sekar



Securing Untrusted Code

CSE509 – Computer Systems Security – Slides: R. Sekar



Untrusted Code
q May be untrustworthy

o Intended to be benign, but may be full of 
vulnerabilities

o These vulnerabilities may be exploited by 
attackers (or other malicious processes) to 
run malicious code

CSE509 – Computer Systems Security – Slides: R. Sekar



Untrusted Code
q Or, may directly be malicious: may use

o Obfuscation
§ Code obfuscation
§ Anti-analysis techniques
§ Use of vulnerabilities to hide behavior

o (Behavioral) evasion
§ Actively subvert enforcement mechanisms

q Security is still defined in terms of 
policies
o But enforcement mechanisms need to be 

stronger in order to defeat a strong adversary
CSE509 – Computer Systems Security – Slides: R. Sekar



Reference Monitors
q Security policies can be enforced by 

reference monitors (RM)
o Key requirements

§ Complete mediation
§ (If interaction with user is needed) Trusted path

q With benign code, we typically assume that 
it won’t actively evade enforcement 
mechanisms
o We can possibly maintain security even if there 

are ways to subvert the checks made by the RM
CSE509 – Computer Systems Security – Slides: R. Sekar



Types of Reference Monitors
q External RM

o RM resides outside the address space of 
untrusted process

o Relies on memory protection
§ Protect RM’s data from untrusted code
§ Limit access to RM’s code

q Inline RM
o Policy enforcement code runs within the 

address space of the untrusted process
o Cannot rely on traditional hardware-

based memory protection
CSE509 – Computer Systems Security – Slides: R. Sekar



External Reference Monitors
q System-call based RMs
q Linux Security Modules (LSM)
q AppArmor

CSE509 – Computer Systems Security – Slides: R. Sekar



System-call based RMs
q OSes already implement RMs to enforce OS

security policies
o Most aspects of policy are configured (e.g., file

permissions), while the RM mainly includes 
mechanisms to enforce these policies

q But these are typically not flexible enough 
or customizable

CSE509 – Computer Systems Security – Slides: R. Sekar



System-call based RMs
q More powerful and flexible policies may be

realized using a customized RM
q System-calls provide a natural interface at 

which such a customized RM can reside and 
mediate requests.

CSE509 – Computer Systems Security – Slides: R. Sekar



Why Monitor System Calls?
q Complete mediation: All security-relevant 

actions of processes are administered 
through this interface

q Performance: Associated with a context-
switch --- can be exploited to protect RM 
without extra overheads

q Granularity
o Finer granularity than typical access control 

primitives
o But coarse enough to be tractable: a few 

hundred system calls
CSE509 – Computer Systems Security – Slides: R. Sekar



Why Monitor System Calls?
q Expressiveness

o Clearly defined, semantically meaningful, well-
understood and welldocumented interface 
(except for some OSes like Windows)

o Orthogonal (each system call provides a 
function that is independent ofother system 
calls --- functions that rarely, if ever, overlap)

o Can control operations for which OS access 
controls are ineffective, e.g., loading modules
§ A large number of security-critical operations are 

traditionally lumped into “administrative privilege”
CSE509 – Computer Systems Security – Slides: R. Sekar



Why Monitor System Calls?

q Portability: System call policies can be 
easily ported across similar OSes, e.g., 
various flavors of UNIX

CSE509 – Computer Systems Security – Slides: R. Sekar



Some drawbacks of system calls
q Interface is designed for functionality

o Several syscalls may be equivalent for security 
purposes, but we a syscall policy needs to treat 
them separately

q Not all relevant operations are visible
o For instance, syscall policies cannot control 

name-to-file translations

CSE509 – Computer Systems Security – Slides: R. Sekar



Some drawbacks of system calls
q Race conditions

o Pathname based policies are prone to race 
conditions

o More generally, there may be TOCTTOU races 
relating to system call arguments
§ Unless the argument data is first copied into RM, 

checked, and then this checked copy is used by the 
system call

Ø Adds more complexity

q The window for exploiting TOCTTOU 
attacks can be increased by using a large 
sequence of symbolic links in the name

CSE509 – Computer Systems Security – Slides: R. Sekar



Linux Security Module 
Framework

q Motivated by the drawbacks of syscall
monitors
o Defines a number of “hooks” within Linux 

kernel
§ Includes all points where security checks need to 

be done
§ RMs can register to be invoked at these hooks
§ SELinux, as well as Linux capabilities are 

implemented using such RMs

CSE509 – Computer Systems Security – Slides: R. Sekar



Linux Security Module 
Framework

q Drawbacks
o The framework has significant complexity ---

while it simplifies some things, the increased 
complexity makes other things hard.

o Requires a lot of effort to identify the 
things that need checking, and where all the 
hooks need to be placed

o Very closely tied to the implementation 
details of an OS --- not easily ported to 
other OSes.

CSE509 – Computer Systems Security – Slides: R. Sekar



System call interposition 
approaches

q User-level interception
o RM resides within a process

§ Library interposition
Ø RM resides in the same address space
Ø Advantages

• high performance
• Potential for intercepting higher level (semantically 

richer) operations
Ø Drawbacks: RM is unprotected, so appropriate only for 

benign code

CSE509 – Computer Systems Security – Slides: R. Sekar



System call interposition 
approaches

q User-level interception
o RM resides within a process

§ Kernel-supported interposition, with RM residing in 
another process

Ø Advantages: Secure for untrusted code
Ø Drawback: High overheads due to context switches
Ø Example: ptrace interface on Linux

CSE509 – Computer Systems Security – Slides: R. Sekar



System call interposition 
approaches

q Kernel interception
o The RM resides in the kernel

§ Advantages: high performance, secure for untrusted 
code

§ Drawbacks:
Ø difficult to program
Ø requires root privilege
Ø Rootkit defense measures pose compatibility issues

CSE509 – Computer Systems Security – Slides: R. Sekar



Inline Reference Monitoring
q Foundations

o Software Fault Isolation (SFI)
o Control-flow Integrity (CFI)

q Case Study
o Google Native Client (NaCl)

CSE509 – Computer Systems Security – Slides: R. Sekar



Inline Reference Monitors (IRMs)
q Provide finer granularity

o “Variable x is always greater than y”
o Provides much more expressive power

q Very efficient
o Does not require a context switch

q Key challenge:
o Protecting IRM from hostile code

CSE509 – Computer Systems Security – Slides: R. Sekar



Securing RMs in the same space
q Protect RM data used in enforcing policy

o Software-based fault isolation (SFI)
q Protect RM checks from being bypassed

o Control-flow integrity (CFI)
q Note

o For vulnerability defenses (e.g., Stackguard), 
we implement the checks using an IRM

o But we don’t worry so much about these 
properties since we are dealing with benign 
(and not malicious) code

CSE509 – Computer Systems Security – Slides: R. Sekar



Software Fault Isolation 
(SFI)

CSE509 – Computer Systems Security – Slides: R. Sekar



Background
q Fault Isolation

o What is fault isolation?
§ when "something bad" happens, the negative 

consequences are limited in scope.
o Why is it needed?

§ Untrusted plug-ins makes applications unreliable
§ Third-party modules make the OS unreliable

q Hardware based Fault Isolation
o Isolated Address Space
o RPC interfaces for cross boundary 

communication
CSE509 – Computer Systems Security – Slides: R. Sekar



SFI [Wahbe et al 1994]
q Motivation

o Hardware-assisted context-switches are 
expensive
§ TLB flushing; some caches may require flushing as 

well

q Key idea
o Insert inline checks to verify memory 

address bounds for
§ Data accesses
§ Indirect control-flow transfers (CFT)

Ø Direct CFTs can be statically checked

CSE509 – Computer Systems Security – Slides: R. Sekar



SFI [Wahbe et al 1994]
q Challenges

o Efficiency
§ each memory access has the overhead of checking

o Security
§ Preventing circumvention or subversion of checks

CSE509 – Computer Systems Security – Slides: R. Sekar



CSE509 – Computer Systems Security – Slides: R. Sekar

• Even when running in the same virtual address 
space, limit some code components to access only a 
part of the address space
• This subspace is called a “fault domain”



Software Fault Isolation
q Virtual address segments

o Fault domain (guest) has two segments, 
one for code, the other for data.

o Each segment share a unique upper bits 
(segment identifier)

o Untrusted module can ONLY jump to or 
write to the same upper bit pattern 
(segment identifier)

CSE509 – Computer Systems Security – Slides: R. Sekar



Software Fault Isolation
q Components of the technique

o Segment Matching
o Optimization: instead of checking, simply 

override the segment bits
§ Originally, the term “sandboxing” referred 

to this overriding
o Data sharing
o Cross-domain Communication

CSE509 – Computer Systems Security – Slides: R. Sekar



Segment Matching
q Insert checking code before every unsafe 

instruction
q To prevent subversion of checks, use 

dedicated registers, and ensure that all 
jumps and stores use these registers
o Need only worry about indirect accesses
o Don’t forget that returns are indirect jumps too

CSE509 – Computer Systems Security – Slides: R. Sekar



Segment Matching
q Checking code determines whether the 

unsafe instruction has the correct segment 
identifier

q Trap to a system error routine if checking 
fails – pinpoint the offending instruction

CSE509 – Computer Systems Security – Slides: R. Sekar



Segment Matching

CSE509 – Computer Systems Security – Slides: R. Sekar

5 instructions, Need 5 dedicated registers (segment value 
needs to be different for code and data) and it can pinpoint 
the source of faults. Can reduce the number of registers by 
hard-coding some values (e.g., number of shift bits).



Optimization 1: Address 
Sandboxing

q Reduce runtime overhead further 
compared to segment matching by not 
pinpointing the offending instruction

q Before each unsafe instruction, 
inserting codes can set the upper bits 
of the target address to the correct 
segment identifier

CSE509 – Computer Systems Security – Slides: R. Sekar



Address Sandboxing

q 3 instructions, Require 5 dedicated registers (since 
mask and segment registers will be different for 
code and data)

q Correctness: Relies on the invariant that dedicated 
registers always contain valid values before any 
control transfer instruction.

CSE509 – Computer Systems Security – Slides: R. Sekar



Optimization 2: Guarding pages
q A single instruction 

accesses multiple bytes of 
memory (4, 8, or may be 
more)

q Need to check whether all 
bytes are within the 
segment
o Require at least two 

checks!
q Optimization

o Sandboxing reg, ignore 
reg+offset

o Guard zones ensure 
that reg+offset will also 
be in bounds (or that 
there will be a 
hardware fault)

CSE509 – Computer Systems Security – Slides: R. Sekar



Data sharing
q Read-only sharing can be achieved in 

several ways:
o Option 1: Don’t restrict read acceses
o Option 2: Allow reads to access some 

segments other than that of untrusted code
o Option 3: Remap shared memory into the 

address space of both the untrusted and 
trusted domains

q Read-write sharing can use similar 
techniques.
CSE509 – Computer Systems Security – Slides: R. Sekar



CSE509 – Computer Systems Security – Slides: R. Sekar



SFI details (continued)
q Need compiler assistance

o To set aside dedicated registers
o But we cannot trust the compiler

§ Programs may be distributed as binaries, and we 
can’t trust the compiler used to compile that 
untrusted binary

CSE509 – Computer Systems Security – Slides: R. Sekar



SFI details (continued)
q Need a verifier

o Verification is quite simple
§ Dedicated registers should be loaded only after 

address-sandboxing operations
§ All direct memory accesses and direct jumps 

should stay within untrusted domain. 
Implementation operates on binary code

Ø Note that SFI checks all indirect accesses and control-
transfers at runtime

o Was implemented on RISC architectures

CSE509 – Computer Systems Security – Slides: R. Sekar



SFI details (continued)
q Precursor to proof-carrying code [Necula

et al]
o Code producer provides the proof, consumer 

needs to check it.
§ Proof-checking is much easier than proof 

generation
§ Especially in an automated verification setting:

Ø producer needs to navigate a humongous search space to 
construct a proof tree

Ø consumer needs to just verify that the particular tree 
provided is valid

CSE509 – Computer Systems Security – Slides: R. Sekar



SFI for CISC Architectures (x86)

q Difficulties of bringing SFI to CISC
o Problem 1: Variable-length instructions

§ What happens if code jumps to the middle of an 
instruction

CSE509 – Computer Systems Security – Slides: R. Sekar



SFI for CISC Architectures (x86)
q Difficulties of bringing SFI to CISC

o Problem 2: Insufficient registers
§ SFI requires 5 dedicated registers for segment 

matching
§ SFI requires 5 dedicated registers for address 

sandboxing
§ x86 has very few general-purpose registers 

available
Ø eax, ebx, ecx, edx, esi, edi

§ PittsSFIeld: uses ebx as a dedicated register 
AND treats esp and ebp as sandboxed registers 
(adds needed checks)

CSE509 – Computer Systems Security – Slides: R. Sekar



CSE509 – Computer Systems Security – Slides: R. Sekar



Solution to Problem 2 
q Hardcode segments

o Avoids need for segment
registers etc.

q Make code and data segments adjacent, and differ 
by only one bit in their addresses
o Sandboxing now achieved using a single instruction

§ and 0x20ffffff, %ebx
§ Store using ebx

o For indirect jumps, use:
§ and 0x10fffff0, %ebx
§ Jump using ebx

q Alternative approach
o Use x86 segment (CS, DS, ES) registers!

§ Very efficient but not available on x86_64

CSE509 – Computer Systems Security –
Slides: R. Sekar

unmapped



Control Flow Integrity (CFI)

CSE509 – Computer Systems Security – Slides: R. Sekar



Control-flow Integrity (CFI) 
[Abadi et al]

q Unrestricted control-flow transfers 
(CFTs) can subvert the IRM
o Simply jump past checks, or
o Jump into IRM code that updates critical 

IRM data 

CSE509 – Computer Systems Security – Slides: R. Sekar



Control-flow Integrity (CFI) 
[Abadi et al]

q Approaches
o Compute a control-flow graph using static 

analysis, enforce it at runtime
§ Benefits: With accurate static analysis, can 

closely constrain CFTs.
§ Drawback: Requires reasoning about targets of 

indirect CFTs (hard!)
o Enforce coarse-grained CFI properties

§ All calls should go to beginning of functions
§ All returns should go to instructions following calls
§ No control flow transfers can target instructions 

belonging to IRM
CSE509 – Computer Systems Security – Slides: R. Sekar



CFI (Continued)
q Coarse-grained version is sufficient to 

protect IRM
o Like SFI, CFI is self-protecting

§ CFI checks the targets of jump, so it can prevent 
unsafe CFTs that attempt to jump just beyond 
CFI checks

§ In PittSFIeld, this was achieved by ensuring that 
the check and access operations were within the 
same bundle

Ø Jumps can only go to the beginning of a bundle, so you 
can’t jump between check and use

CSE509 – Computer Systems Security – Slides: R. Sekar



CFI (Continued)
q Coarse-grained version is sufficient to 

protect IRM
o Because of this, SFI and CFI provide a 

foundation for securing untrusted code using 
inline checks.

o CFI can also be applied to protect against 
control-flow hijack attacks
§ Jump to injected code (easy)
§ Return to libc (most obvious cases are easy)
§ Return-oriented programming (requires 

considerable effort to devise ROP attacks that 
defeat CFI)

§ But not a foolproof defense
CSE509 – Computer Systems Security – Slides: R. Sekar



CFI (Continued)

q In addition:
o IRM code shouldn’t assume that 

untrusted code will follow ABI 
conventions on register use

o IRM code should use a separate stack
§ To prevent return-to-libc style attacks 

within IRM code

CSE509 – Computer Systems Security – Slides: R. Sekar



CFI Implementation Strategies
q Approach 1 (proposed in the original 

CFI paper)
o Associate a constant index with each 

CFT target
o Verify this index before each CFT
o Ideal for fine-grained approach, where 

static analysis has computed all potential 
targets of each indirect CFT instruction

CSE509 – Computer Systems Security – Slides: R. Sekar



CFI Implementation Strategies
q Approach 1 (proposed in the original CFI 

paper)
o Issues

§ If locations L1 and L2 can be targets of an 
indirect CFT, then both locations should be given 
the same index

§ If another CFT can go to either L2 or L3, then all 
three must have same index

§ A particular problem when you consider returns
Ø Accuracy can be improved by using a stack, but then you 

run into the same compatibility issues as stacksmashing
defenses that store a second copy of return address

CSE509 – Computer Systems Security – Slides: R. Sekar



CFI Instrumentation

CSE509 – Computer Systems Security – Slides: R. Sekar

•Method (a): unsafe, since ID is embedded in callsite (could be used 
by attacker)
•Method (b): safe, but pollute the data cache



CFI Implementation

q CFG construction is conservative
o Each computed call instruction may go to 

ANY function whose address is taken 
(too coarse)

o Discover those functions by checking 
relocation entries.
§ Won’t work on stripped code

CSE509 – Computer Systems Security – Slides: R. Sekar



CFI Assumption
q UNQ: Unique IDs.

o choose longer ID to prevent ensure the uniqueness
o Otherwise: jump in the middle of a instruction or 

arbitrary place (in data or code)

q NWC: Non-Writable Code.
o Code could not be modified. Otherwise, verifier is 

meaningless, thus all the work is meaningless……

q NXD: Non-Executable Data
o Otherwise, attacker can execute data that begins with a 

correct ID.

q All the assumptions should hold. Otherwise, 
this CFI implementation can be defeated.

CSE509 – Computer Systems Security – Slides: R. Sekar



CFI Implementation Strategies
q Approach 2

o Use an array V indexed by address, and holding the 
following values
§ Function_begin, Valid_return, Valid_target, Invalid

o A call to target X is permitted if V[X] == 
Function_begin

o A return to target X is permitted if V[X] == 
Valid_return

o A jump to target X is permitted if V[X] != Invalid
o Otherwise, CFT is not permitted

§ Note that CFI implementations need only check indirect 
CFTs

CSE509 – Computer Systems Security – Slides: R. Sekar



CSE509 – Computer Systems Security – Slides: R. Sekar



SFI, CFI and Follow-ups
q SFI originally implemented for RISC 

instruction set, later extended to x86
o Efficient implementation on x86, x86-64 and ARM 

architectures have been the focus of recent works

q CFI originally implemented using 
Microsoft’s Phoenix compiler framework
o Binary instrumentation requires a lot of information 

unavailable in normal binaries, and hence reliance on 
specific compiler

o But the concept has had broad impact

CSE509 – Computer Systems Security – Slides: R. Sekar



SFI, CFI and Follow-ups

q Google’s Native Client (NaCl) project is the 
most visible application of SFI and CFI 
techniques
o Supports untrusted native code in browsers
o Part of recent WebAssembly standard

§ Included in Firefox 52 and later

CSE509 – Computer Systems Security – Slides: R. Sekar



Case Study:
Google Native Client (NaCl)

CSE509 – Computer Systems Security – Slides: R. Sekar



Motivation
q Browsers already allow Javascript

code from arbitrary sites, but its 
performance is inadequate for some 
applications
o Games
o Fluid dynamics (physics simulation)

q Permitting native code from arbitrary 
sites is too dangerous!

CSE509 – Computer Systems Security – Slides: R. Sekar



Native Client Approach
q Sandboxed environment for execution 

of native code. Two parts:
o SFI using x86 segment as inner sandbox
o Runtime for allowing safe operations 

from outer sandbox
q Good runtime facilities

o Multi-threading support
o IPC: PPAPI
o Performance: 5% overhead on average

CSE509 – Computer Systems Security – Slides: R. Sekar



System Architecture

CSE509 – Computer Systems Security – Slides: R. Sekar



Design
q Inner Sandbox

o Static verification to ensure all security 
properties hold for the untrusted code

o 32-byte instruction bundles to ensure CFI
o Trampoline/springboard to allow safe control 

transfer from untrusted to trusted and vice 
versa

q Runtime Facilities
o Safe execution of possible “unsafe” 

operations
o Inter module communication: PPAPI & IMC

CSE509 – Computer Systems Security – Slides: R. Sekar



Binary Constraints & Properties

q Constraints
o No self modifying code
o Static linked with a fix start address of text segment
o All indirect control transfer use nacljmp instruction
o The binary is padded up to the nearest page with hlt
o No instructions overlap 32-byte boundary
o All instructions are reachable by fall-through 

disassembly from starting address
o All direct control transfers target valid instructions

CSE509 – Computer Systems Security – Slides: R. Sekar



Control Flow Integrity
q All control transfers must target an 

instruction identified during disassembly
q Direct control flow

o Target should be one of reachable instructions

q Indirect Control flow
o Segmented support (works because a fix start address)
o No returns
o Limit target to 32 byte boundary (nacljmp on the right)

jmp eax -> and eax,0xffffffe0
jmp eax

o Nacljmp is atomic
CSE509 – Computer Systems Security – Slides: R. Sekar



Data Integrity
q Segmented memory support
q Limited instruction set (no 

assignment to segment register)
o i.e. move ds, ax is forbidden

CSE509 – Computer Systems Security – Slides: R. Sekar



Questions

CSE509 – Computer Systems Security – Slides: R. Sekar


