
CSE509 : Computer System
Security

CSE509 - Computer System Security - Slides: R Sekar

Memory Error Exploits and
Defenses

CSE509 - Computer System Security - Slides: R Sekar

Process Memory Layout

CSE509 - Computer System Security - Slides: R Sekar

argv, env

stack

heap

bss

data

text

high mem

low mem

Argv/Env: CLI args and
environment
Stack: generally grows downwards
Heap: generally grows upwards
BSS: unitialized global data
Data: initialized global data
Text: read-only program code

Memory Layout Example

CSE509 - Computer System Security - Slides: R Sekar

/* data segment: initialized global data */
int a[] = { 1, 2, 3, 4, 5 };
/* bss segment: uninitialized global data */
int b;
/* text segment: contains program code */
int main(int argc, char **argv) /* ptr to argv */
{

/* stack: local variables */
int *c;
/* heap: dynamic allocation by new or malloc */
c = (int *)malloc(5 * sizeof(int));

}

What is the Call Stack?
• LIFO data structure: push/pop
• Stack grows downwards in memory.
• SP (esp) points to top of stack (lowest address)

• What’s on the call stack?
• Function parameters
• Local variables
• Return values
• Return address

CSE509 - Computer System Security - Slides: R Sekar

Call Stack Layout

CSE509 - Computer System Security - Slides: R Sekar

Accessing the Stack
• Pushing an item onto the stack.

1. Decrement SP by 4.
2. Copy 4 bytes of data to stack.
Example: push 0x12

• Popping data from the stack.
3. Copy 4 bytes of data from stack.
4. Increment SP by 4.
Example: pop eax
Retrieve data without pop: mov eax, esp

CSE509 - Computer System Security - Slides: R Sekar

What is a Stack Frame?
• Block of stack data for one procedure call.
• Frame pointer (FP) points to frame:
• Use offsets to find local variables.
• SP continually moves with push/pops.
• FP only moves on function call/return.
• Intel CPUs use ebp register for FP

CSE509 - Computer System Security - Slides: R Sekar

C Calling Convention
1. Push all params onto stack in reverse order.

Parameter #N
…
Parameter #2
Parameter #1

2. Issues a call instruction.
1. Pushes address of next instruction (the return
address) onto stack.
2. Modifies IP (eip) to point to start of function.

CSE509 - Computer System Security - Slides: R Sekar

Stack before Function Executes

CSE509 - Computer System Security - Slides: R Sekar

Old stack frame

parameter #N

….

parameter #1

return address

Frame Pointer

Stack Pointer

C Calling Convention
1. Function pushes FP (ebp) onto stack.

Save FP for previous function.
push ebp

2. Copies SP to FP.
Allows function to access params as fixed indexes
from base pointer.
mov ebp,esp

3. Reserves stack space for local vars.
subl esp, 0x12

CSE509 - Computer System Security - Slides: R Sekar

Stack at Function Start

CSE509 - Computer System Security - Slides: R Sekar

Old Stack Frame

paramater #N

…

parameter #1

return address

old FP

Space for local vars

Space for local vars

EBP (Base Pointer)

ESP (Stack Pointer)

C Calling Convention
1. After execution, stores return value in eax.

movl eax, 0x1
Resets stack to pre-call state.
Destroys current stack frame; restores caller’s frame.
mov esp, ebp
pop ebp

2. Returns control back to where called from.
ret pops top word from stack and sets eip to that
value.

CSE509 - Computer System Security - Slides: R Sekar

Example: Stack Smashing Attack

CSE509 - Computer System Security - Slides: R Sekar

void
f(const int *A, int n) {

int buf[100];
int i = 0;
while (i < n) {

buf[i] = A[i++];
}
...

}

n
A

Return Address

Base Ptr

buf[99]
buf[98]

…

buf[0]

i

buf[101]

Injected code starts here!

Stack growth
Increasing A

ddress

Stack smashing defenses
• Canary stored before return value, checked before return
• Issues

• Protecting RA vs Saved BP
• Random, XOR, null Canaries
• How about data?

• Weaknesses
• Brute-force Canary, or rely on information leakage attacks
• Overwrite RA without Overwriting canary (e.g., double pointer attacks)
• Overwrite other code pointers (e.g., function pointer, virtual table

pointer, GOT)

• Storing RA in two places
• StackShield, Return Address Defender (RAD)
• Issues: Compatibility with signals, exceptions, longjmp

CSE509 - Computer System Security - Slides: R Sekar

Stack smashing defenses
• Propolice
• Canary before saved BP + protect local variables by reordering them

• Simple variables (integers, pointers) located at lower addresses,
buffers at higher addresses
• Buffer overflow cannot corrupt local variables, preventing double pointer

attacks
• But underruns can corrupt these simple (non-buffer) variables

• Mainstream compilers (gcc, MS) include Propolice like protection
• Not included for functions with no arrays

CSE509 - Computer System Security - Slides: R Sekar

Non-executable data
• Direct code injection attacks at some point execute

data
• Most programs never need to do this

Hence, a simple countermeasure is to mark data
memory (stack, heap, ...) as non-executable

• Write-XOR-Execute, DEP
• This counters direct code injection\
• In principle, this countermeasure may also break certain legacy

applications

CSE509 - Computer System Security - Slides: R Sekar

Reaction: No code injection
necessary

• Instead of injecting malicious code, why not assemble
malicious code out of existing code already present in
the program
• Indirect code injection attacks will drive the execution of the

program by manipulating the stack

• E.g. Just execute system(“/bin/bash”) instead of
creating your own interrupts
• You just need to find where the system function is and call it

with the right parameter

CSE509 - Computer System Security - Slides: R Sekar

Return-into-libc: overview

CSE509 - Computer System Security - Slides: R Sekar

Return-into-libc: overview

CSE509 - Computer System Security - Slides: R Sekar

Return-into-libc: overview

CSE509 - Computer System Security - Slides: R Sekar

Return-into-libc: overview

CSE509 - Computer System Security - Slides: R Sekar

Return-into-libc: overview

CSE509 - Computer System Security - Slides: R
Sekar

Return-into-libc: overview

CSE509 - Computer System Security - Slides: R Sekar

Return-into-libc: overview

CSE509 - Computer System Security - Slides: R Sekar

Return-to-libc
• What do we need to make this work?
• Inject the fake stack

• Easy: this is just data we can put in a buffer

• Make the stack pointer point to the fake stack right before a
return instruction is executed

• Then we make the stack execute existing functions to do a
direct code injection
• But we could do other useful stuff without direct code injection

CSE509 - Computer System Security - Slides: R Sekar

Return-to-libc on Steroids
• Overwritten saved EIP need not point to the beginning

of a library routine
• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?
• Read the word pointed to by stack pointer (ESP)

• Guess what? Its value is under attacker’s control! (why?)
• Use it as the new value for EIP

• Now control is transferred to an address of attacker’s choice!
• Increment ESP to point to the next word on the stack

CSE509 - Computer System Security - Slides: R Sekar

Chaining RETs for Fun and Profit
• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed

code chunks exploitation technique” (2005)
• What is this good for?
• Answer [Shacham et al.]: everything
• Turing-complete language
• Build “gadgets” for load-store, arithmetic, logic, control flow,

system calls
• Attack can perform arbitrary computation using no injected

code at all –
return-oriented programming

CSE509 - Computer System Security - Slides: R Sekar

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = SMTH
EBX = SMTH
ECX = SMTH

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = SMTH
EBX = SMTH
ECX = SMTH

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = 8
EBX = SMTH
ECX = SMTH

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = 8
EBX = SMTH
ECX = SMTH

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = 8
EBX = &”/tmp...”
ECX = SMTH

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = 8
EBX = &”/tmp...”
ECX = SMTH

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = 8
EBX = &”/tmp...”
ECX = 0x309

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Return Oriented Programming

CSE509 - Computer System Security - Slides: R Sekar

…
…
…

0x80abdea0
0x309

0x80345677
&”/tmp/lala”
0x80abddaa

8
0x80abcdee

Low

High EAX = 8
EBX = &”/tmp...”
ECX = 0x309

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…0
x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

Heap based buffer overflow
• If a program contains a buffer overflow vulnerability

for a buffer allocated on the heap, there is no return
address nearby

• So attacking a heap based vulnerability requires the
attacker to overwrite other code pointers

• We look at two examples:
• Overwriting a function pointer
• Overwriting heap metadata

CSE509 - Computer System Security - Slides: R Sekar

Overwriting a function pointer
• Example vulnerable program:

CSE509 - Computer System Security - Slides: R Sekar

Overwriting a function pointer
• And what happens on overflow:

CSE509 - Computer System Security - Slides: R Sekar

Overwriting heap metadata
• The heap is a memory area where dynamically allocated

data is stored
• Typically managed by a memory allocation library that offers

functionality to allocate and free chunks of memory (in C:
malloc() and free() calls)

• Most memory allocation libraries store management
information in-band
• As a consequence, buffer overruns on the heap can overwrite

this management information
• This enables an “indirect pointer overwrite”-like attack allowing

attackers to overwrite arbitrary memory locations

CSE509 - Computer System Security - Slides: R Sekar

Heap management in dlmalloc

CSE509 - Computer System Security - Slides: R Sekar

Dlmalloc maintains a
doubly linked list of free
Chunks

When chunk c gets
unlinked, c’s backward
pointer is written to
*(forward pointer+12)

Or: green value is written
12 bytes above where
red value points

Chunk in use

Exploiting a buffer overrun

CSE509 - Computer System Security - Slides: R Sekar

Green value is written 12
bytes above where red
value points

A buffer overrun in d can
overwrite the red and
green values

. Make Green point to injected
code

. Make Red point 12
bytes below a function
return address

Exploiting a buffer overrun

CSE509 - Computer System Security - Slides: R Sekar

Green value is written 12
bytes above where red
value points

Net result is that the
return address points to
the injected code

Heap Overflow of Mem Mgmt
Metadata

CSE509 - Computer System Security - Slides: R Sekar

Heap Overflow of Mem Mgmt
Metadata

CSE509 - Computer System Security - Slides: R Sekar

Heap Overflow of Mem Mgmt
Metadata

CSE509 - Computer System Security - Slides: R Sekar

Heap Overflow of Mem Mgmt
Metadata

CSE509 - Computer System Security - Slides: R Sekar

Heap Overflows
• More generally, provides a primitive to write an

arbitrary 32-bit value at an arbitrary location
• Possible targets
• Function pointers

• Return address on stack
• Canaries don’t help, but second RA copy will detect attack

• Global Offset Table (GOT)
• Function pointers in static memory

• Data pointers
• Names of programs executed or files opened
• Application-specific data, e.g., “is_authenticated” flag in a login-like

program

CSE509 - Computer System Security - Slides: R Sekar

Heap Overflow Defenses
• Heap canaries
• “magic numbers” between data and header

• Separation of metadata from data
• In general, separating control data from program data is a good

idea
• Helps prevent data corruption attacks from altering the control

flow of programs
• Can be applied on the stack as well

• “Safe stack” holds control-data
• “safe” data (e.g., local integer-valued variables) can also be located

there as they cannot be involved in memory errors
• All other data moved to a second stack

CSE509 - Computer System Security - Slides: R Sekar

Format-string Attacks
• Exploits code of the form
• Read variables from untrusted source
• printf(s)

• Printf usually reads memory, so how can it be used for
memory corruption?
• “%n” primitive allows for a memory write
• Writes the number of characters printed so far (character count)
• Many implementations (Linux, Windows) allow just the least

significant byte of the number of character count
• don’t have to print large number of characters to write arbitrary 32-

bit values --- perform 4 separate writes of the LSB of character count
• Use field-width specifications to control character count

• Formatguard: pass in actual number of parameters so the
callee can only dereference that many parameters
• Not adopted in practice due to compatibility issues

CSE509 - Computer System Security - Slides: R Sekar

Integer Overflows
• There are multiple forms
• Assignment between variables of different width

• Assign 32-bit value to 16-bit variable
• Assignment between variables of different signs

• Assign an unsigned variable to a signed variable or vice-versa
• Arithmetic overflows

• i = j+k
• i = 4*j
• Note that i may become smaller than j even if j > 0

• Exploitation
• Allocate less memory than needed, leading to a heap overflow

• One of the common forms of file-format attacks
• “Escape” bounds checks

• If (i < sizeof(buf)) memcpy(buf, src, i);

• For more info
• http://www.phrack.org/archives/issues/60/10.txt

CSE509 - Computer System Security - Slides: R Sekar

http://www.phrack.org/archives/issues/60/10.txt

Memory Errors
• Although other attack types have emerged, memory errors

continue to be the dominant threat
• Behind most “critical updates” from Microsoft and other vendors
• Mechanism of choice in “mass-market” attacks, including worms
• Evolved to target client (web browsers, email-handlers,

wordprocessors, document/image viewers, media players, …) rather
than server applications (e.g., web browsers)

• A memory error occurs when an object accessed using a
pointer expression is different from the one intended
• Spatial error : Examples

• Out-of-bounds access due to pointer arithmetic errors
• Access using a corrupted pointer
• Uninitialized pointer access

• Temporal error: access to objects that have been freed (and
possibly reallocated)

• Example: dangling pointer errors
• applicable to stack and heap allocated data

CSE509 - Computer System Security - Slides: R Sekar

Memory Errors in C
• Spatial errors: out-of-bounds subscript or pointer
• char *p = malloc(10); *(p+15);

• Temporal errors: pointer target no longer valid
• Unintialized pointer
• Dangling pointer

• free(p); q = malloc(…); *p;
• Note: target may be reallocated!

• Hard to debug, especially temporal errors
• Unpredictable delay, unpredictable effect

• Reallocated pointer errors are the worst kind
• “Defensive programming” leads to memory leaks

CSE509 - Computer System Security - Slides: R Sekar

Use of Memory Errors in Attacks
• Temporal errors
• Not as frequently targeted as spatial errors, but are becoming

more common (“double free,” “use-after-free”)
• Spatial errors
• Pointer corruption is most popular
• Out-of-bounds errors are most commonly used to corrupt

pointers
• But some attacks rely on just reads without necessarily corrupting

existing data, e.g., heartbleed SSL vulnerability

• Typically, multiple errors (2-3) are used in an attack
• Stack-smashing relies on out-of-bounds write, plus the use of a

corrupted pointer as return address
• Heap overflow relies on out-of-bounds write, use of corrupted

pointer as target of write, and then the use of a corrupted
pointer as branch target.

CSE509 - Computer System Security - Slides: R Sekar

Overwrites aren’t the only
problem…

CSE509 - Computer System Security - Slides: R Sekar

CSE509 - Computer System Security - Slides: R Sekar

High-level Overview of Memory
Error Defenses

• Block memory errors
• Bounds-checking (mainly focused on spatial error)

• Bounds-checking C and CRED, Valgrind memcheck, ...
• Blocking all memory errors (including temporal)

• Disrupt exploits
• Identify mechanisms used for exploit, block them

• Disrupt mechanism used for corruption
• Protect attractive targets against common ways to corrupt them

(“guarding” solutions)
• Disrupt mechanism used for take-over

• Disrupt ways in which the victim program uses corrupted data
• Randomization-based defenses

• Disrupt payload delivery mechanism
• DEP, CFI

CSE509 - Computer System Security - Slides: R Sekar

A. Disrupting
Memory Error Exploits

CSE509 - Computer System Security - Slides: R Sekar

1. Disrupting mechanisms used for corruption
• Stackguard and related solutions
• Protect RA/saved BP; with ProPolice, some local variables as well

• Magic cookies and safe linking on heaps
• Attacks on GOT
• GOT contains function pointers used to call library functions

• Compiler generates a stub for each library function in a code section
called PLT (program linkage table)

• Stub code for a function f performs an indirect jump using the address
stored in the GOT corresponding to f.

• Defense: hide GOT
• Not very effective: injected code can search and locate it!

• Common problem for this approach: incomplete
• Not all targets can be protected
• Incomplete even for protected targets: some corruption techniques

still succeed, e.g., corrupting RA without disturbing canary.

CSE509 - Computer System Security - Slides: R Sekar

2. Disrupting payload delivery mechanisms
• Prevent control transfer to/execution of injected code
• Most OSes enforce W ⊕ X (aka NX or DEP)

• prevents writable memory from being executable, so can’t execute
injected code

• Attackers get around this by reusing existing code
• return-to-libc: return to the beginning of existing functions

• Instead of having injected code spawning a shell, simply “return” to the
execle function in libc

• If it is a stack-smash, attacker controls the contents of the stack at this
point, so they can control the arguments to execle

• By constructing multiple frames on the stack, it is possible to chain
together multiple fragments of existing code
• ROP (return-oriented programming) takes this to the extreme

• Chains together many small fragments of existing code (“gadgets”)
• Each gadget can be thought of as an “instruction” for a “virtual machine”
• For sufficiently complex binaries, sufficient number and variety of gadgets are

available to support
Turing-complete computation

• Most exploits today rely on ROP, due to widespread deployment of W ⊕ X
• Goal of ROP payload is to invoke mprotect system call to disable W ⊕ X.

CSE509 - Computer System Security - Slides: R Sekar

2. Disrupting payload delivery mechanisms

• Control-flow integrity (CFI) is another (partial) defense
that limits attacker’s freedom in terms of control transfer
target
• Can defeat most injected code and ROP attacks, but is not fool-

proof
• skilled attackers may be able to craft attacks that operate despite CFI

CSE509 - Computer System Security - Slides: R Sekar

3. Disrupting take-over mechanism
• Key issue for an attacker:
• using attacker-controlled inputs, induce errors with predictable

effects
• Approach: exploit software bugs to overwrite critical

data, and the behavior of existing code that uses this
data
• Relative address attacks (RA)

• Example: copying data from input into a program buffer without
proper range checks

• Absolute address attacks (AA)
• Example: store input into an array element whose location is

calculated from input.
• Even if the program performs an upper bound check, this may not have

the intended effect due to integer overflows
• RA+AA attacks: use RA attack to corrupt a pointer p, wait for

program to perform an operation using *p
• Stack-smashing, heap overflows, …

CSE509 - Computer System Security - Slides: R Sekar

Disrupting take-over: Diversity Based Defenses

• Software bugs are difficult to detect or fix
• Question: Can we make them harder to exploit?

• Benign Diversity
• Preserve functional behavior

• On benign inputs, diversified program behaves exactly like the original
program

• Randomize attack behavior
• On inputs that exercise a bug, diversified program behaves differently

from the original

CSE509 - Computer System Security - Slides: R Sekar

Automated Introduction of Diversity

• Use transformations that preserve program semantics
• Challenge: how to capture intended program semantics?
• Relying on manual specifications isn’t practical

• Solution: Instead of focusing on program-specific
semantics, rely on programming language semantics
• Randomize aspects of program implementation that aren’t specified

in the programming language
• Benefit: programmers don’t have to specify any thing

CSE509 - Computer System Security - Slides: R Sekar

Automated Introduction of Diversity

• Examples
• Address Space Randomization (ASR)

• Randomize memory locations of code or data objects
• Invalid and out-of-bounds pointer dereferences access unpredictable

objects
• Data Space Randomization (DSR)

• Randomize low-level representation of data objects
• Invalid copy or overwrite operations result in unpredictable data values

• Instruction Set Randomization (ISR)
• Randomize interpretation of low-level code
• W ⊕ X has essentially the same effect, so ISR is not that useful any more

CSE509 - Computer System Security - Slides: R Sekar

How randomization disrupts take-over

• Without randomization, memory errors corrupt process
memory in a predictable way
• Attacker knows what data is corrupted, e.g., return address on

the stack
• Relative address randomization (RAR) takes away this

predictability
• Attacker knows the correct value to be used for corruption,

e.g., the location of injected code (in a buffer that contains
data read from attacker)
• Absolute address randomization (AAR) takes away this

predictability for pointer-valued data
• DSR takes away this predictability for all data

CSE509 - Computer System Security - Slides: R Sekar

Space of Possible Memory Error Exploits

CSE509 - Computer System Security - Slides: R Sekar

First Generation ASR:
Absolute Address Randomization (ASLR)

• Invented by PaX project and Our Lab at SBU
• Randomizes base address of data (stack, heap, static

memory) and code (libraries and executable) regions
• Implemented on many flavors of UNIX & Windows
• UNIX implementations usually provide 20+ bits of randomness, 16

bits for Windows [about 20 lines of code in kernel]
• Implemented on all mainstream OS distributions
• Linux, OpenBSD, Windows, Android, iOS, ...

• Limitations
• Incomplete implementations (e.g., executables or some libraries

left unrandomized) --- but this is becoming rare these days.
• Brute-force attacks
• Information leakage attacks
• Relative address attacks

• Non-pointer data attacks, partial pointer overwrites

CSE509 - Computer System Security –
Slides: R Sekar

Second Generation ASR:
Relative Address Randomization

• Randomize distance between objects (code or data)
• [Bhatkar et al] use code transformation to permute the

relative order of objects in memory
• Static variables
• “Unsafe” local variables

• Safe local variables moved to a “safe” stack (no overwrites
possible)

• Safe stack option is now available on LLVM compiler
• Heap allocations
• Functions
• Introduce gaps between objects

• Some gaps may be made inaccessible

• Active current research: efficient RAR of code objects

CSE509 - Computer System Security - Slides: R Sekar

Benefits of RAR
• Defeats the overwrite step, as well the step that uses

the overwritten pointer value
• Defeats format-string and integer overflow attacks
• Stack-smashing attacks fail deterministically (due to safe

stack)
• Higher entropy
• Up to 28 bits on 32-bit address space
• Knowing the location of one object does not tell you much about

the locations of other objects
• information leakage attacks become difficult
• heap overflows become more difficult since you need to make two

independent guesses

CSE509 - Computer System Security - Slides: R Sekar

Data Space Randomization

CSE509 - Computer System Security - Slides: R Sekar

DSR Technique
• Basic idea: Randomize data representation
• Xor each data object with a distinct random mask
• Effect of data corruption becomes non-deterministic, e.g.,

• Use out-of-bounds access on array a to corrupt variable x with value v
• Actual value written: mask(a) xor v
• When x is read, this value is interpreted as mask(x) � (mask(a) xor v)

• Which is different from v as long as the masks for x and a differ.

• Benefits
• Unlike AAR, protects all data, not just pointers
• Effective against relative address as well as absolute address

attacks
• Large entropy

• 32-bits of randomization for integers
• Masks for different variables can be independent

• resists information leak attacks
• Can address intra-structure overflows

• Not even addressed by full memory error detection techniques
CSE509 - Computer System Security - Slides: R Sekar

DSR Transformation Approach
• For each variable v, introduce another variable m_v for

storing its mask
• Randomize values assigned to variables (LHS)
• Example: x = 5 ==> x = 5; x = x ^ m_x;

• Derandomize used variables (RHS)
• Example: (x + y) ((x ^ m_x) + (y ^ m_y))

• Key problem: aliasing
• int *x = &y
• A value may be assigned to y and dereferenced using *x

• Both expressions should yield the same value
• Need to ensure that possibly aliased objects should use the same

randomization mask

• Note
• In x = y, it is not necessary to assign same mask to x and y

CSE509 - Computer System Security - Slides: R Sekar

Summary of Automated Diversity
• Transformations that respect programming language

semantics are good candidates for automated diversity
• But they are typically good for addressing only low-level

implementation errors. (We have discussed them only in the
context of a specific low-level error, namely, memory corruption.)

• Automated diversity has been particularly successful in the
area of memory error exploit prevention
• First generation of randomization-based defenses focused on

absolute address based attacks
• Absolute-address randomization
• Practical technique with low impact on systems, and hence begun to be

deployed widely
• Second generation defenses provide protection from relative-

address dependent attacks
• Relative address randomization and data-space randomization
• Performance and compatibility (for DSR) limit widespread deployment

CSE509 - Computer System Security - Slides: R Sekar

State of Exploit defenses and New attacks
• Most OSes now implement
• ProPolice like defenses, plus SEH protection (Microsoft)
• ASLR
• DEP/NX (prevent injected code execution)

CSE509 - Computer System Security - Slides: R Sekar

State of Exploit defenses and New attacks
• Recent attacks
• Exploit incomplete defenses, or use Heapspray for control-flow

hijack
• No ASLR on most executables on Linux, some EXE, DLLs on MS
• Some libraries don’t enable stack protection, or it is incomplete
• Heapspray: brute-force attack in the space domain

• Exploits untrusted code in safe languages (Javascript, Java, Flash,…)
• Code allocates almost all of memory, fills with exploit code
• Jump to random location: with high probability, it will contain exploit

code
• Return-oriented programming (ROP) to overcome DEP
• Rely increasingly on information leak attacks to overcome

uncertainty due to ASLR, frequent software updates, and so on
• Just-in-time-ROP: use information leak vulnerability to scan code

at runtime to identify ROP gadgets

CSE509 - Computer System Security - Slides: R Sekar

B. Preventing Memory Errors

CSE509 - Computer System Security - Slides: R Sekar

Memory Errors in C
• Spatial errors: out-of-bounds subscript or pointer
• char *p = malloc(10); *(p+15);

• Temporal errors: pointer target no longer valid
• Unintialized pointer
• Dangling pointer

• free(p); q = malloc(…); *p;
• Note: target may be reallocated!

• Hard to debug, especially temporal errors
• Unpredictable delay, unpredictable effect

• Reallocated pointer errors are the worst kind
• “Defensive programming” leads to memory leaks

CSE509 - Computer System Security - Slides: R Sekar

Issues and Constraints
• Backward compatibility with existing C-code
• Casts, unions, address arithmetic
• Conversion between integers and pointers

• Compatibility with previously compiled libraries
• Can’t expect to rebuild the entire system
• Source code access can be problematic for some libs

• Temporal Vs Spatial Errors
• Detecting reallocated storage
• Important, since such errors get detected very late, and it is

extremely hard to track them down
• Use of garbage collection

CSE509 - Computer System Security - Slides: R Sekar

Why Not Garbage Collection?
• Masks temporal errors
• Problematic if the intent is to use memory error-checking only

during the testing phase
• Unpredictable overheads
• Problematic for systems with real-time or stringent

performance constraints
• GCs can make mistakes due to free conversion between

integers and pointers
• Fail to collect inaccessible memory
• Collect memory that should not be collected
• Problematic for code that relies heavily on such conversions,

e.g, OS Kernel

CSE509 - Computer System Security - Slides: R Sekar

Approaches for Preventing Memory Errors
• Introduce inter-object gaps, detect access to them

(Red zones)
• Detect subclass of spatial errors that involve accessing buffers

just past their end
• Purify, Light-weight bounds checking [Hasabnis et al], Address

Sanitizer [Serebryany et al]
• Detect crossing of object boundaries due to pointer

arithmetic
• Detects spatial errors
• Backwards-compatible bounds checker [Jones and Kelly 97]
• Further compatibility improvements achieved by CRED [Ruwase

et al]
• Speed improvements: Baggy [Akritidis et al], Paricheck [Younan

et al]

CSE509 - Computer System Security - Slides: R Sekar

Approaches for Preventing Memory Errors
• Runtime metadata maintenance techniques
• Temporal errors: pool-based allocation [Dhurjati et al], Cling

[Akritidis et al]
• Spatial + temporal errors: CMemSafe [Xu et al], SoftBounds

[Nagarakatte et al]
• Targeted approaches: Code pointer integrity [Kuznetsov et al],

protects subset of pointers needed to guarantee the integrity
of all code pointers.

CSE509 - Computer System Security - Slides: R Sekar

CMemSafe: Detecting Spatial Errors Using
Metadata

CSE509 - Computer System Security - Slides: R Sekar

base, size: base address and allocated size of the block

CmemSafe: Detecting Temporal Errors

CSE509 - Computer System Security - Slides: R Sekar

cap_ptr: pointer to unique capability associated with block
Detect erroneous accesses to freed or reallocated memory

Credits
• Slides on Stack layout, ROP and heap overflows:

courtesy Nick Nikiforakis

CSE509 - Computer System Security - Slides: R Sekar

Questions

CSE509 - Computer System Security - Slides: R Sekar

