CSE509 : Computer System Security

Intrusion Detection

Classes of Attacks

- Probing: Reconnaissance before attack
 - Port sweeps
 - OS/application finger printing
- Denial of Service (DoS)
- Privilege escalation
 - o Remote to user
 - attacker without any access to the victim machine gains access as a normal user, e.g., userid nobody
 - o User to root
 - attacker with access as normal user gains administrative privileges through an attack
 - These two privilege escalation attacks may be chained
 - Remote-to-user attacks typically exploit server applications (e.g., web server), while user-to-root attacks exploit other applications.
 - They are rarely caused by OS errors or errors in network protocol implementations

Intrusion Detection

- Some attacks will get through in spite of every protection measure. Intrusion detection is targeted to detect such attacks.
- Detection is a solution of last resort
- Assumption: Behavior of a system changes when it is subjected to attack
- Approach: Detect these changes in behavior

Intrusion Detection Issues

Detection rate

• What fraction of attacks are detected

False alarm rate

- May be measured in multiple ways
 - how many false alarms per day
 - what fraction of normal behavior is flagged as attack
 - what fraction of behavior reported as attack is not an attack (false alarm ratio)
- Considerable disagreement on which measure to use
 - but the third criteria is probably the best
 - But IDS vendors (and may be researchers) don't like it
 - > Will you buy a system will FA rate of 98%?
 - > But you may not mind 10 false alarms a day!

Intrusion Detection Techniques

Anomaly detection

- Use machine learning techniques to develop a profile of normal behavior
- Detect deviations from this behavior
- Can detect unknown attacks, but have high FA rate

Misuse detection

- Codify patterns of misuse
- Attack behaviors usually captured using signatures
- Can provide lower false alarm rate, but ineffective for unknown attacks
- Behavior (or policy) based detection
 - Specify allowable behavior, detect deviations from specifications
 - Can detect new attacks with low FA, but policy selection is hard

Intrusion Detection Algorithms

- Pattern-matching
 - Most commonly used in misuse and behavior based techniques

Machine-learning

- o Statistical
- Algorithmic
- Neural networks and other techniques

Intrusion Detection Behaviors

Behaviors of

- o Users
- o Systems
 - processes, kernel modules, hosts, networks, ...

Intrusion Detection Observation Points

Network-based (Network intrusion detection systems)

- o Benefits
 - Unintrusive: plug a dedicated NIDS device on the network
 - Centralized monitoring
- o Problems
 - Encryption
 - Level of abstraction too low
 - Difference between data observed by NIDS and victim app.

Host-based

- Strengths/weaknesses complementary to NIDS
- May be based on
 - system-call interception
 - audit logs and other log files
 - file system integrity (TripWire)
 - keystrokes, commands, etc.
- CSE509 Computer System Security Slides: R Sekar

Network Intrusion Detection

- Packet-based Vs Session-based
- Signature-based Vs Anomaly detection
- Example: SNORT (open source)
 - Uses pattern-matching on individual packets
- Some systems can block offending traffic
 - This is often dangerous, as systems usually have high false alarm rates

Host-based Intrusion detection

- System-call based characterizations most popular
 Behavior-based
 - System-call interposition plus wrappers
 - Domain/Type Enforcement
 - Certain application classes can access only certain files
 - Can prevent many privilege escalation attacks
 - Used in SELinux
- Anomaly detection
 - Sequences (finite-length strings) of system calls
 - FSA and PDA models of behavior
 - System call arguments

Automata Models for Learning Program Behaviors

Background

- Forrest et al showed that system call sequences provide an accurate and convenient way to capture securityrelevant program behaviors
 - Subsequent research has further strengthened this result
- □ Key problem:
 - What is a good way to represent/learn information about system call sequences?
 - Issues: compactness, accuracy, performance, ...

Early Research

- Forrest et al [1999] compared several methods for learning system call sequences
 - Memorize subsequences of length N (N-grams)
 - Markov models
 - Data-mining (using RIPPER)
- N-grams found to be most appropriate
 - Markov models provided a slight increase in accuracy, but incurred much higher overheads

Illustration of N-gram Method

1.	S0;	٠	3-grams learnt:
2.	while () {		• S0 S1 S2
3.	S1;		S1 S2 S4S2 S4 S5
4.	if () S2;		S4 S5 S1
5.	else S3;		S5 S1 S3
6.	if (S4) ;		 S1 S3 S4 S3 S4 S2
7.	else S2;		S4 S2 S5
8.	S5;		S2 S5 S3
9.	-		S5 S3 S4
10.	S3;		
11. S4; Sample execution:			
S1	S1 S2 S4 S5 S3 S4 S2 S5 S3 S4 S3 S4 S4 S5 S3 S4	4	•S0 S3 S4

Drawbacks of N-gram Method

Number of N-grams grows exponentially

- N must be small in practice (N=6 suggested)
- Implication: difficult to capture long-term correlations
 - S0 S3 S4 S2 never produced by program, but all of the 3-grams in this sequence are
- Remembers exact set of N-grams seen during training -
 - no generalization
 - o necessitates long training periods, or a high rate of false alarms

Models without Length Limitations

Finite-state automata

- Even an infinite number of sequences of unbounded length can be represented
- Naturally capture program structures such as loops, if-thenelse, etc.

Extended finite-state automata

 FSA + a finite number of state variables that can remember event arguments

Push-down automata

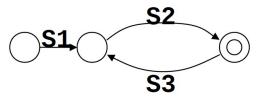
- By capturing call-return info:
 - PDAs are more accurate than FSM
 - Models are hierarchical and modular:
 - > Hierarchical nature facilitates presentation
 - Smaller program models
 - Reuse of models for libraries
 - Extend PDAs to incorporate variables

Model extraction approaches

- Static analysis [Wagner and Dean]
 - Pros: conservative
 - o Cons:
 - difficult to infer data values, e.g., file names
 - difficult to deal with libraries, dynamic linking, etc.
 - overly conservative
 - > for intrusion detection, can detect only attacks that are outside of the semantic model used for analysis
 - > specifically, buffer overflows, meta character attacks, etc
- Machine learning by runtime monitoring
 - o Pros:
 - can detect a much wider range of attacks
 - can deal with libraries, dynamic linking
 - inferring data values is easier
 - o Cons:
 - False positives

Difficulty in Learning FSA from Strings

- Strings do not provide any information about internal states of an FSA
 - o given S1 S2 S3 S2, which of the following FSA should we use?
 - what is the criteria for determining the "better" FSA?



- even if we can answer this, the answer will depend on additional examples
 - e.g., sequences S1 S2 and S1 S2 S3 S2 S3 S2 will suggest that the second FSA is the right one
- Learning FSA from sequences is computationally intractable [Kearns & Valiant 89, Pitt & Warmuth 89]

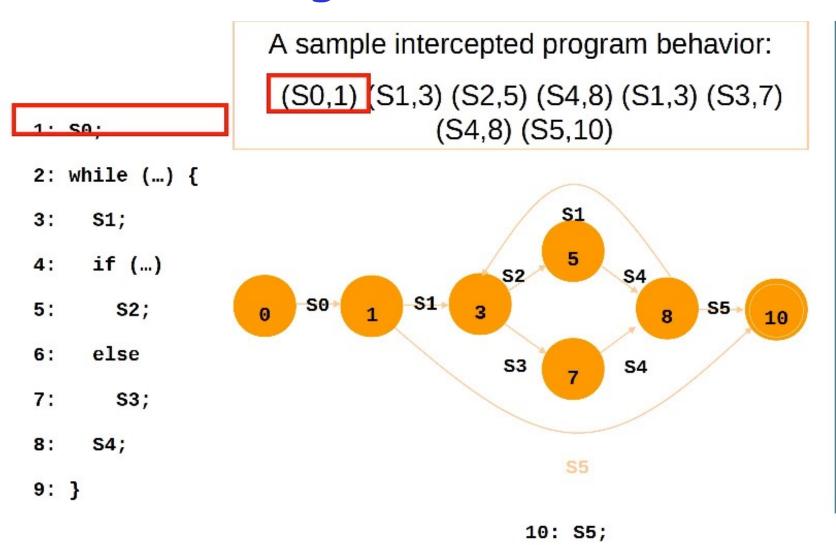
Learning FSA Models: Graybox Techniques

□ Key insight:

For learning program behaviors, additional information can be used to simplify the problem: exploit program counter value to

obtain state information

Learning FSA Models



Approach Details

Interception of system calls using ptrace (Linux)

- same mechanism used by Forrest and other researchers
- Examine process stack to obtain program counter information
- Dynamic linking poses a problem
 - same function may be loaded at different locations during different runs
 - Solution: use program counter value corresponding to the code calling the dynamically loaded library
 - Side benefit: ignoring library behavior makes FSA more compact

Approach Details (Continued)

- Fork: Parent and child monitored with same FSA, but process contexts maintained
- Exec: typically, a new FSA for the execve'd program is used.
- Detection time
 - mismatch may occur in terms of either the system call or program location
 - use leaky bucket algorithm for aggregation
 - program counter helps resynchronize even after observing behavior not seen during training

Questions?