CSE509: Computer System Security

Covert Channels and Side-Channel Attacks

Covert Channels

- Confidential information may be leaked via channels that may be missed easily
 - o Implicit flows in a program
 - Timing channels (network, cache, ...)
 - Steganographic techniques

Examples

- transmit info by file name or metadata (e.g., timestamp)
 - Information retrieved by checking file presence or stat
 - > No need to read the file (or have read permissions on the file)
- o "Port-knocking"
 - Transmit info by probing network ports in a certain sequence
- tcp acks or retransmissions, packet fragmentation, ...

Side-channel attacks

- Critical info may be leaked inadvertently
 - o Error messages, e.g., invalid username vs password
 - Timing information
 - How long it took to verify a password, or encrypt something
 - Cache eviction attacks
 - Meltdown and Spectre attacks
 - Power-monitoring attacks
 - Use thermal imaging of a chip to monitor which circuits are being used and/ or how much power is being used
 - Or simply monitor the power supply
 - Differential fault analysis
 - Force a particular fault (e.g., make a data line to be a "1" always) and examine how the program changes its behavior.
 - Rowhammer attacks on DRAM
 - Last two attacks motivate tamper-resistance in the context of building secure devices
 - Military equipment used in the field
 - Other devices that carry secrets and may be lost

CSE509 - Computer System Security -Slides: R Sekar

Emanations

- Electromagnetic emanations
 - In old days, CRTs produced a lot of emanations that can be used to figure out what someone is doing from a distance
- Keyboard emanations
 - Researchers have shown it is possible to steal passwords using a microphone in a nearby office!
- Power-line emanations
 - Correlates fluctuations in power use (or EM waves on the powerline) with computations being performed
- Snooping using telescopes
 - Not just on-screen images, but reflections on a cup etc.

Remanence

- malloc after free, or reuse of stack variables
 - Exposes secrets that may be private to one program component to another.
- Allocation of physical page for one process after it is used by another process
 - Exposes secrets across processes
 - o Can be avoided by immediately erasing confidential data
 - Beware: the compiler may eliminate this during optimization
 - Cache contents are flushed across process switch, so not a problem
- Retained memory contents after power off
- Residual effects on hard drives
 - o may be data is just unlinked, not even overwritten
 - o even after overwrite, it is often possible to recover old data

Questions?