CSE320 System
Fundamentals |
Virtual Memory 2

YOUNGMIN KWON / TONY MIONE




Integrating Caches and VM

CPU chip i
L PTEA PTE
hit
PTEA PTEA PTEA
> miss
Processor MMU
VA PA PA PA
miss
PA Data
|‘ hit
L1
B Cache

Whether to use Virtual or Physical addresses to access the SRAM cache?
° Most system opt for physical addresses
o Easy for multiple processes to have blocks in the cache
° No need to deal with the memory protection

Memory




Translation Lookaside Buffer
(TLB)

A small cache of PTEs in MMU
o Each line holds a block consisting of a single PTE

If a TLB has T=2! sets,
o TLB index (TLBI) consists of the t least significant bits of the VPN
o TLB tag (TLBT) consists of the remaining bits in VPN

n—1 p+t p+t-1 pp—1 0
TLB tag (TLBT) | TLB index (TLBI)| VPO

VPN




TLB Hit and Miss Operations

CPU chip

CPU chip
TLB - @
@ven| |PTE{(®) @) ven PTE
© ®
® PTEA
Processor |—_— Taane: |1~ Cache ey (L O S
VA lation PA memory
®
r Data l/
@ Data
®

TLB Hit TLB Miss




Multi-Level Page Table

Issue: 32bit address space, 4KB pages, 4MB of PTE
o 4MB page table must reside in memory all the time

Hierarchy of page tables (e.g. 2 level)
> Level 1 has a page table of 1024 PTEs (4KB)

o Level 2 page tables have 1024 PTEs (4KB) each.
o Each PTE in level 1 is responsible for 4AMB chunk of address space
° |f every page in chunk i is unallocated, PTE i in level 1 table is empty

o If at least 1 page in chunk i is allocated PTE i in level 1 points to the base of level 2
page table




2 Level Page Tables

Level 1 Level 2 Virtual
page table page tables memory

VPO

PTEO — | PTEO

PTE 1 —
PTE 2 (null) PTE 1023
PTE 3 (null)

VP 1023 | 2K allocated VM pages
VP 1024 for code and data

VP 2047 | |

AN

PTE 4 (null) PTEO
PTE 5 (null) e
PTE 6 (null) PTE 1023
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 »
10283 null
(1K-9) PTEs J
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
VP 9215 | } 1 allocated VM page
: for the stack

= |f PTE in level 1 table is NULL, no need to have a level 2 table in memory

= Only the level 1 table needs to be in memory at all times




k-level Page Tables

Virtual address

n—1 p—1 0
¢ VPN 1 ¢ VPN2 ¢ VPN Kk VPO
Level 1 Level 2 Level k
page table | page table page table
=
- .
- PPN |}
m—1 p—-1 | 0
PPN PPO

Physical address




Intel Core i7 Memory System

32/64
CPU Result Lg, L3, and
Virtual address (VA) ————
36 12
VPN VPO L1
L1 ;
324 4 . e
TLBT | TLBI
I L1 d-cache
TLB (64 sets, 8 lines/set)
hit
s
miss
. . s I I I ] CIL T T T T T T 1o
CR3 register: contains the L1TLB (16 sets, 4 entries/set) ‘
beginning address of the s 9 9 o %0 2 w 6| o
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO | w— CT cllco
level 1 page table \Cﬂs _—
address
PTE: R/W bit (read, write), ‘ J J (PA)
- PTEJ Y PTEL S PTE

U/S (user, super user), XD el
(execute disable) /

Page tables




Linux Virtual Memory System

Process-specific data

. . structures
Shared kernel virtual memory Dterenttor | (e, page tabls,

Kernel
> Kernel’s code, global data structure - , virtuar
. . _ Physical memory i
> Virtual pages mapped directly to i
phyS|Ca| pages \ Kernel code and data !
Lesp—» User stack i
. v
[ ] ° t g
Private kernel virtual memory Memory mapped region
o Page tables, stack, task and mm — ' Bt
St u CtS Run-time heap (via malloc) S

Uninitialized data (.bss)

Initialized data (.data)
0x08048000 (32) | Program text(.text)

0x40000000 (64)




Linux Virtual Memory Areas

Area (Segment)

> A contiguous chunk of existing (allocated) virtual memory whose pages are
related

° E.g., code segment, data segment, heap, shared library segment, user stack

o Each existing virtual page is contained in some area

o Any virtual page not contained in an area does not exist and cannot be
referenced




Linux Virtual Memory Area

pgd is loaded to

vm_prots: r/w permission vm_flags: shared/private...

task_struct for each task (PID,
program counter, mm, ...)

task_struct

vm_area_struct

/

mm_struct for virtual memory /

(pgd, mmap pointing to
vm_area_struct list

vm_end

vm_start

vm_prot

vm_flags

vm_next

vm_end

vm_start

vm_prot

vm_flags

vm_next

+

vm_end

vm_start

Process virtual memory

Shared libraries

Data

Text

N/

vm_prot

vm_flags

vm_next




Linux Page Fault Exception

Suppose that MMU triggers a page fault while translating a virtual address A.

The kernel page fault handler does the following:

1. Isvirtual address A legal? =>
segmentation fault

2. Is attempted access legal? =>
protection exception

3. Otherwise, swap out/in the

page and restart the faulting
instruction

vm_area_struct

Process virtual memory

vm_end

vm_start

r/o

vm_next

.

Shared libraries

L

vm_end

vm_start

r/w

®

——

vm_next

Data

Segmentation fault:
accessing a non-existing page

@ Normal page fault

————

|  vm_end

vm_start

r/o

[N

Text

@

vm_next

Protection exception:

e.g., violating permission by
writing to a read-only page




Memory Mapping

Memory mapping: initialize the contents of virtual memory area by
associating it with an object on disk

Regular file in the Linux file system
° File section is divided into page-size pieces
° Demand paging => pages are loaded only when they are used

Anonymous file
o A file, created by the kernel, that contains all binary zeros

° No data are actually transferred between disks and memory

Swap file

° Once a virtual page is initialized, it is swapped back and forth between a special
swap file




Shared Objects

Many processes have identical read-only code areas
° Linux shell programs have identical code area

o Standard C library such as printf are common
o Wasteful if each process keeps a duplicate copy

Shared object

o If a process writes to an area mapped to a shared object, the change is visible to
other processes that mapped the shared object to their virtual memory

° The shared object on disk is also updated

Private object

o Changes made to an area mapped to a private object are not visible to other
processes

° The original object on disk is not updated




Shared Objects

Process 1
virtual memory

-
d"
-

Physical
memory

-
4"
-

Process 2
virtual memory

Process 1
virtual memory

Physical
memory

-
-
-

Process 2

virtual memory

-
-
-




Copy-on-Write

Private objects are mapped into virtual memory like shared objects except that
o Page table entries are flagged as read-only

o Area struct is flagged as private copy-on-write (cow)

When a process tries to write to some private areas
o A protection fault is triggered
o The fault handler checks that the fault is from the private copy-on-write area

o Creates a new copy of the page, updates the page table entry and restores the
permissions to the page




Copy-on-Write

Process 1 Physical Process 2 Process 1 Physical Process 2
virtual memory memory virtual memory virtual memory memory virtual memory

- e
- . e
- Seo P Ny
'f' \\\ '-" \\
L e o ~
- - - -
-~ oy - copy-on-write
~
\ ’ -1 . ~
\ o’ W ¢ : 3 -’ e SN
\ o . ’ \ Lo ~
Ay - -~ s \ - ~ ~
\ - - ! \ - o b
\_' *./ (i ~ ~
- \ / e " ol , ¥
Y \‘ " ’ \ ‘\ ‘.\ P 4 . °
\ : % N ¥ Write t t
N T v N [\ .. A e 10 private
7 ——p e
\ \ / ’ N\ N\ | [Treeaa.. rit
NN A NN s [—— COpYy-Oon-write
\ N / / \ \ g ’
\ ¢ \
\ \ ’ ’ \ N\ 4 4 a e
\ \ ’ s \ \ 4 yd
\ . I' ’ \ \ ,’ ’
\ \ ’ \ N s ’
\ \ 4 ’ N Y ’ s
N \\ " ’ \ \ ’ s
\ X F ’ \ \ ’ ’
b} ’ \ A ’ ’
\ \ 4 ’ \ . ’ ’
\ s 4 ’ \ \ ” ’
\ \ ’ ¢ \ \ ’ 7
\ \ 4 ’ \ . ’ ¢
\ \ s ’ \ \ 4 4
\ / s
. ’ s \ ’ ’
\ ) 4 ’ \ \ s
\ ’ \ /
\ ’ b ’
\ / \ s
\ ’ \ ’
\ ’ \ ’
\ s \ ’
) ’ \ ’
. 4 \ 4

Private Private
copy-on-write object copy-on-write object




Fork function

When fork is invoked
Kernel creates data structures for the new process

(e]

(e]

To create a virtual memory for the new process
o The current process’ mm_struct, area structs and page tables are copied
o Flag each page in both processes as read-only

o Flag each area struct in both processes as private copy-on-write
Both processes have exactly the same virtual memory
As processes write, new pages are created by the copy-on-write

(e]

(e]




Execve

Delete existing user areas

Map private areas

Create new area structs for code, data, bss, stack

All areas are flagged as private copy-on-write

Code and data areas are mapped to .text and .data

Elss area is demand-zero, mapped to an anonymous file whose size is in the executable
ile

Heap and stack are demand-zero, of 0 length

(e]

(e]

(e]

(e]

(e]

Map shared areas

o Shared objects are dynamically linked into the program and mapped into the shared
region

Set the program counter (PC)




How the Loader Maps the Areas

User stack } Private, demand-zero

.

libc.so T
.data *» Memory mapped region Shared. file-backed
.text > for shared libraries ’

T

Run-time heap (via malloc)

Private, demand-zero

Uninitialized data (.bss) Private, demand-zero

a.out

»| Initialized data (.data
.data » ( ) Private, file-backed
-text *|  Program text (. text)




Questions?




