
CSE320 System
Fundamentals II
Virtual Memory 2
YOUNGMIN KWON / TONY MIONE

Integrating Caches and VM

Whether to use Virtual or Physical addresses to access the SRAM cache?
◦ Most system opt for physical addresses
◦ Easy for multiple processes to have blocks in the cache
◦ No need to deal with the memory protection

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Translation Lookaside Buffer
(TLB)

A small cache of PTEs in MMU
◦ Each line holds a block consisting of a single PTE

If a TLB has T=2t sets,
◦ TLB index (TLBI) consists of the t least significant bits of the VPN
◦ TLB tag (TLBT) consists of the remaining bits in VPN

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

TLB Hit and Miss Operations

TLB Hit TLB Miss

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Multi-Level Page Table
Issue: 32bit address space, 4KB pages, 4MB of PTE

◦ 4MB page table must reside in memory all the time

Hierarchy of page tables (e.g. 2 level)
◦ Level 1 has a page table of 1024 PTEs (4KB)
◦ Level 2 page tables have 1024 PTEs (4KB) each.
◦ Each PTE in level 1 is responsible for 4MB chunk of address space
◦ If every page in chunk i is unallocated, PTE i in level 1 table is empty
◦ If at least 1 page in chunk i is allocated PTE i in level 1 points to the base of level 2

page table

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

2 Level Page Tables

§ If PTE in level 1 table is NULL, no need to have a level 2 table in memory
§ Only the level 1 table needs to be in memory at all times

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

k-level Page Tables

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Intel Core i7 Memory System

CR3 register: contains the
beginning address of the
level 1 page table

PTE: R/W bit (read, write),
U/S (user, super user), XD
(execute disable)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

Linux Virtual Memory System
Shared kernel virtual memory
◦ Kernel’s code, global data structure
◦ Virtual pages mapped directly to

physical pages

Private kernel virtual memory
◦ Page tables, stack, task and mm

structs

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Linux Virtual Memory Areas
Area (Segment)

◦ A contiguous chunk of existing (allocated) virtual memory whose pages are
related

◦ E.g., code segment, data segment, heap, shared library segment, user stack

◦ Each existing virtual page is contained in some area
◦ Any virtual page not contained in an area does not exist and cannot be

referenced

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Linux Virtual Memory Area

task_struct for each task (PID,
program counter, mm, …)

mm_struct for virtual memory
(pgd, mmap pointing to
vm_area_struct list

vm_prots: r/w permission vm_flags: shared/private…
pgd is loaded to CR3 register

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Linux Page Fault Exception
Suppose that MMU triggers a page fault while translating a virtual address A.
The kernel page fault handler does the following:

1. Is virtual address A legal? =>
segmentation fault

2. Is attempted access legal? =>
protection exception

3. Otherwise, swap out/in the
page and restart the faulting
instruction

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Memory Mapping
Memory mapping: initialize the contents of virtual memory area by
associating it with an object on disk

Regular file in the Linux file system
◦ File section is divided into page-size pieces
◦ Demand paging => pages are loaded only when they are used

Anonymous file
◦ A file, created by the kernel, that contains all binary zeros
◦ No data are actually transferred between disks and memory

Swap file
◦ Once a virtual page is initialized, it is swapped back and forth between a special

swap file

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

Shared Objects
Many processes have identical read-only code areas

◦ Linux shell programs have identical code area
◦ Standard C library such as printf are common
◦ Wasteful if each process keeps a duplicate copy

Shared object
◦ If a process writes to an area mapped to a shared object, the change is visible to

other processes that mapped the shared object to their virtual memory
◦ The shared object on disk is also updated

Private object
◦ Changes made to an area mapped to a private object are not visible to other

processes
◦ The original object on disk is not updated

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

Shared Objects

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

Copy-on-Write
Private objects are mapped into virtual memory like shared objects except that

◦ Page table entries are flagged as read-only
◦ Area struct is flagged as private copy-on-write (cow)

When a process tries to write to some private areas
◦ A protection fault is triggered
◦ The fault handler checks that the fault is from the private copy-on-write area
◦ Creates a new copy of the page, updates the page table entry and restores the

permissions to the page

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Copy-on-Write

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

Fork function
When fork is invoked

◦ Kernel creates data structures for the new process
◦ To create a virtual memory for the new process

◦ The current process’ mm_struct, area structs and page tables are copied
◦ Flag each page in both processes as read-only
◦ Flag each area struct in both processes as private copy-on-write

◦ Both processes have exactly the same virtual memory
◦ As processes write, new pages are created by the copy-on-write

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

Execve
Delete existing user areas

Map private areas
◦ Create new area structs for code, data, bss, stack
◦ All areas are flagged as private copy-on-write
◦ Code and data areas are mapped to .text and .data
◦ Bss area is demand-zero, mapped to an anonymous file whose size is in the executable

file
◦ Heap and stack are demand-zero, of 0 length

Map shared areas
◦ Shared objects are dynamically linked into the program and mapped into the shared

region

Set the program counter (PC)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

How the Loader Maps the Areas

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

Questions?

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

