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Integrating Caches and VM
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Whether to use Virtual or Physical addresses to access the SRAM cache?
° Most system opt for physical addresses
o Easy for multiple processes to have blocks in the cache
° No need to deal with the memory protection

Memory




Translation Lookaside Buffer
(TLB)

A small cache of PTEs in MMU
o Each line holds a block consisting of a single PTE

If a TLB has T=2! sets,
o TLB index (TLBI) consists of the t least significant bits of the VPN
o TLB tag (TLBT) consists of the remaining bits in VPN
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TLB Hit and Miss Operations
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Multi-Level Page Table

Issue: 32bit address space, 4KB pages, 4MB of PTE
o 4MB page table must reside in memory all the time

Hierarchy of page tables (e.g. 2 level)
> Level 1 has a page table of 1024 PTEs (4KB)

o Level 2 page tables have 1024 PTEs (4KB) each.
o Each PTE in level 1 is responsible for 4AMB chunk of address space
° |f every page in chunk i is unallocated, PTE i in level 1 table is empty

o If at least 1 page in chunk i is allocated PTE i in level 1 points to the base of level 2
page table




2 Level Page Tables

Level 1 Level 2 Virtual
page table page tables memory

VPO
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PTE 1 —
PTE 2 (null) PTE 1023
PTE 3 (null)

VP 1023 | 2K allocated VM pages
VP 1024 for code and data
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AN
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= |f PTE in level 1 table is NULL, no need to have a level 2 table in memory

= Only the level 1 table needs to be in memory at all times




k-level Page Tables

Virtual address
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Intel Core i7 Memory System
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Linux Virtual Memory System

Process-specific data

. . structures
Shared kernel virtual memory Dterenttor | (e, page tabls,

Kernel
> Kernel’s code, global data structure - , virtuar
. . _ Physical memory i
> Virtual pages mapped directly to i
phyS|Ca| pages \ Kernel code and data !
Lesp—» User stack i
. v
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Private kernel virtual memory Memory mapped region
o Page tables, stack, task and mm — ' Bt
St u CtS Run-time heap (via malloc) S

Uninitialized data (.bss)

Initialized data (.data)
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Linux Virtual Memory Areas

Area (Segment)

> A contiguous chunk of existing (allocated) virtual memory whose pages are
related

° E.g., code segment, data segment, heap, shared library segment, user stack

o Each existing virtual page is contained in some area

o Any virtual page not contained in an area does not exist and cannot be
referenced




Linux Virtual Memory Area

pgd is loaded to

vm_prots: r/w permission vm_flags: shared/private...

task_struct for each task (PID,
program counter, mm, ...)

task_struct

vm_area_struct

/

mm_struct for virtual memory /

(pgd, mmap pointing to
vm_area_struct list
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Linux Page Fault Exception

Suppose that MMU triggers a page fault while translating a virtual address A.

The kernel page fault handler does the following:

1. Isvirtual address A legal? =>
segmentation fault

2. Is attempted access legal? =>
protection exception

3. Otherwise, swap out/in the

page and restart the faulting
instruction
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e.g., violating permission by
writing to a read-only page




Memory Mapping

Memory mapping: initialize the contents of virtual memory area by
associating it with an object on disk

Regular file in the Linux file system
° File section is divided into page-size pieces
° Demand paging => pages are loaded only when they are used

Anonymous file
o A file, created by the kernel, that contains all binary zeros

° No data are actually transferred between disks and memory

Swap file

° Once a virtual page is initialized, it is swapped back and forth between a special
swap file




Shared Objects

Many processes have identical read-only code areas
° Linux shell programs have identical code area

o Standard C library such as printf are common
o Wasteful if each process keeps a duplicate copy

Shared object

o If a process writes to an area mapped to a shared object, the change is visible to
other processes that mapped the shared object to their virtual memory

° The shared object on disk is also updated

Private object

o Changes made to an area mapped to a private object are not visible to other
processes

° The original object on disk is not updated




Shared Objects
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Copy-on-Write

Private objects are mapped into virtual memory like shared objects except that
o Page table entries are flagged as read-only

o Area struct is flagged as private copy-on-write (cow)

When a process tries to write to some private areas
o A protection fault is triggered
o The fault handler checks that the fault is from the private copy-on-write area

o Creates a new copy of the page, updates the page table entry and restores the
permissions to the page




Copy-on-Write
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Fork function

When fork is invoked
Kernel creates data structures for the new process

(e]

(e]

To create a virtual memory for the new process
o The current process’ mm_struct, area structs and page tables are copied
o Flag each page in both processes as read-only

o Flag each area struct in both processes as private copy-on-write
Both processes have exactly the same virtual memory
As processes write, new pages are created by the copy-on-write

(e]

(e]




Execve

Delete existing user areas

Map private areas

Create new area structs for code, data, bss, stack

All areas are flagged as private copy-on-write

Code and data areas are mapped to .text and .data

Elss area is demand-zero, mapped to an anonymous file whose size is in the executable
ile

Heap and stack are demand-zero, of 0 length

(e]
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Map shared areas

o Shared objects are dynamically linked into the program and mapped into the shared
region

Set the program counter (PC)




How the Loader Maps the Areas

User stack } Private, demand-zero

.
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Run-time heap (via malloc)
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Questions?




