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Cache Memories

L1 cache
◦ Cache memory below registers, access 

time: ~4 cycles

L2 cache
◦ Cache memory below L1 cache, access 

time: ~10 cycles

L3 cache
◦ Cache memory below L2 cache, access 

time: ~50 cycles
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Generic Cache Memory 
Organization

S: (=2s), # of cache sets
E: # of lines in a cache set
B: (=2b), # of bytes in a line
m: memory address bits

Valid bit: whether the line contains 
◦ valid data

t: (= m - (b+s)), # of bits in a tag
C: (= B x E x S), cache size
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Caches
Classes of caches by E (# of lines per set)

◦ E = 1: direct-mapped cache (1 line per set)
◦ 1 < E < C/B: set-associative cache
◦ E = C/B: fully-associative cache (1 set)

Accessing the requested word from cache
◦ Set selection
◦ Line matching
◦ Word extraction
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Direct-Mapped Cache

Set selection
◦ Select the set using the set index as an index
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Direct-Mapped Cache

Line Matching
◦ A word is contained in the line iff the valid bit is set and the tag of the line matches 

the tag of the address

Word extraction
◦ Find the word in the line indexed by the block offset
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Direct-Mapped Cache (action)
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Direct-Mapped Cache (action)
Read from address 0: cache miss

Read from address 1: cache hit

Read from address 13: cache miss
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Direct-Mapped Cache (action)
Read from address 8: cache miss

Read from address 0: cache miss
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Why index with the middle bits?
If the high-order bits are used as an 
index, then some contiguous memory 
blocks will map to the same cache set.
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Set Associative Cache

Set selection
◦ Use the set index to select the set
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Set Associative Cache

Line Selection
◦ Within the set, find the valid line with the matching tag

Word Selection
◦ Find the word in the line indexed by the block offset
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Set Associative Cache
Line replacement on cache misses

When a line is empty
◦ Copy the block to the memory

Otherwise, follow the replacement policy
◦ Choose a line at random
◦ Choose the least frequently used (LFU) line
◦ Choose the least recently used (LRU) line
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Fully Associative Cache

No need to select a set: there is only 1 set

Line matching and word selection work the same way as the set associative 
cache
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Issues with Writes:
After a cache HIT

Write-through
◦ Immediately write the word’s cache block to the next lower level
◦ Causing a bus traffic for every write

Write-back
◦ Defers the update as long as possible: updates the lower level only when the data is 

evicted
◦ Needs a dirty bit
◦ Bus traffic is reduced at the cost of additional complexities
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Issues with Writes:
After a cache MISS
Write-allocate

◦ Loads the block from the lower level and updates the cache
◦ Exploits the spatial locality
◦ Every miss results in a block transfer from the lower level

No-write-allocate
◦ Bypass the cache and write directly to the lower level
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Issues with Writes
Write-back
◦ Because of the larger transfer time, caches at lower level 

of the memory hierarchy use write-back

◦ As the logic density increases, the complexity of write-
back becomes less of an impediment

◦ Write-back/write-allocate is symmetric to the way read is 
handled

◦ It exploits the locality
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Real Cache Hierarchy

i-cache: a cache for instructions
d-cache: a cache for data
unified-cache: a cache for both 
instructions and data
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Real Cache Hierarchy

§ What are the number bits in a tag?
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Cache Performance Metric
Miss rate: # of misses / # of references

Hit rate: 1 – miss rate

Hit time: 
◦ Time to deliver a word in the cache to the CPU
◦ Includes the times for set identification, line identification, and word 

selection

Miss penalty:
◦ Any additional time required because of a miss
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Performance Impact of Cache Parameters
Impact of cache size: Large cache size

◦ Increases hit rate
◦ Increases hit time because of H/W complexity

Impact of block size: Large block size
◦ Increases spatial locality
◦ Reduces # of lines => decreases temporal locality

◦ Think about two or more variables at different scopes

◦ Loading large blocks => increases the miss penalty
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Performance Impact of Cache Parameters
Impact of Associativity: Increasing E

◦ Decrease the conflict misses
◦ Increases the cost and complexity => increased hit time
◦ Complexity in choosing a victim line => increased miss penalty

Impact of Write Strategy
◦ Write-through: simpler to implement, can use write buffer, read misses are 

less expensive
◦ Write-back: fewer transfers

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 23



Cache-Friendly Code
Average miss count: 

◦ Stride-k reference pattern (in terms of words)
◦ Block size is B
◦ min(1, (wordsize·k) / B) misses per loop

Example
◦ Words are 4 bytes,
◦ Cache blocks are 4 words
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Cache-Friendly Code
Repeated reference to local variables are good

◦ Compiler can cache them in the register file 
◦ Temporal locality

Stride-1 reference pattern is good
◦ Caches at all levels of the memory hierarchy store data as contiguous blocks
◦ Spatial locality
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Cache-Friendly Code
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Cache-Friendly Code
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The Memory Mountain
Read throughput (read bandwidth)

◦ The rate that a program reads data from the memory system
◦ Reads n bytes over a period of s seconds => n/s

Smaller size of data set
◦ Results in a smaller working set
◦ Better temporal locality

Smaller stride
◦ Results in better spatial locality
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The Memory Mountain
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Read throughput vs working set size
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Read throughput vs stride
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Exploiting Locality
Focus on the inner loop

Try to maximize the spatial locality
◦ Reading data objects sequentially with stride 1

Try to maximize the temporal locality
◦ Use a data object as often as possible once it has been read from memory
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Questions?
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