CSE320 System
Fundamentals ||
Cache Memories

YOUNGMIN KWON / TONY MIONE

Cache Memories

CPU chip
Register file
Cache |§ ALU
memories

Bus interface

System bus
L/

/O
bridge

Memory bus

!

Main
memory

Cache Memories

Intel Core i7 cache hierarchy

i Core 0 Core 3 i |_1 CaChe
! I
| .
| Regs Regs o C.ache memory below registers, access
| ! time: ~4 cycles
|
! |
: L1 L1 L1 L1 l
i d-cache i-cache .o d-cache i-cache }
|
| ' L2 cache
| |
! |
| T I | ° Qache memory below L1 cache, access
| | time: ~10 cycles
| i
| L3 unified cache | !
| h | |
E (shared by all cores) | |_3 cache
EANCRARE pACkage o Cache memory below L2 cache, access

time: ~50 cycles

Generic Cache Memory

Organization

1 valid bit ttag bits B = 2°bytes

perline perline per cache block
A A A o)

Valid| | Tag || 0|1 | --- |B-1|
Set 0: : Elines
|Valid| [Tag |[0] 1 [--- [B-1] | | perset
Valid| [Tag |[0| 1 |--- |B-1|
Set 1:
|Valid| [Tag |[0] 1 |--. |B-1|
Valid| [Tag |[o0] 1 [|--- [B-1|
SetS—1:
Valid| | Tag |[o[1]--- [B—1]

Cache size: C = B x E x S data bytes
(a)

t bits s bits b bits
[[J

|
m-1 0
\ J

I\ I\

Address:

2 G

Tag Set index Block offset
(b)

S: (=29), # of cache sets

E: # of lines in a cache set
B: (=2°), # of bytes in a line
m: memory address bits

Valid bit: whether the line contains
> valid data

t: (= m - (b+s)), # of bits in a tag

C: (=B x ExS), cache size

Caches

Classes of caches by E (# of lines per set)
o E =1:direct-mapped cache (1 line per set)
o 1 < E < C/B: set-associative cache
o E = C/B: fully-associative cache (1 set)

Accessing the requested word from cache
o Set selection
° Line matching

o Word extraction

Direct-Mapped Cache

Set 0:

Selected set .. Sy

t bits s bits b bits :

I [00001]] SetS-1
m-1 0

Tag Set index Block offset

Set selection

Valid| | Tag || Cacheblock |
[Valid| [Tag || Cacheblock |
|Valid| | Tag || Cacheblock |

o Select the set using the set index as an index

Direct-Mapped Cache

= 1?7 (1) The valid bit must be set.

&

Selected set (i): 1 0110 Wp | Wy | Wo | W3
v (3) If (1) and (2), then
(2) The tag bits in the =7 cache hit, and
cache line must block offset selects
match the tag bits starting byte.
in the address. t bits s bits b bits
[0110] i [100]
m—1 0

Tag Set index Block offset

Line Matching

o A word is contained in the line iff the valid bit is set and the tag of the line matches
the tag of the address

Word extraction
° Find the word in the line indexed by the block offset

Direct-Mapped Cache (action)

(S,E,B,m)=(4,1,2,4)

Address bits
Address Tag bits Index bits Offset bits Block number
(decimal) (r=1) (s=2) (b=1) (decimal)
0 0 00 0 0
1 0 00 1 0
2 0 01 0 1
3 0 01 1 1
4 0 10 0 2
3 0 10 1 2
6 0 11 0 3
7 0 11 1 3
8 1 00 0 4
9 1 00 1 4
10 1 01 0 5
11 1 01 1 5
12 1 10 0 6
13 1 10 1 6
14 1 11 0 7
15 1 11 1 7

Direct-Mapped Cache (action)

Read from address 0: cache miss
Set Valid Tag block|[0] block[1]
1 0 m|0] m|1]

0
0
0

W N = O

Read from address 1: cache hit
Read from address 13: cache miss

Set Valid Tag block|[0] block|[1]
1 0 m|0] m|1]

0
1 1 m|[12] m|[13]
0

W= O

Direct-Mapped Cache (action)

Read from address 8: cache miss

Set Valid Tag block[0] block|[1]
1 1 m|8] m|9]

W N = O

0
1 1 m|12] m|13]
0

Read from address 0: cache miss

Set Valid Tag block|0] block[1]
1 0 m|0] m|1]

W N = O

0
1 1 m|12] m|[13]
0

Why index with the middle bits?

If the high-order bits are used as an = .
: . ligh-order Middle-order
index, then some contiguous memory bit indexing bit indexing

blocks will map to the same cache set. 0000 s
0001 0001

0010 0010

0011 0011

0100 0100

Four-set cache 0101 0101

00 0110 0110
01 0111 0111
10 1000 1000
1 1001 1001
1010 1010

1011 1011

| a |t |t |
ol o G Y
- - O
s O e
- b b b
e ek = b
O e (=]
- O |-

Set Associative Cache

Set 0:
Selected set

» Set 1:

t bits s bits b bits Set S—1:
[[00001] |
m-—1 0

Tag Set index Block offset

Set selection
o Use the set index to select the set

[Valid| [Tag || Cache block
[Valid| [Tag || Cache block
[Valid| [Tag || Cache block
[Valid| [Tag || Cache block
[Valid| [Tag || Cache block
[Valid| [Tag || Cache block

Set Associative Cache

= 1? (1) The valid bit must be set.

A A

_ 1 1001
Selected set (i):
1 0110 Wo [Wy W, | Ws
(2) Thetagbitsinone ¥ _ , ¥ (3) If (1) and (2), then
of the cache lines . cache hit, and
must match the tag blOCi(?tﬁsetbsy?lems
its i starting byte.
bits in the address. t bits s bits b bits
0110 | I [100 |
m-—1 0

Tag Set index Block offset

Line Selection
o Within the set, find the valid line with the matching tag

Word Selection
° Find the word in the line indexed by the block offset

Set Associative Cache
Line replacement on cache misses

When a line is empty
o Copy the block to the memory

Otherwise, follow the replacement policy
> Choose a line at random
> Choose the least frequently used (LFU) line

° Choose the least recently used (LRU) line

Fully Associative Cache

Valid Tag Cache block

Valid Tag Cache block E = C/B lines in
Set 0: : " the one and only set

Valid Tag Cache block

No need to select a set: there is only 1 set

Line matching and word selection work the same way as the set associative
cache

Issues with Writes:
After a cache HIT

Write-through
o Immediately write the word’s cache block to the next lower level

o Causing a bus traffic for every write

Write-back

o Defers the update as long as possible: updates the lower level only when the data is
evicted

° Needs a dirty bit
o Bus traffic is reduced at the cost of additional complexities

Issues with Writes:
After a cache MISS

Write-allocate
° Loads the block from the lower level and updates the cache

o Exploits the spatial locality
o Every miss results in a block transfer from the lower level

No-write-allocate
° Bypass the cache and write directly to the lower level

Issues with Writes
Write-back

> Because of the larger transfer time, caches at lower level
of the memory hierarchy use write-back

> As the logic density increases, the complexity of write-
back becomes less of an impediment

> Write-back/write-allocate is symmetric to the way read is
handled

o It exploits the locality

Real Cache Hierarchy

Intel Core i7 cache hierarchy

i Core 0 Core 3 i

i Regs Regs i

| |

i L1 L1 L1 L1 |

i d-cache i-cache B d-cache i-cache i

5 i

i L2 unified cache L2 unified cache i

| |

| L3 unified cache | | i-cache: a cache for instructions
I (shared by all cores) !

| e— J d-cache: a cache for data

Processor package

Main memory

unified-cache: a cache for both
| instructions and data

Real Cache Hierarchy

Characteristics of the Intel Core i7 cache hierarchy

Cache type Access time (cycles) Cachesize (C) Assoc. (E) Blocksize (B) Sets(S5)
L1 i-cache 4 32 KB 8 64 B o4
L1 d-cache 4 32 KB 8 64 B 64
L2 unified cache 11 256 KB 8 64 B 512
L3 unified cache 3040 8 MB 16 64 B 8192

= What are the number bits in a tag?

Cache Performance Metric

Miss rate: # of misses / # of references

Hit rate: 1 — miss rate

Hit time:
o Time to deliver a word in the cache to the CPU

° Includes the times for set identification, line identification, and word
selection

Miss penalty:
o Any additional time required because of a miss

Performance Impact of Cache Parameters

Impact of cache size: Large cache size
° Increases hit rate

° Increases hit time because of H/W complexity

Impact of block size: Large block size
° Increases spatial locality
o Reduces # of lines => decreases temporal locality

o Think about two or more variables at different scopes

o Loading large blocks => increases the miss penalty

Performance Impact of Cache Parameters

Impact of Associativity: Increasing E
o Decrease the conflict misses
° Increases the cost and complexity => increased hit time
o Complexity in choosing a victim line => increased miss penalty

Impact of Write Strategy

o Write-through: simpler to implement, can use write buffer, read misses are
less expensive

o Write-back: fewer transfers

Cache-Friendly Code

Average miss count:

o Block size is B

Example

o Stride-k reference pattern (in terms of words) int sumvec(int v[N])
{
> min(1, (wordsize - k) / B) misses per loop int 1, sum = O;
for (i = 0; i < N; i++)
sum += v[i];
return sum;
> Words are 4 bytes, }
o Cache blocks are 4 words
v[i] i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
Access order, [h]itor [m]iss [1 [m] | 2[h] [3[h] | 4[h] [S[m] | 6[h] [7[h] | 8 [h]

Cache-Friendly Code

Repeated reference to local variables are good
o Compiler can cache them in the register file

° Temporal locality

Stride-1 reference pattern is good
o Caches at all levels of the memory hierarchy store data as contiguous blocks

o Spatial locality

Cache-Friendly Code

int sumarrayrows(int a[M] [N])

{
int i, j, sum = O;
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] [j];
return sum;
}
alil [j] i = g1 =2 jJ=3 j=4 § =2 =0 J=1
i=0 | |m] 2 [h] 3 |h] 4 [h] 5 [m] 6 [h] 7 |h] 8 |h]
=1 Olm] | 10[h] | 11[h] | 12]h] | 13[m] | 14[h] | 15[h] | 16[h]

=2 17[m] | 18[h] | 19[h] | 20[h] | 21 [m] | 22 [h] | 23 [h] | 24 [h]
1=3 25Im] | 26[h] | 27[h] | 28 [h] | 29 [m] | 30 [h] | 31[h] | 32[h]

Cache-Friendly Code

int sumarraycols(int a[M] [N])

{
int i, j, sum = O;
for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i] [j];
return sum;
}
alil [j] F=1 = S =3 j=4 =) j=6 $=21
1=0 Ilm] | S[m] | 9[m] 1I3m] | 17[m] | 21 [m] | 25|m] | 29 [m]
§ = 2Im] | 6m] [10m] | 14[m] | I8m] | 22|m] | 26 [m] | 30 [m]

= Sim] [7im] | I1|m] [ISm] | 19[m] | 23|[m] | 27 |m] | 31 [m]
3 4im] | Sfm] | [2|m] | 16 |m] [20[m] | 24 |[m] | 28 |m] | 32 |m]

The Memory Mountain

Read throughput (read bandwidth)
° The rate that a program reads data from the memory system

> Reads n bytes over a period of s seconds => n/s

Smaller size of data set
o Results in a smaller working set
o Better temporal locality

Smaller stride
o Results in better spatial locality

The Memory Mountain

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache

» 256 KB L2 cache
g 8 MB L3 cache
= 64 B block size
2
L
o
=
o ‘ Ridges
£ > of temporal
§ . locality
(14
Slopes -
of spatial
locality 32k

128k

512k
2m

s11
128m

s7

Stride (x8 bytes) 8m

Size (bytes)

32m

Read throughput vs working set size

Main L3 L2 L1
memory cache cache cache
region region region region
14000
12000
»
o 10000
3
2 8000
L
=)
=
2 6000
£
®
& 4000
2000 — — — -
NI N EEI I I I l

Nl S)
p(tb® @b‘é\ rbq'& ,\6& ‘bé\ bté\ q}Q \Qq,bt {o,{]/

Working set size (bytes)

Read throughput vs stride

12000
10000 +—
@
[21] 2
s 8000 -
5
e
o 6000 -
= :
o
£ :
° :
g 00 ' One access per cache line
a = A
W - A\
. I I l l l_
0 1 T T T T T T T T T T
s1 s2 s3 s4 sb5 s6 s7 s8 s9 s10 s11

Stride (x8 bytes)

Exploiting Locality

Focus on the inner loop

Try to maximize the spatial locality
o Reading data objects sequentially with stride 1

Try to maximize the temporal locality
o Use a data object as often as possible once it has been read from memory

Questions?

