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Cache Memories

Intel Core i7 cache hierarchy
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Generic Cache Memory

Organization

1 valid bit ttag bits B = 2°bytes

perline perline  per cache block
A A A o)

Valid| | Tag || 0|1 | --- |B-1|
Set 0: : Elines
|Valid| [ Tag |[ 0] 1 [--- [B-1] | | perset
Valid| [ Tag |[ 0| 1 |--- |B-1|
Set 1:
|Valid| [ Tag |[ 0] 1 |--. |B-1|
Valid| [ Tag |[o0 ] 1 [|--- [B-1|
SetS—1:
Valid| | Tag |[ o[ 1 ]--- [B—1]

Cache size: C = B x E x S data bytes
(a)

t bits s bits b bits
[ [ J

|
m-1 0
\ J

I\ I\

Address:

2 G

Tag Set index Block offset
(b)

S: (=29), # of cache sets

E: # of lines in a cache set
B: (=2°), # of bytes in a line
m: memory address bits

Valid bit: whether the line contains
> valid data

t: (= m - (b+s)), # of bits in a tag

C: (=B x ExS), cache size




Caches

Classes of caches by E (# of lines per set)
o E =1:direct-mapped cache (1 line per set)
o 1 < E < C/B: set-associative cache
o E = C/B: fully-associative cache (1 set)

Accessing the requested word from cache
o Set selection
° Line matching

o Word extraction




Direct-Mapped Cache

Set 0:

Selected set .. Sy

t bits s bits b bits :

I [00001 ] ] SetS-1
m-1 0

Tag Set index Block offset

Set selection

Valid| | Tag || Cacheblock |
[Valid| [ Tag || Cacheblock |
|Valid| | Tag || Cacheblock |

o Select the set using the set index as an index




Direct-Mapped Cache

= 1?7 (1) The valid bit must be set.

&

Selected set (i): 1 0110 Wp | Wy | Wo | W3
v (3) If (1) and (2), then
(2) The tag bits in the =7 cache hit, and
cache line must block offset selects
match the tag bits starting byte.
in the address. t bits s bits b bits
[ 0110 ] i [ 100 ]
m—1 0

Tag Set index Block offset

Line Matching

o A word is contained in the line iff the valid bit is set and the tag of the line matches
the tag of the address

Word extraction
° Find the word in the line indexed by the block offset




Direct-Mapped Cache (action)

(S,E,B,m)=(4,1,2,4)

Address bits
Address Tag bits Index bits Offset bits Block number
(decimal) (r=1) (s=2) (b=1) (decimal)
0 0 00 0 0
1 0 00 1 0
2 0 01 0 1
3 0 01 1 1
4 0 10 0 2
3 0 10 1 2
6 0 11 0 3
7 0 11 1 3
8 1 00 0 4
9 1 00 1 4
10 1 01 0 5
11 1 01 1 5
12 1 10 0 6
13 1 10 1 6
14 1 11 0 7
15 1 11 1 7




Direct-Mapped Cache (action)

Read from address 0: cache miss
Set Valid Tag block|[0] block[1]
1 0 m|0] m|1]

0
0
0

W N = O

Read from address 1: cache hit
Read from address 13: cache miss

Set Valid Tag block|[0] block|[1]
1 0 m|0] m|1]

0
1 1 m|[12] m|[13]
0

W= O




Direct-Mapped Cache (action)

Read from address 8: cache miss

Set Valid Tag  block[0] block|[1]
1 1 m|8] m|9]

W N = O

0
1 1 m|12] m|13]
0

Read from address 0: cache miss

Set Valid Tag block|0] block[1]
1 0 m|0] m|1]

W N = O

0
1 1 m|12] m|[13]
0




Why index with the middle bits?

If the high-order bits are used as an = .
: . ligh-order Middle-order
index, then some contiguous memory bit indexing bit indexing

blocks will map to the same cache set. 0000 s
0001 0001

0010 0010

0011 0011

0100 0100

Four-set cache 0101 0101

00 0110 0110
01 0111 0111
10 1000 1000
1 1001 1001
1010 1010

1011 1011
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Set Associative Cache

Set 0:
Selected set

» Set 1:

t bits s bits b bits Set S—1:
[ [00001 ] |
m-—1 0

Tag Set index Block offset

Set selection
o Use the set index to select the set

[Valid| [ Tag || Cache block
[Valid| [ Tag || Cache block
[Valid| [ Tag || Cache block
[Valid| [ Tag || Cache block
[Valid| [ Tag || Cache block
[Valid| [ Tag || Cache block




Set Associative Cache

= 1? (1) The valid bit must be set.

A A

_ 1 1001
Selected set (i):
1 0110 Wo [ Wy W, | Ws
(2) Thetagbitsinone ¥ _ , ¥ (3) If (1) and (2), then
of the cache lines . cache hit, and
must match the tag blOCi( ?tﬁsetbsy?lems
its i starting byte.
bits in the address. t bits s bits b bits
0110 | I [ 100 |
m-—1 0

Tag Set index Block offset

Line Selection
o Within the set, find the valid line with the matching tag

Word Selection
° Find the word in the line indexed by the block offset




Set Associative Cache
Line replacement on cache misses

When a line is empty
o Copy the block to the memory

Otherwise, follow the replacement policy
> Choose a line at random
> Choose the least frequently used (LFU) line

° Choose the least recently used (LRU) line




Fully Associative Cache

Valid Tag Cache block

Valid Tag Cache block E = C/B lines in
Set 0: : " the one and only set

Valid Tag Cache block

No need to select a set: there is only 1 set

Line matching and word selection work the same way as the set associative
cache




Issues with Writes:
After a cache HIT

Write-through
o Immediately write the word’s cache block to the next lower level

o Causing a bus traffic for every write

Write-back

o Defers the update as long as possible: updates the lower level only when the data is
evicted

° Needs a dirty bit
o Bus traffic is reduced at the cost of additional complexities




Issues with Writes:
After a cache MISS

Write-allocate
° Loads the block from the lower level and updates the cache

o Exploits the spatial locality
o Every miss results in a block transfer from the lower level

No-write-allocate
° Bypass the cache and write directly to the lower level




Issues with Writes
Write-back

> Because of the larger transfer time, caches at lower level
of the memory hierarchy use write-back

> As the logic density increases, the complexity of write-
back becomes less of an impediment

> Write-back/write-allocate is symmetric to the way read is
handled

o It exploits the locality




Real Cache Hierarchy

Intel Core i7 cache hierarchy

i Core 0 Core 3 i

i Regs Regs i

| |

i L1 L1 L1 L1 |

i d-cache i-cache B d-cache i-cache i

5 i

i L2 unified cache L2 unified cache i

| |

| L3 unified cache | | i-cache: a cache for instructions
I (shared by all cores) !

| e— J d-cache: a cache for data

Processor package

Main memory

unified-cache: a cache for both
| instructions and data




Real Cache Hierarchy

Characteristics of the Intel Core i7 cache hierarchy

Cache type Access time (cycles) Cachesize (C) Assoc. (E) Blocksize (B) Sets(S5)
L1 i-cache 4 32 KB 8 64 B o4
L1 d-cache 4 32 KB 8 64 B 64
L2 unified cache 11 256 KB 8 64 B 512
L3 unified cache 3040 8 MB 16 64 B 8192

= What are the number bits in a tag?




Cache Performance Metric

Miss rate: # of misses / # of references

Hit rate: 1 — miss rate

Hit time:
o Time to deliver a word in the cache to the CPU

° Includes the times for set identification, line identification, and word
selection

Miss penalty:
o Any additional time required because of a miss




Performance Impact of Cache Parameters

Impact of cache size: Large cache size
° Increases hit rate

° Increases hit time because of H/W complexity

Impact of block size: Large block size
° Increases spatial locality
o Reduces # of lines => decreases temporal locality

o Think about two or more variables at different scopes

o Loading large blocks => increases the miss penalty




Performance Impact of Cache Parameters

Impact of Associativity: Increasing E
o Decrease the conflict misses
° Increases the cost and complexity => increased hit time
o Complexity in choosing a victim line => increased miss penalty

Impact of Write Strategy

o Write-through: simpler to implement, can use write buffer, read misses are
less expensive

o Write-back: fewer transfers




Cache-Friendly Code

Average miss count:

o Block size is B

Example

o Stride-k reference pattern (in terms of words) int sumvec(int v[N])
{
> min(1, (wordsize - k) / B) misses per loop int 1, sum = O;
for (i = 0; i < N; i++)
sum += v[i];
return sum;
> Words are 4 bytes, }
o Cache blocks are 4 words
v[i] i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
Access order, [h]itor [m]iss [ 1 [m] | 2[h] [ 3[h] | 4[h] [S[m] | 6[h] [ 7[h] | 8 [h]




Cache-Friendly Code

Repeated reference to local variables are good
o Compiler can cache them in the register file

° Temporal locality

Stride-1 reference pattern is good
o Caches at all levels of the memory hierarchy store data as contiguous blocks

o Spatial locality




Cache-Friendly Code

int sumarrayrows(int a[M] [N])

{
int i, j, sum = O;
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] [j];
return sum;
}
alil [j] i = g1 =2 jJ=3 j=4 § =2 =0 J=1
i=0 | |m] 2 [h] 3 |h] 4 [h] 5 [m] 6 [h] 7 |h] 8 |h]
=1 Olm] | 10[h] | 11[h] | 12]h] | 13[m] | 14[h] | 15[h] | 16[h]

=2 17[m] | 18[h] | 19[h] | 20[h] | 21 [m] | 22 [h] | 23 [h] | 24 [h]
1=3 25Im] | 26[h] | 27[h] | 28 [h] | 29 [m] | 30 [h] | 31[h] | 32[h]




Cache-Friendly Code

int sumarraycols(int a[M] [N])

{
int i, j, sum = O;
for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i] [j];
return sum;
}
alil [j] F=1 = S =3 j=4 =) j=6 $=21
1=0 Ilm] | S[m] | 9[m] 1I3m] | 17[m] | 21 [m] | 25|m] | 29 [m]
§ = 2Im] | 6m] [ 10m] | 14[m] | I8m] | 22|m] | 26 [m] | 30 [m]

= Sim] [ 7im] | I1|m] [ ISm] | 19[m] | 23|[m] | 27 |m] | 31 [m]
3 4im] | Sfm] | [2|m] | 16 |m] [ 20[m] | 24 |[m] | 28 |m] | 32 |m]




The Memory Mountain

Read throughput (read bandwidth)
° The rate that a program reads data from the memory system

> Reads n bytes over a period of s seconds => n/s

Smaller size of data set
o Results in a smaller working set
o Better temporal locality

Smaller stride
o Results in better spatial locality




The Memory Mountain

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache

» 256 KB L2 cache
g 8 MB L3 cache
= 64 B block size
2
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=
o ‘ Ridges
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§ . locality
(14
Slopes -
of spatial
locality 32k

128k

512k
2m

s11
128m

s7

Stride (x8 bytes) 8m

Size (bytes)

32m




Read throughput vs working set size
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Read throughput vs stride
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Exploiting Locality

Focus on the inner loop

Try to maximize the spatial locality
o Reading data objects sequentially with stride 1

Try to maximize the temporal locality
o Use a data object as often as possible once it has been read from memory




Questions?




