CSE320 System
Fundamentals |
Threads

NNNNNNNNNNNN




Threads

A thread is a logical flow that runs in the context of a process

Each thread has its own thread context
> Thread ID (TID),

o Stack, stack pointer
° Program counter,

o General-purpose registers, Condition codes (Flags)




Threads

Multiple threads run in the context of a single process
° They share the entire virtual address space of the process

o Code, Heap, Shared libraries, Open files

Thread scheduling is done by the kernel
> Slow system calls like read or sleep

° Interrupted by the system timer




Threads

Each process begins life as a single thread called the main thread

Later, the main thread creates peer threads

Time

Thread 1
(main thread)

____________

[ ——

—— - —

- —————— -

Thread 2
(peer thread)
'}.1_ ~} Thread context switch
—""""""" } Thread context switch
—~———a. _____ } Thread context switch




Threads

A thread context is much smaller than a process context => context
switch is faster

Threads associated with a process form a pool of peers
° No rigid parent-child hierarchy
o A thread can kill any of its peers
o A thread can wait for any of its peers to terminate
o Each peer can read/write the same shared data




POSIX Threads (Pthreads)

A standard interface for manipulating threads from C programs

Defines about 60 functions that allow programs
° to create, kill, and reap threads
° to share data safely with peer threads

° to notify peers about changes in the system state




Creating Threads

#include <pthread.h>
typedef void *(func)(void *);

// To create a new thread

int pthread create(pthread t *tid,
pthread attr t *attr,
func *f,
void *arg);

// To get the thread id of its own
pthread t pthread self(void);




Terminating Threads

#include <pthread.h>

void pthread exit(void *thread return);

// Terminate explicitly

// If main thread calls pthread exit,

// it will wait for all other peer threads to
// terminate, terminate itself, and terminate
// the process

int pthread cancel(pthread t tid);
// Terminate the thread with the ID tid




Reaping Terminated Threads

#include <pthread.h>
int pthread_join(pthread t tid,
void **thread return);

// - blocks until thread pid terminates,

// - update thread return to point to the return
// value of the thread routine,

// - reap the memory resource

// - unlike waitpid, there is no way to wait for
//  an arbitrary thread to terminate




Creating Threads

#include <pthread.h>
#include <stdio.h>

void *thread_func(void *vargp) {
printf("%s\n", (char*)vargp);
pthread exit("world");
//return "world";
return NULL;

int main() {
pthread t tid;
pthread create(&tid, NULL, thread func, "hello");

void *ret;
pthread_join(tid, &ret);
printf("%s\n", (char*)ret);
return 0;




Detaching Threads

#include <pthread.h>
int pthread_detach(pthread t tid);

// - For a joinable thread (default) its
//  memory resource is not freed until the
//  thread is reaped

// - A detached thread cannot be reaped or
//  killed by other threads

// - Its memory resources are automatically
//  freed when it terminates




Initializing Threads

#include <pthread.h>

pthread once once_control = PHTREAD ONCE INIT;

int pthread once(pthread once *once control,
void (*init_routine)(void));

// - Useful to initialize shared global

//  variables dynamically

// - init_routine is called only once even if
//  pthread once is called multiple times




//charcount.c

#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void* charcount(void *vargp);

int main() {
pthread t tid = pthread_self();
printf("main: %u\n", (unsigned int)tid);

while(1) {
char str[100];
pthread_t tid;
scanf("%99s", str);
if(strcmp(str, "quit") == 0)
break;
pthread_create(&tid, NULL, charcount, strdup(str));

}

return 0;




void* charcount(void *vargp) {
char *str = (char*)vargp;
int count[256] = {0,};
pthread t tid = pthread_self();
int i;

pthread detach(tid);
printf("server %u\n", (unsigned int)tid);
for(i = @; str[i]; i++)

count[ str[i] ]++; // Counting the occurrence of each char
for(i = 0; i < 256; i++) {

if(count[i] > @)

printf("%u: '%c': %d\n", (unsigned int)tid, i, count[i]);

}

free(str);
return NULL;

}

$ gcc charcount.c -pthread




Questions?




