
CSE320 System
Fundamentals II
Exceptional Control Flow
YOUNGMIN KWON / TONY MIONE

Announcements
Exam I : Thurs 4/7

◦ Covers through Dynamic Memory Allocation II
◦ Please email me asap if you have a positive COVID test as I will have to

arrange to give the same test to you online at the same time if possible

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Exceptional Control Flow
Exceptional Control Flow (ECF)

◦ Hardware timer goes off or a network packet arrives
◦ OS transfers control from one process to another
◦ A process sends a signal to another process

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Exceptions
Exception:

◦ Change in the control flow due to processor’s state change (event)
◦ Virtual memory page fault, division by zero, I/O complete operation

After handling exceptions
◦ Return to Icurr
◦ Return to Inext
◦ Abort the program

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Exception Handling
Exception number
◦ Set by HW designer (division by 0)
◦ Set by Kernel designer (system call)

Exception table
◦ When an event k occurred, the flow

jumps to the kth entry in the
exception table

◦ At system boot time, the OS
initializes the jump table

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Exception Handling
Mode switches from user mode to kernel mode if the event occurred in
the user mode.

Return address (current instruction or next instruction) and EFLAGS
register are pushed onto the kernel’s stack

After the handler has processed the event the control returns to the
interrupted program

Switch mode back to the user mode if necessary

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Classes of Exceptions

Interrupt:

Trap:

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Classes of Exceptions

Fault:

Abort:

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

System Call

syscall:
◦ System calls are provided by a trapping instruction called syscall
◦ %rax has the syscall number, up to 6 arguments are %rdi, %rsi, %rdx, %r10, %r8, and

%r9
◦ %rax has the return value, %rcx and %r11 are destroyed.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

System Call Example

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Processes
Process

◦ An instance of a program in execution

◦ Each program runs in the context of a process

◦ A context comprises:
◦ The program’s code,
◦ Data in memory, stack, registers,
◦ Open file descriptors…

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Logical Control Flow

A process provides each program with an illusion that it has exclusive use of
the processor although many other programs are running concurrently

Each vertical bar in the figure below represents a portion of the logical control
flow for a process

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Concurrent Flows
Concurrent Flow:

◦ A logical flow whose execution overlaps in time with other flows
◦ A and B run concurrently; A and C run concurrently.
◦ B and C do not run concurrently

Parallel flow:
◦ If two flows are running concurrently on different processor cores or

computers

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

Private Address Space
A process provides each program
with its own private address space

The address space for each
process has the same general
organization
◦ The bottom portion is reserved for

the user program
◦ The top portion is reserved for the

kernel

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

User mode and Kernel mode

Processors typically provide a mode bit

Kernel mode
◦ When the mode bit is set
◦ Can execute any instructions and can access any memory location

User mode
◦ When the mode bit is not set
◦ Cannot execute privileged instructions: halt the processor, change the mode bit, I/O

operation
◦ Cannot reference kernel code or data

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

User mode and Kernel mode

To access kernel data structure from user mode
◦ /proc file system
◦ /proc/cpuinfo, /proc/process-id/maps, …

$ cat /proc/5558/maps
00400000-004e1000 r-xp 00000000 08:01 7209108 /bin/bash
006e0000-006e1000 r--p 000e0000 08:01 7209108 /bin/bash
006e1000-006ea000 rw-p 000e1000 08:01 7209108 /bin/bash
006ea000-006f0000 rw-p 00000000 00:00 0
00753000-00f8a000 rw-p 00000000 00:00 0 [heap]
7f240fa46000-7f240fa51000 r-xp 00000000 08:01 7867530 /lib/x86_64-linux-gnu/libnss_files-2.15.so
7f240fa51000-7f240fc50000 ---p 0000b000 08:01 7867530 /lib/x86_64-linux-gnu/libnss_files-2.15.so
7f240fe5c000-7f240fe5d000 r--p 0000a000 08:01 7867532 /lib/x86_64-linux-gnu/libnss_nis-2.15.so
7f2410c90000-7f2410c92000 rw-p 00023000 08:01 7867529 /lib/x86_64-linux-gnu/ld-2.15.so
...
7fffcac50000-7fffcac71000 rw-p 00000000 00:00 0 [stack]
7fffcad4f000-7fffcad50000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
$

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Context Switches

Kernel maintains a context for each process

A context consists of
◦ registers,
◦ PC,
◦ user stack,
◦ kernel stack,
◦ kernel data structure (page table, process table, file table)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

Context Switches

Context switch
◦ Kernel can decide to preempt the current running process
◦ Scheduler picks the next process to run
◦ Kernel transfers the control to the new process through context switching

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

Process Control
Obtaining Process IDs

pid_t getpid(void);
pid_t getppid(void);

Creating a process
pid_t fork(void);

Terminating a process
void exit(int status);

#include <stdio.h>
#include <unistd.h>
int main()
{

pid_t pid = fork();
if(pid == 0)

printf("child: pid: %d, "
"ppid: %d\n",
getpid(), getppid());

else
printf("parent: pid: %d, "

"ppid: %d, child: %d\n",
getpid(), getppid(), pid);

exit(0);
}

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

Process Control

When a process terminates
◦ The kernel does not remove it from the system immediately
◦ The process is kept around in a terminated state (zombie process) until it is reaped by

its parent

Waits for its children to terminate and reap it
pid_t waitpid(pid_t pid, int *statusp, int
options)
pid_t wait(int *statusp); // wait for any
children

// to terminate

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

Process Control
pid_t waitpid(pid_t pid, int *statusp, int options)

•Function behaves differently depending on range of pid:
• pid > 0 – Wait for the single process with an id matching the value of pid
• pid == 0 = Wait for any child process with a process group ID equal to the

process group ID of the calling process
• pid == -1 – Wait for any child process to terminate

•options

•WNOHANG – return immediately if no child has terminated (returns 0 if
no child has terminated)

•WCONTINUED – return if a child has terminated or if a child was
continued with a SIGCONT signal.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

Process Control
•WIFEXITED(status) – Returns true if the process returned by waitpid terminated
normally

•WIFSIGNALED(status) – Returns true if the process returned by waitpid terminated
due to an uncaught signal

•WIFSTOPPED(status) – Returns true if the process returned by waitpid is currently
stopped

•WIFCONTINUED(status) – Returns true if process returned by waitpid was continued
with SIGCONT

•WEXITSTATUS(status) – Returns the status of the normally terminated child

•WTERMSIG(status) – Returns number of the signal that caused process termination

•WSTOPSIG(status) – Returns number of the signal that caused process to stop

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 22

Process Control

Putting process to sleep

//sleep for sec seconds or until signaled
unsigned int sleep(unsigned int sec);

//sleep until signaled
int pause(void);

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 23

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>

int main() {
int status, i;
pid_t pid;
for(i = 0; i < 10; i++)

if((pid = fork()) == 0)
exit(100+i);

while((pid = waitpid(-1, &status, 0)) > 0) {
if(WIFEXITED(status))

printf("pid: %d, status: %d\n", pid, WEXITSTATUS(status));
else

printf("pid: %d, abnormal termination\n", pid);
}

exit(0);
}

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 24

fork and waitpid

Process Control

execve loads and runs a new program in the context of the current process
int execve(const char *filename,

const char *argv[],
const char *envp[]);

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 25

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 26

A Simple Shell Program

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 27

A Simple Shell Program

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 28

A Simple Shell Program

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 29

A Simple Shell Program

Questions?

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 30

