CSE320 System
Fundamentals |

Exceptional Control Flow

YOUNGMIN KWON / TONY MIONE

Announcements

Exam | : Thurs 4/7
o Covers through Dynamic Memory Allocation I

° Please email me asap if you have a positive COVID test as | will have to
arrange to give the same test to you online at the same time if possible

Exceptional Control Flow

Exceptional Control Flow (ECF)
o Hardware timer goes off or a network packet arrives
o OS transfers control from one process to another

° A process sends a signal to another process

Exceptions

Exception:

o Change in the control flow due to processor’s state change (event)

> Virtual memory page fault, division by zero, /O complete operation

After handling exceptions
o Return to |y,
° Return to |, eyt
° Abort the program

Event
occurs
here

Application Exception
program handler
o B L EXxception -
" Inext "| Exception
processing
Exception

return
(optional)

Exception Handling

Exception number Code for
exception handler 0
> Set by HW designer (division by 0) Excep¢. -

Code for

table
H ion handler 1
> Set by Kernel designer (system call) o—z= 2
° — Code for
: exception handler 2
P —
Exception table T~
ode f1or
> When an event k occurred, the flow exception handlern !
jumps to the kth entry in the
exception table By Exception table
o 0
o At system boot time, the OS lAddress of entry 3
Exception table for exception # k

initializes the jump table s aolsie >]

Exception Handling

Mode switches from user mode to kernel mode if the event occurred in
the user mode.

Return address (current instruction or next instruction) and EFLAGS
register are pushed onto the kernel’s stack

After the handler has processed the event the control returns to the
interrupted program

Switch mode back to the user mode if necessary

Classes of Exceptions

Class Cause Async/Sync Return behavior

Interrupt Signal from I/O device Async Always returns to next instruction
Trap Intentional exception Sync Always returns to next instruction
Fault Potentially recoverable error Sync Might return to current instruction
Abort Nonrecoverable error Sync Never returns

Interrupt:

(1) Interrupt pin
goes high during leurr
execution of Inext

current instruction

(1) Application

(2) Control passes
to handler after current
instruction finishes

+

(3) Interrupt
handler runs
(4) Handler
returns to
next instruction

(2) Control passes
to handler

makes a Syscall?
system call next

Trap:

! (3) Trap
handler runs

(4) Handler returns
to instruction

4 following the syscall

Classes of Exceptions

Fault:

Abort:

(1) Current
instruction
causes a fault

(1) Fatal hardware
error occurs

curr

lCUf T

A

'«

(2) Control passes

to handler
(3) Fault
il handler runs
» abort
(4) Handler either reexecutes
current instruction or aborts
(2) Control passes
to handler R
(3) Abort
handler runs
» abort

(4) Handler returns
to abort routine

System Call

syscall:
o System calls are provided by a trapping instruction called syscall

° %rax has the syscall number, up to 6 arguments are %rdi, %rsi, %rdx, %r10, %r8, and
%r9

° %rax has the return value, %rcx and %r11 are destroyed.

Number Name Description Number Name Description

1 exit Terminate process 27 alarm Set signal delivery alarm clock
2 fork Create new process 29 pause Suspend process until signal arrives
3 read Read file 37 kill Send signal to another process
a write Write file 48 signal Install signal handler
3 open Open file 63 dup2 Copy file descriptor
6 close Close file 64 getppid Get parent’s process ID
7 waitpid Wait for child to terminate 65 getpgrp Get process group

11 execve Load and run program 67 sigaction Install portable signal handler

19 Iseek Go to file offset 90 mmap Map memory page to file

20 getpid Get process ID 106 stat Get information about file

—

Ln A W N

System Call Example

int main()

{

write(1, "hello, world\n", 13);
exit (0);

Ln A W N

10
11
12
13

14
15
16

.section .data
string:

.ascii "hello, world\n"
string_end:

.equ len, string_end - string

.section .text

.globl main

main:

First, call write(1, "hello, world\n", 13)
movl $4, Jeax System call number 4
movl $1, %ebx stdout has descriptor 1
movl $string, %ecx Hello world string
movl $len, %edx String length
int $0x80 System call code

Next, call exit(0)

movl $1, %eax System call number 0
movl $0, 7%ebx Argument is 0

int $0x80 System call code

Processes

Process
° An instance of a program in execution

o Each program runs in the context of a process

° A context comprises:

° The program’s code,
o Data in memory, stack, registers,

o Open file descriptors...

Logical Control Flow

A process provides each program with an illusion that it has exclusive use of
the processor although many other programs are running concurrently

Each vertical bar in the figure below represents a portion of the logical control
flow for a process

Process A Process B Process C

Time (l _____

Concurrent Flows

Concurrent Flow:
> A logical flow whose execution overlaps in time with other flows

° A and B run concurrently; A and C run concurrently.
° B and C do not run concurrently

Parallel flow:

o If two flows are running concurrently on different processor cores or
computers

Private Address Space

A process provides each program

with its own private address space

The address space for each
process has the same general
organization

> The bottom portion is reserved for
the user program

> The top portion is reserved for the

ke rne | 0x08048000 (32) _,

0x00400000 (64)

0

Kernel virtual memory
(code, data, heap, stack)

User stack
(created at run time)

v
s

Memory-mapped region for
shared libraries

:

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Memory
invisible to
user code

<« esp (stack pointer)

<«—brk

Loaded from the
executable file

User mode and Kernel mode

Processors typically provide a mode bit

Kernel mode
o When the mode bit is set
o Can execute any instructions and can access any memory location

User mode
o When the mode bit is not set

> Cannot execute privileged instructions: halt the processor, change the mode bit, I/O
operation

o Cannot reference kernel code or data

User mode and Kernel mode

To access kernel data structure from user mode
o [proc file system

> [proc/cpuinfo, /proc/process-id/maps, ...

$ cat /proc/5558/maps

00400000-004e1000 r-xp 000VOORO 08:01 7209108 /bin/bash

006e0000-006e1000 r--p 000eOO 08:01 7209108 /bin/bash

006e1000-006€a000 rw-p 000el000 08:01 7209108 /bin/bash

006€2000-00610000 rw-p 00000 00:00 ©

00753000-0018a000 rw-p 00000 00:00 © [heap]

7f240fa46000-71240fa51000 r-xp 00000000 08:01 7867530 /1ib/x86_64-1linux-gnu/libnss files-2.15.so0
7f240fa51000-71240fc50000 ---p 0000bOOO 08:01 7867530 /1ib/x86_64-1linux-gnu/libnss files-2.15.so0
7f240fe5c000-71240fe5d000 r--p 00002000 08:01 7867532 /1ib/x86_64-1inux-gnu/libnss nis-2.15.s0
712410c90000-712410c92000 rw-p 00023000 08:01 7867529 /1ib/x86_64-1inux-gnu/ld-2.15.s0
7fffcac50000-7fffcac71000 rw-p 00000000 00:00 © [stack]

7fffcad4feee-7fffcad50000 r-xp 00000000 00:00 0O [vdso]

fHfHffffff600000-ffffffffff601000 r-xp 00000000 00:00 © [vsyscall]
$

Context Switches

Kernel maintains a context for each process

A context consists of
° registers,

PC,

user stack,

(e]

(e]

(e]

kernel stack,

(e]

kernel data structure (page table, process table, file table)

Context Switches

Context switch
o Kernel can decide to preempt the current running process

o Scheduler picks the next process to run

o Kernel transfers the control to the new process through context switching

Time

A

4

r e ad aamsmamn

Disk interrupt -

Return -

from read

Process A Process B

{

\

]

User code

Context
Kernel code [guitch

User code

Context
Kernel code [switch

User code

Process Control

Obtaining Process IDs f#include <stdio.h>
. . .« N #include <unistd.h>
pid_t getpid(void); int main()
pid t getppid(void); {
pid_t pid = fork();
if(pid == 0)
Creating a process printf(“child: pid: %d, "
. . "ppid: %d\n",
pid_t fork(void); getpid(), getppid());
else
printf("parent: pid: %d, "
Terminating a process "ppid: %d, child: %d\n",
void exit(int status); getpid(), getppid(), pid);
? exit(9);

Process Control

When a process terminates
° The kernel does not remove it from the system immediately

o The process is kept around in a terminated state (zombie process) until it is reaped by
its parent

Waits for its children to terminate and reap it
pid t waitpid(pid t pid, int *statusp, int
options)
pid t wait(int *statusp); // wait for any
children

// to terminate

Process Control

pid_t waitpid(pid t pid, int *statusp, int options)

*Function behaves differently depending on range of pid:
* pid > 0 — Wait for the single process with an id matching the value of pid

* pid == 0 = Wait for any child process with a process group ID equal to the
process group ID of the calling process

* pid == -1 — Wait for any child process to terminate
*options

*WNOHANG - return immediately if no child has terminated (returns O if
no child has terminated)

*WCONTINUED - return if a child has terminated or if a child was
continued with a SIGCONT signal.

Process Control

*WIFEXITED(status) — Returns true if the process returned by waitpid terminated
normally

*WIFSIGNALED(status) — Returns true if the process returned by waitpid terminated
due to an uncaught signal

*WIFSTOPPED(status) — Returns true if the process returned by waitpid is currently
stopped

*WIFCONTINUED(status) — Returns true if process returned by waitpid was continued
with SIGCONT

*WEXITSTATUS(status) — Returns the status of the normally terminated child

*WTERMSIG(status) — Returns number of the signal that caused process termination

*WSTOPSIG(status) — Returns number of the signal that caused process to stop

Process Control

Putting process to sleep

//sleep for sec seconds or until signaled
unsigned int sleep(unsigned int sec);

//sleep until signaled
int pause(void);

fork and waitpid

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>

int main() {
int status, i;
pid_t pid;
for(i = 0; i < 10; i++)
if((pid = fork()) == 0)
exit(100+1i);

while((pid = waitpid(-1, &status, 0)) > @) {
if(WIFEXITED(status))
printf("pid: %d, status: %d\n", pid, WEXITSTATUS(status));
else
printf("pid: %d, abnormal termination\n", pid);

}

exit(9);

Process Control

execve loads and runs a new program in the context of the current process
int execve(const char *filename,

const char *argv[],
const char *envp[]);

argv[]
argv argv[0]

]

arg‘:,[il \| "-lt" ‘

argv[argc — 1]
NULL \| "/user/include" |

envp[]
envp envp [0] —»l“ PWD=/usr/droh" |

envp[1]
a4 \>| "PRINTER=iron" |

envp [n — 1] \
NULL | "USER=droh" |

A Simple Shell Program

#include "csapp.h"
#define MAXARGS 128

/* Function prototypes */

void eval(char *cmdline);

int parseline(char *buf, char **argv);
int builtin_command(char **argv);

int main()

{
char cmdline[MAXLINE]; /#* Command line */

while (1) {
/* Read */
printf ("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
exit (0);

/* Evaluate */
eval(cmdline);

A Simple Shell Program

/* eval - Evaluate a command line */
void eval(char *cmdline)
{
char *argv[MAXARGS]; /* Argument list execve() */
char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv([0]);
exit (0);

A Simple Shell Program

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");

}
else
printf ("%d %s", pid, cmdline);
}
return;

/* If first arg is a builtin command, run it and return true */
int builtin_command(char **argv)

{
if (!strcmp(argv[0], "quit")) /* quit command */
exit(0);
if (!strcmp(argv[0], "&")) /* Ignore singleton & */
return 1;
return O; /* Not a builtin command x*/

A Simple Shell Program

/* parseline - Parse the command line and build the argv array */
int parseline(char *buf, char **argv)

{
char *delim; /* Points to first space delimiter */
int argc; /* Number of args */
int bg; /* Background job?7 */

buf [strlen(buf)-1] = ' '; /* Replace trailing '\n' with space */
_ while (*buf && (*buf == ' ')) /* Ignore leading spaces */
buf++;
argv[argc] = NULL;
/* Build the argv list */

argc = 0; if (argc == 0) /» Ignore blank line #=/
while ((delim = strchr(buf, ' '))) { return 1;
argv[argc++] = buf;
delim = '\0'; / Should the job run in the background? */
buf = delim + 1; if ((bg = (*argv(argc-1] == '&')) '= 0)
while (*buf && (*buf == ' ')) /* Ignore spaces */ argv[--argc] = NULL;
buf++;
} return bg;

Questions?

