CSE320 System
Fundamentals |l
Dynamic Memory
Allocation

YOUNGMIN KWON / TONY MIONE

Dynamic Memory Allocation

A dynamic memory allocator maintains an area of a TE—
process’s virtual memory known as the heap T

For each process, the kernel maintains a variable brk
that points to the top of the heap. Memory mapped region

for shared libraries

Explicit allocator

© malloc, free T Top of the heap
(brk ptr)

L. Heap
Implicit allocator

‘ , Uninitialized data (.bss)
° new

Initialized data (.data)

o Garbage collectors

Program text (. text)

malloc and free

void *malloc(size_t size) allocates at least the request size bytes
o calloc works like malloc but initializes the memory to 0 in addition

void free(void *ptr) frees the allocated memory

void *sbrk(intptr_t incr) increases brk by incr and returns the old brk.

malloc and free

p1

|

[T T T T T T TTTTTTITTTTT1] each cell: 2 byte

(a) p1 = malloc(4*sizeof (int)) int: 2 byte

i T alignment: 4 byte
[TT T T TTTITTTTTITT1]

I
(

b) p2 = malloc(5*sizeof (int

)) .
Dark blue area is a

p¢1 p2 p3

[TI T T T TTTITTITTITITIT] padding for the
(c) p3 = malloc(6*sizeof (int)) allgn ment

p1 p2 p3

* v \4

AN EEEEEEEE

(d) free(p2)

p1 p2 p4 p3

4 N ¥ +

AN AR EEEEEEEEEEEE

malloc(2*sizeof (int

(e) p4

)

Fragmentation

Internal fragmentation
> Allocated blocks are larger than payloads

o Due to minimum size constraints on allocation

° Due to padding for the alignment.
o E.g.the dark blue cell in (b), (c) of prev. page

External fragmentation

° There is enough aggregate free memory to satisfy the request, but no single
block is large enough.

o E.g. malloc(5*sizeof(int)) after (e) of prev. page

Implementation Issues

Free block organization
> How to keep track of free blocks?

Placement
° How to choose a free block for a request?

Splitting
o When a part of a free block is allocated, what do we do for the remaining free blocks?

Coalescing
o What do we do with a block that is just freed?

Implicit Free Lists

Any allocator needs some data structure for
° |dentifying block boundaries
o Distinguishing between allocated and free blocks

A one-word header encodes the block size and whether the block is allocated

or free
31 Header 9 =0
malloc returns a o Bt ol 00a } a i (1) éllocated
pointer to the beginning —» a=0:Free
of the payload
Payload The block size includes

the header, payload, and
any padding

(allocated block only)

Padding (optional)

Implicit Free Lists

Unused
Start ' Double-
of 8/0 16/1 32/0 16/1 01| ! word
heap ' aligned

Implicit free list
° Free blocks are linked implicitly by the size field in the header

° Last block: terminating header with size 0 and marked as allocated.

o Simple, but searching for a preceding free block is costly

Placing Allocated Blocks

First fit
o Searches the free list from the beginning and chooses the first free block that fits

o Leaves small splinters towards the beginning of the list. Large free blocks towards
the end of the list.

Next fit
o Search the free list from the last allocation point.
° Good chances to find a fit in the remainder of the block
o Suffers from poor memory utilization.

Best fit
o Searches for a free block with the tightest fit.
° Good memory utilization
o Exhaustive search of the heap

Getting Additional Heap
Memory

When the allocator is unable to find a block that fits the request
o Merge adjacent free blocks (coalescing)

o Ask the kernel for additional heap memory by calling sbrk.

Coalescing Free Blocks

Unused
Start .

of 8/0 16/1 16/0 16/0 16/1 01
heap

False fragmentation

o Adjacent free blocks can serve the request, but individual blocks are too small for
the request.

Coalescing merges the adjacent free blocks.
° Immediate coalescing: merge free blocks as soon as they are freed.

o Deferred coalescing: defer coalescing until later time. (e.g. when some allocation
request fails)

Coalescing with Boundary Tags

Coalescing using the header only

o Coalescing the next free block is straightforward (adding the size to the current
block will point to the next block)

> Coalescing with the previous free block requires searching the entire free list

Coalescing with Boundary Tags

31 3210 Boundary tag is a footer at the end of the
Bicelidizs a/f | Header block, where the footer is the replica of the
header
Payload
(allocated block only) Finding the previous block is easy
o Get the size of the previous block from its
footer
Padding (optional)
Block size a/f | Footer

 If the allocated/free bit for the previous block is
encoded at the current block, the footer can be used
only for the free blocks

Coalescing with Boundary Tags
Example:

m1 a m1 a m1 a m1 a

mi1 a m1 a m1 a m1i a

n a n f n a n+m2 f
E— e

n n n a

m2 a m2 a m2 f

m2 a m2 a m2 f n+m2 f
Case 1 Case 2

mi1 f n+mi f m1 f n+rmi+m2 | f

m1 f m1 f

n a n a
s .

n a n+mi f n a

m2 a m2 a m2 f

m2 I a m2 | a m2 | f n+mi+m2 | f

4 cases: (1) both prev and next are alloc’d, (2) prev is alloc’d and next is free,
(3) prev is free and next is alloc’d, (4) both prev and next are free.

A Simple Allocator

VA
* mem_init - Initialize the memory system model
*/
void mem_init(void)
|
mem_heap = (char *)Malloc(MAX_HEAP);
mem_brk = (char *)mem_heap;
mem_max_addr = (char *)(mem_heap + MAX_HEAP);
}
/%
* mem_sbrk - Simple model of the sbrk function. Extends the heap
* by incr bytes and returns the start address of the new area. In
* this model, the heap cannot be shrunk.
*/
void *mem_sbrk(int incr)
{

char *old_brk = mem_brk;

if ((incr < 0) || ((mem_brk + incr) > mem_max_addr)) {
errno = ENOMEM;
fprintf (stderr, "ERROR: mem_sbrk failed. Ran out of memory...\n");
return (void *)-1;

}
mem_brk += incr;
return (void *)old_brk;

A Simple Allocator (cont)

/* Basic constants and macros */

#define WSIZE 4 /* Word and header/footer size (bytes) */
#define DSIZE 8 /* Double word size (bytes) x*/

#define CHUNKSIZE (1<<12) /* Extend heap by this amount (bytes) x*/

#define MAX(x, y) ((x) > ()7 (x) : (y))

0 N O L AW N -

/* Pack a size and allocated bit into a word */
#define PACK(size, alloc) ((size) | (alloc))

- O V0

/* Read and write a word at address p */
#define GET(p) (x(unsigned int *)(p))
#define PUT(p, val) (x(unsigned int *)(p) = (val))

s S i §
Ln bHh W N

/* Read the size and allocated fields from address p */
#define GET_SIZE(p) (GET(p) & ~0x7)
#define GET_ALLOC(p) (GET(p) & Ox1)

O 0 N O

/* Given block ptr bp, compute address of its header and footer */
#define HDRP (bp) ((char x)(bp) - WSIZE)
#define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)

N N NN
w N = O

/* Given block ptr bp, compute address of next and previous blocks */
#define NEXT_BLKP(bp) ((char *)(bp) + GET_SIZE(((char *)(bp) - WSIZE)))
#define PREV_BLKP(bp) ((char *)(bp) - GET_SIZE(((char) (bp) - DSIZE)))

N N
n h

A Simple Allocator (cont)

Prologue Regular Regular Regular Epilogue
block block 1 block 2 block n block hdr
f_)ﬁ(A N A N (g A Y_H
Start 1 Double-
of 8/1 | 8/1 | hdr ftr | hdr ftr | -+ | hdr ftr |OA | | word
heap - » aligned

static char *heap_listp

int mm_init(void)

{

/* Create the initial empty heap */
if ((heap_listp = mem_sbrk(4*WSIZE)) == (void *)-1)

return -1;
PUT (heap_listp, 0); /* Alignment padding */
PUT (heap_listp + (1*WSIZE), PACK(DSIZE, 1)); /* Prologue header */
PUT (heap_listp + (2*xWSIZE), PACK(DSIZE, 1)); /* Prologue footer */
PUT (heap_listp + (3*WSIZE), PACK(O, 1)); /* Epilogue header */
heap_listp += (24WSIZE);

/* Extend the empty heap with a free block of CHUNKSIZE bytes */
if (extend_heap(CHUNKSIZE/WSIZE) == NULL)

return -1;
return O;

A Simple Allocator (cont)

static void *extend_heap(size_t words)

{

char *bp;
size_t size;

/* Allocate an even number of words to maintain alignment */
size = (words % 2) ? (words+1) * WSIZE : words * WSIZE;
if ((long) (bp = mem_sbrk(size)) == -1)

return NULL;

/* Initialize free block header/footer and the epilogue header */
PUT (HDRP (bp), PACK(size, 0)); /* Free block header */

PUT (FTRP(bp), PACK(size, 0)); /* Free block footer */

PUT (HDRP (NEXT_BLKP(bp)), PACK(0O, 1)); /* New epilogue header */

/* Coalesce if the previous block was free x/
return coalesce(bp);

A Simple Allocator (cont)

void mm_free(void *bp)

1
size_t size = GET_SIZE(HDRP(bp));
PUT (HDRP (bp), PACK(size, 0));
PUT(FTRP (bp), PACK(size, 0));
coalesce(bp);

}

static void *coalesce(void *bp)

{
size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));

size_t next_alloc = GET_ALLOC(HDRP (NEXT_BLKP(bp)));
size_t size = GET_SIZE(HDRP(bp));

if (prev_alloc && next_alloc) { /* Case 1 */
return bp;

}

A Simple Allocator (cont)

else if (prev_alloc && 'mext_alloc) { /* Case 2 x/
size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
PUT (HDRP (bp) , PACK(size, 0));
PUT(FTRP(bp), PACK(size,0));

5
else if (!prev_alloc && next_alloc) { /* Case 3 */
size += GET_SIZE(HDRP(PREV_BLKP(bp)));
PUT (FTRP(bp) , PACK(size, 0));
PUT (HDRP (PREV_BLKP(bp)), PACK(size, 0));
bp = PREV_BLKP(bp) ;
}
else { /* Case 4 x/
size += GET_SIZE(HDRP(PREV_BLKP(bp))) +
GET_SIZE(FTRP (NEXT_BLKP (bp)));
PUT (HDRP (PREV_BLKP(bp)), PACK(size, 0));
PUT (FTRP (NEXT_BLKP(bp)), PACK(size, 0));
bp = PREV_BLKP(bp) ;
}
return bp;

A Simple Allocator

cont

void *mm_malloc(size_t size)

{

size_t asize; /* Adjusted block size */
size_t extendsize; /* Amount to extend heap if no fit =/
char *bp;

/* Ignore spurious requests */
if (size == 0)
return NULL;

/* Adjust block size to include overhead and alignment reqs. */
if (size <= DSIZE)

asize = 2xDSIZE;
else

asize = DSIZE * ((size + (DSIZE) + (DSIZE-1)) / DSIZE); }

/* Search the free list for a fit */
if ((bp = find_fit(asize)) != NULL) {
place(bp, asize);
return bp;

/* No fit found. Get more memory and place the block */

extendsize = MAX(asize,CHUNKSIZE);

if ((bp = extend_heap(extendsize/WSIZE)) == NULL)
return NULL;

place(bp, asize);

return bp;

Explicit Free List

31 3210 31 3210
Block size a/f | Header Block size a/f | Header
-
pred (Predecessor)
succ (Successor)
Payload > Old payload
Padding (optional) Padding (optional)
Block size a/f | Footer Block size a/f | Footer
(a) Allocated block (b) Free block

For the free blocks, add pred and next link to the previous and the next free
blocks.

Reducing Allocation Time

*Segregated Free Lists
* Free blocks organized into different equivalence classes based on size

* Numerous approaches differing in several aspects
* How size classes are defined
* When they coalesce
* When they request additional heap storage
* If blocks are split
¢ Others...

* Two popular approaches
* Simple Segregated Storage

* Segregated Fits

Simple Segregated Storage

*Block sizes are powers of 2: [4, 8, 16, 32,64, 128, 256, etc]
*Separate free lists for each size

*Blocks are not split. Allocations come from the next larger size based on
request:

o Request for 58 bytes gets a block from the list of 64 byte blocks (which can
handle 33-64 byte requests)

o Request for 130 bytes comes from list of 256 byte blocks

*When no blocks of right size available:
> More heap space requested

o Divided into a new list of the correct size

Simple Segregated Storage

*Pluses:
* Fast constant time allocation

* No allocation flag or header/footer needed (no coalescing)
* Only need Single linked list (allocations all from front of ech list)

*Minuses:
* Susceptible to both internal and external fragmentation

Segregated Fits

*Maintain several free lists based on size classes

*Blocks in a specific size class vary in size (instead of all the same size)

*Do a ‘first fit’ allocation. If none fit from the list, move to next larger size
equivalence class

*Blocks are coalesced when freed and added to the correct free list

Segregated Fits

*Pluses:
* Search times reduced due to searching only appropriate size classes

* Fast and efficient

* Memory efficient since it approximates best fit across entire heap

Buddy Systems

Special case of Segregated Fits

All blocks are sized as powers of 2 (22, 23, 24, 2>, 25, etc.)

Process:
o Heap starts as 1 block of size 2™

> Allocation:
> Block requests rounded up to power of 2 (2¥)
> Find Free blocks on list with block sizes as close as possible (2)
o k<=j<=m
o ifj==k, done
o Otherwise: recursively split block until j == k. Add unallocated ‘buddy’ to the correct size free list.
° Free:

> As long as matching ‘buddy’ is free, coalesce blocks

o Add final coalesced block to the correct free list

Buddy Systems

Addresses of allocated blocks and ‘buddies’ differe by 1 bit at position (k-1):
°©32=25

XXXxX...Xx00000

k=5

XXxxX...x10000

This makes coallescing easy and no header/footer words are required

Garbage Collection

void CreateGarbage() Root nodes

{

int *p = (int*) Heap nodes
malloc(l@@); O Reachable
return; Unreachab
y ’ @ Q@ O {meachabie
Garbage

> Any variable not reachable from your program

Reachability Graph
° Nodes are variables
> If a pointer variable v; is pointing to another variable v;, there is an edge v; — v;
o Avariable v; is reachable if there is a path to v; from any root variables (live
variables not in the heap)

Garbage Collection

Root
1 2 3 ml m\
N4
/—\l /_\ Ug;naerrked block
\ ./ . head

Marked block
N\ /\
% \ (Free

Before mark:

After mark: .

header

After sweep: Free

NI

Mark&Sweep Garbage Collector
o Mark phase: mark all variables reachable from any root variables

o Sweep phase: free the variables not marked during the mark phase.

Questions?

