
CSE320 System
Fundamentals II
Dynamic Memory
Allocation
YOUNGMIN KWON / TONY MIONE

Dynamic Memory Allocation
A dynamic memory allocator maintains an area of a
process’s virtual memory known as the heap

For each process, the kernel maintains a variable brk
that points to the top of the heap.

Explicit allocator
◦ malloc, free

Implicit allocator
◦ ‘new’
◦ Garbage collectors

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

malloc and free
void *malloc(size_t size) allocates at least the request size bytes

◦ calloc works like malloc but initializes the memory to 0 in addition

void free(void *ptr) frees the allocated memory

void *sbrk(intptr_t incr) increases brk by incr and returns the old brk.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

malloc and free

Dark blue area is a
padding for the
alignment

each cell: 2 byte
int: 2 byte
alignment: 4 byte

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Fragmentation
Internal fragmentation

◦ Allocated blocks are larger than payloads
◦ Due to minimum size constraints on allocation
◦ Due to padding for the alignment.

◦ E.g. the dark blue cell in (b), (c) of prev. page

External fragmentation
◦ There is enough aggregate free memory to satisfy the request, but no single

block is large enough.
◦ E.g. malloc(5*sizeof(int)) after (e) of prev. page

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Implementation Issues
Free block organization

◦ How to keep track of free blocks?

Placement
◦ How to choose a free block for a request?

Splitting
◦ When a part of a free block is allocated, what do we do for the remaining free blocks?

Coalescing
◦ What do we do with a block that is just freed?

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Implicit Free Lists

Any allocator needs some data structure for
◦ Identifying block boundaries
◦ Distinguishing between allocated and free blocks

A one-word header encodes the block size and whether the block is allocated
or free

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Implicit Free Lists

Implicit free list
◦ Free blocks are linked implicitly by the size field in the header
◦ Last block: terminating header with size 0 and marked as allocated.
◦ Simple, but searching for a preceding free block is costly

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

Placing Allocated Blocks

First fit
◦ Searches the free list from the beginning and chooses the first free block that fits
◦ Leaves small splinters towards the beginning of the list. Large free blocks towards

the end of the list.

Next fit
◦ Search the free list from the last allocation point.
◦ Good chances to find a fit in the remainder of the block
◦ Suffers from poor memory utilization.

Best fit
◦ Searches for a free block with the tightest fit.
◦ Good memory utilization
◦ Exhaustive search of the heap

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Getting Additional Heap
Memory

When the allocator is unable to find a block that fits the request
◦ Merge adjacent free blocks (coalescing)
◦ Ask the kernel for additional heap memory by calling sbrk.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Coalescing Free Blocks

False fragmentation
◦ Adjacent free blocks can serve the request, but individual blocks are too small for

the request.

Coalescing merges the adjacent free blocks.
◦ Immediate coalescing: merge free blocks as soon as they are freed.
◦ Deferred coalescing: defer coalescing until later time. (e.g. when some allocation

request fails)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Coalescing with Boundary Tags
Coalescing using the header only

◦ Coalescing the next free block is straightforward (adding the size to the current
block will point to the next block)

◦ Coalescing with the previous free block requires searching the entire free list

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Coalescing with Boundary Tags
Boundary tag is a footer at the end of the
block, where the footer is the replica of the
header

Finding the previous block is easy
◦ Get the size of the previous block from its

footer

• If the allocated/free bit for the previous block is
encoded at the current block, the footer can be used
only for the free blocks

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

4 cases: (1) both prev and next are alloc’d, (2) prev is alloc’d and next is free,
(3) prev is free and next is alloc’d, (4) both prev and next are free.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

Coalescing with Boundary Tags
Example:

A Simple Allocator

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

A Simple Allocator (cont)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

A Simple Allocator (cont)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

A Simple Allocator (cont)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

A Simple Allocator (cont)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

A Simple Allocator (cont)

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

A Simple Allocator (cont)

Explicit Free List

For the free blocks, add pred and next link to the previous and the next free
blocks.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 22

Reducing Allocation Time
•Segregated Free Lists
• Free blocks organized into different equivalence classes based on size
• Numerous approaches differing in several aspects
• How size classes are defined
• When they coalesce
• When they request additional heap storage
• If blocks are split
• Others…

• Two popular approaches
• Simple Segregated Storage
• Segregated Fits

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 23

Simple Segregated Storage
•Block sizes are powers of 2: [4, 8, 16, 32,64, 128, 256, etc]

•Separate free lists for each size

•Blocks are not split. Allocations come from the next larger size based on
request:

◦ Request for 58 bytes gets a block from the list of 64 byte blocks (which can
handle 33-64 byte requests)

◦ Request for 130 bytes comes from list of 256 byte blocks

•When no blocks of right size available:
◦ More heap space requested
◦ Divided into a new list of the correct size

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 24

Simple Segregated Storage
•Pluses:
• Fast constant time allocation
• No allocation flag or header/footer needed (no coalescing)
• Only need Single linked list (allocations all from front of ech list)

•Minuses:
• Susceptible to both internal and external fragmentation

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 25

Segregated Fits
•Maintain several free lists based on size classes

•Blocks in a specific size class vary in size (instead of all the same size)

•Do a ‘first fit’ allocation. If none fit from the list, move to next larger size
equivalence class

•Blocks are coalesced when freed and added to the correct free list

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 26

Segregated Fits
•Pluses:
• Search times reduced due to searching only appropriate size classes
• Fast and efficient
• Memory efficient since it approximates best fit across entire heap

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 27

Buddy Systems
Special case of Segregated Fits

All blocks are sized as powers of 2 (22, 23, 24, 25, 26, etc.)

Process:
◦ Heap starts as 1 block of size 2m

◦ Allocation:
◦ Block requests rounded up to power of 2 (2k)
◦ Find Free blocks on list with block sizes as close as possible (2j)

◦ k <= j <= m
◦ if j == k, done
◦ Otherwise: recursively split block until j == k. Add unallocated ‘buddy’ to the correct size free list.

◦ Free:
◦ As long as matching ‘buddy’ is free, coalesce blocks
◦ Add final coalesced block to the correct free list

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 28

Buddy Systems
Addresses of allocated blocks and ‘buddies’ differe by 1 bit at position (k-1):

◦ 32 = 25

This makes coallescing easy and no header/footer words are required

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 29

xxxxx…x00000

xxxxx…x10000

k = 5

Garbage Collection

Garbage
◦ Any variable not reachable from your program

Reachability Graph
◦ Nodes are variables
◦ If a pointer variable vi is pointing to another variable vj, there is an edge vi® vj
◦ A variable vi is reachable if there is a path to vi from any root variables (live

variables not in the heap)

void CreateGarbage()
{

int *p = (int*)
malloc(100);

return;
}

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 30

Garbage Collection

Mark&Sweep Garbage Collector
◦ Mark phase: mark all variables reachable from any root variables
◦ Sweep phase: free the variables not marked during the mark phase.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 31

Questions?

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 32

