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Dynamic Memory Allocation
A dynamic memory allocator maintains an area of a 
process’s virtual memory known as the heap

For each process, the kernel maintains a variable brk
that points to the top of the heap.

Explicit allocator
◦ malloc, free

Implicit allocator
◦ ‘new’
◦ Garbage collectors
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malloc and free
void *malloc(size_t size) allocates at least the request size bytes

◦ calloc works like malloc but initializes the memory to 0 in addition

void free(void *ptr) frees the allocated memory

void *sbrk(intptr_t incr) increases brk by incr and returns the old brk.
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malloc and free

Dark blue area is a 
padding for the 
alignment

each cell: 2 byte
int: 2 byte
alignment: 4 byte
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Fragmentation
Internal fragmentation

◦ Allocated blocks are larger than payloads
◦ Due to minimum size constraints on allocation
◦ Due to padding for the alignment.

◦ E.g. the dark blue cell in (b), (c) of prev. page

External fragmentation
◦ There is enough aggregate free memory to satisfy the request, but no single 

block is large enough.
◦ E.g. malloc(5*sizeof(int)) after (e) of prev. page
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Implementation Issues
Free block organization

◦ How to keep track of free blocks?

Placement
◦ How to choose a free block for a request?

Splitting
◦ When a part of a free block is allocated, what do we do for the remaining free blocks?

Coalescing
◦ What do we do with a block that is just freed?
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Implicit Free Lists

Any allocator needs some data structure for
◦ Identifying block boundaries
◦ Distinguishing between allocated and free blocks

A one-word header encodes the block size and whether the block is allocated 
or free

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7



Implicit Free Lists

Implicit free list
◦ Free blocks are linked implicitly by the size field in the header
◦ Last block: terminating header with size 0 and marked as allocated.
◦ Simple, but searching for a preceding free block is costly
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Placing Allocated Blocks

First fit
◦ Searches the free list from the beginning and chooses the first free block that fits
◦ Leaves small splinters towards the beginning of the list. Large free blocks towards 

the end of the list.

Next fit
◦ Search the free list from the last allocation point.
◦ Good chances to find a fit in the remainder of the block
◦ Suffers from poor memory utilization.

Best fit
◦ Searches for a free block with the tightest fit.
◦ Good memory utilization
◦ Exhaustive search of the heap

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9



Getting Additional Heap 
Memory

When the allocator is unable to find a block that fits the request
◦ Merge adjacent free blocks (coalescing)
◦ Ask the kernel for additional heap memory by calling sbrk.

(C) CSE320 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10



Coalescing Free Blocks

False fragmentation
◦ Adjacent free blocks can serve the request, but individual blocks are too small for 

the request.

Coalescing merges the adjacent free blocks.
◦ Immediate coalescing: merge free blocks as soon as they are freed.
◦ Deferred coalescing: defer coalescing  until later time. (e.g. when some allocation 

request fails)
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Coalescing with Boundary Tags
Coalescing using the header only

◦ Coalescing the next free block is straightforward (adding the size to the current 
block will point to the next block)

◦ Coalescing with the previous free block requires searching the entire free list
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Coalescing with Boundary Tags
Boundary tag is a footer at the end of the 
block, where the footer is the replica of the 
header

Finding the previous block is easy
◦ Get the size of the previous block from its 

footer

• If the allocated/free bit for the previous block is 
encoded at the current block, the footer can be used 
only for the free blocks
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4 cases:  (1) both prev and next are alloc’d, (2) prev is alloc’d and next is free, 
(3) prev is free and next is alloc’d, (4) both prev and next are free.
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Coalescing with Boundary Tags
Example:



A Simple Allocator
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A Simple Allocator (cont)
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A Simple Allocator (cont)
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A Simple Allocator (cont)
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A Simple Allocator (cont)
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A Simple Allocator (cont)
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A Simple Allocator (cont)



Explicit Free List

For the free blocks, add pred and next link to the previous and the next free 
blocks.
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Reducing Allocation Time
•Segregated Free Lists
• Free blocks organized into different equivalence classes based on size
• Numerous approaches differing in several aspects
• How size classes are defined
• When they coalesce
• When they request additional heap storage
• If blocks are split
• Others…

• Two popular approaches
• Simple Segregated Storage
• Segregated Fits
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Simple Segregated Storage
•Block sizes are powers of 2: [4, 8, 16, 32,64, 128, 256, etc]

•Separate free lists for each size

•Blocks are not split. Allocations come from the next larger size based on 
request:

◦ Request for 58 bytes gets a block from the list of 64 byte blocks (which can 
handle 33-64 byte requests)

◦ Request for 130 bytes comes from list of 256 byte blocks

•When no blocks of right size available:
◦ More heap space requested
◦ Divided into a new list of the correct size
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Simple Segregated Storage
•Pluses:
• Fast constant time allocation
• No allocation flag or header/footer needed (no coalescing)
• Only need Single linked list (allocations all from front of ech list)

•Minuses:
• Susceptible to both internal and external fragmentation
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Segregated Fits
•Maintain several free lists based on size classes

•Blocks in a specific size class vary in size (instead of all the same size)

•Do a ‘first fit’ allocation. If none fit from the list, move to next larger size 
equivalence class

•Blocks are coalesced when freed and added to the correct free list
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Segregated Fits
•Pluses:
• Search times reduced due to searching only appropriate size classes
• Fast and efficient
• Memory efficient since it approximates best fit across entire heap
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Buddy Systems
Special case of Segregated Fits

All blocks are sized as powers of 2 (22, 23, 24, 25, 26, etc.)

Process:
◦ Heap starts as 1 block of size 2m

◦ Allocation: 
◦ Block requests rounded up to power of 2 (2k)
◦ Find Free blocks on list with block sizes as close as possible (2j)

◦ k <= j <= m
◦ if j == k, done
◦ Otherwise: recursively split block until j == k. Add unallocated ‘buddy’ to the correct size free list.

◦ Free: 
◦ As long as matching ‘buddy’ is free, coalesce blocks
◦ Add final coalesced block to the correct free list
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Buddy Systems
Addresses of allocated blocks and ‘buddies’ differe by 1 bit at position (k-1):

◦ 32 = 25

This makes coallescing easy and no header/footer words are required
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xxxxx…x00000

xxxxx…x10000

k = 5



Garbage Collection

Garbage
◦ Any variable not reachable from your program

Reachability Graph
◦ Nodes are variables
◦ If a pointer variable vi is pointing to another variable vj, there is an edge vi® vj
◦ A variable vi is reachable if there is a path to vi from any root variables (live 

variables not in the heap)

void CreateGarbage()
{

int *p = (int*)
malloc(100);

return;
}
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Garbage Collection

Mark&Sweep Garbage Collector
◦ Mark phase: mark all variables reachable from any root variables
◦ Sweep phase: free the variables not marked during the mark phase.
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Questions?
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