C3307:

Principles of Programming
Languages

LECTURE 1: INTRODUCTION TO PROGRAMMING
LANGUAGES

LECTURE OUTLINE

INTRODUCTION

EVOLUTION OF LANGUAGES

WHY STUDY PROGRAMMING LANGUAGES?
PROGRAMMING LANGUAGE CLASSIFICATION

LANGUAGE TRANSLATION
* COMPILATION VS INTERPRETATION
* OVERVIEW OF COMPILATION

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

INTRODUCTION

* WHAT MAKES A LANGUAGE SUCCESSFUL?

EASY TO LEARN (PYTHON, BASIC, PASCAL, LOGO)

EASE OF EXPRESSION /POWERFUL (C, JAVA, COMMON LISP, APL,
ALGOL-68, PERL)

EASY TO IMPLEMENT (JAVASCRIPT, BASIC, FORTH)
EFFICIENT [COMPILES TO EFFICIENT CODE] (FORTRAN, C)

BACKING OF POWERFUL SPONSOR (JAVA, VISUAL BASIC, COBOL,
PL/1, ADA)

WIDESPREAD DISSEMINATION AT MINIMAL COST (JAVA, PASCAL,
TURING, ERLANG)

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

INTRODUCTION

* WHY DO WE HAVE PROGRAMMING LANGUAGES? WHAT IS A
LANGUAGE FOR?
* WAY OF THINKING — WAY TO EXPRESS ALGORITHMS
* LANGUAGES FROM THE USER’S POINT OF VIEW

* ABSTRACTION OF VIRTUAL MACHINE — WAY TO SPECIFY WHAT YOU
WANT HARDWARE TO DO WITHOUT GETTING INTO THE BITS

* LANGUAGES FROM THE IMPLEMENTOR’S POINT OF VIEW

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

EVOLUTION OF LANGUAGES

* EARLY COMPUTERS PROGRAMMED DIRECTLY WITH MACHINE CODE
* PROGRAMMER HAND WROTE BINARY CODES
* PROGRAM ENTRY DONE WITH TOGGLE SWITCHES
* SLOW. VERY ERROR-PRONE

* WATCH HOW TO PROGRAM A PDP-8!

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

https://www.youtube.com/watch?v=DPioENtAHuY

EVOLUTION OF LANGUAGES

* ASSEMBLY LANGUAGE ADDED MNEMONICS

ONE-TO-ONE CORRESPONDENCE WITH MACHINE INSTRUCTIONS
DATA REPRESENTED WITH SYMBOLS (NAMES)

‘ASSEMBLER’ PROGRAM TRANSLATED SYMBOLIC CODE TO MACHINE
CODE

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

EVOLUTION OF LANGUAGES

* EXAMPLE INTEL X86 ASSEMBLER:

pushl %ebp
movl %esp, Y%oebp
pushl %ebx
subl $4, Y%esp
andl $-16, Y%esp
call getint
movl %eax, %ebx
call getint
cmpl %eax, %ebx
je C

A: cmpl %eax, Y%ebx

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

EVOLUTION OF LANGUAGES

* ‘MACROS’ ADDED TO ASSEMBLERS
* PARAMETERIZED TEXT EXPANSION

* PROGRAMMERS PUT COMMON INSTRUCTION SEQUENCES INTO MACRO
DEFINITIONS

* EASIER. STILL ERROR-PRONE

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

EVOLUTION OF LANGUAGES

 HIGH-LEVEL LANGUAGES
* SYNTAX FOR SELECTION (IF/THEN) AND ITERATION (LOOPS)
* ONE-TO-ONE CORRESPONDENCE IS GONE

* EARLIEST ‘HIGH-LEVEL' LANGUAGES - 1958/60
* FORTRAN |
* ALGOL-58, ALGOL-60

* TRANSLATORS ARE NOW ‘COMPILERS’
* MORE COMPLEX THAN ASSEMBLERS

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

WHY STUDY PROGRAMMING
LANGUAGES?

* HELPS CHOOSE A LANGUAGE:
* CVS. C++ FOR SYSTEMS PROGRAMMING
* MATLAB VS. PYTHON VS. R FOR NUMERICAL COMPUTATIONS
* JAVA VS. JAVASCRIPT FOR WEB APPLICATIONS

* PYTHON VS. RUBY VS. COMMON LISP VS. SCHEME VS. ML FOR
SYMBOLIC DATA MANIPULATION

* JAVA RPC (JAX-RPC) VS. C/CORBA FOR NETWORKED PC PROGRAMS

CS307 : Principles of Programming Languages — Dr Paul Fodor[Copyright 2017]

WHY STUDY PROGRAMMING
LANGUAGES?

* MAKE IT EASIER TO LEARN NEW LANGUAGES

* SOME LANGUAGES SIMILAR — RELATED ON A ‘FAMILY TREE’ OF
LANGUAGES

* CONCEPTS HAVE MORE SIMILARITY
* THINKING IN TERMS OF SELECTION, ITERATION, RECURSION

* UNDERSTANDING ABSTRACTION HELPS EASE ASSIMILATION OF SYNTAX AND
SEMANTICS

* ANALOGY TO HUMAN LANGUAGES: GOOD GRASP OF GRAMMAR
[SOMETIMES] MAKES IT EASIER TO PICK UP NEW LANGUAGES

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

WHY STUDY PROGRAMMING
LANGUAGES?

* HELPS MAKE BETTER USE OF A PARTICULAR LANGUAGE [EXAMPLES]

* IN C: HELP UNDERSTAND UNIONS, ARRAYS AND POINTERS, SEPARATE
COMPILATION

* IN COMMON LISP: HELP UNDERSTAND FIRST-CLASS
FUNCTIONS /CLOSURES, STREAMS, ETC

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

WHY STUDY PROGRAMMING
LANGUAGES?

* HELPS MAKE BETTER USE OF WHATEVER LANGUAGE IS BEING USED:

* UNDERSTAND TRADE-OFFS/IMPLEMENTATION COSTS BASED ON
UNDERSTANDING OF LANGUAGE INTERNALS

* EXAMPLES:

USE X*X RATHER THAN X**2

USE C POINTERS OR PASCAL ‘WITH’ STATEMENT TO FACTOR ADDRESS
CALCULATIONS

AVOID CALL-BY-VALUE WITH LARGE ARGUMENTS IN PASCAL
AVOID THE USE OF CALL-BY-NAME IN ALGOL-60
CHOOSE BETWEEN COMPUTATION AND TABLE LOOKUP

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

WHY STUDY PROGRAMMING
LANGUAGES?

* LEARN HOW TO DO THINGS NOT SUPPORTED BY LANGUAGE
* LACK OF SUITABLE CONTROL STRUCTURES IN FORTRAN
* USE COMMENTS AND PROGRAMMER DISCIPLINE FOR CONTROL STRUCTURES

* LACK OF RECURSION IN FORTRAN
* WRITE A RECURSIVE ALGORITHM USING MECHANICAL RECURSION ELIMINATION

* LACK OF NAMED CONSTANTS AND ENUMERATIONS IN FORTRAN
* USE VARIABLES THAT ARE INITIALIZED ONCE AND NEVER CHANGED

* LACK OF MODULES IN C AND PASCAL
* USE COMMENTS AND PROGRAMMER DISCIPLINE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

PROGRAMMING LANGUAGE
CLASSIFICATION

* IMPERATIVE — FOCUS: HOW THE COMPUTER SHOULD DO A TASK

* DECLARATIVE - FOCUS: WHAT THE COMPUTER SHOULD DO

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

IMPERATIVE PROGRAMMING
LANGUAGES

VON NEUMANN - BASED ON MODIFICATION OF VARIABLES /STATE VIA SIDE-EFFECTS

@
FORTRAN
ADA
PASCAL
ETC.

OBJECT-ORIENTED — BASED ON SEPARATION OF DATA AND CODE INTO SEMI-INDEPENDENT
‘OBJECTS’

SMALLTALK
C++

JAVA

ETC.

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

DECLARATIVE PROGRAMMING
LANGUAGES

* FUNCTIONAL — BASED ON (POSSIBLY RECURSIVE) FUNCTIONS

SLISP
* ML
* HASKELL

* DATAFLOW — BASED ON A ‘FLOW’ OF TOKENS TO PROCESSING ‘NODES’

* ID
* VAL

* LOGIC/CONSTRAINT-BASED — BASED ON FINDING VALUES THAT FIT A CRITERIA

(GOAL-DIRECTED SEARCH) PRINCIPLES INCLUDE PREDICATE LOGIC.
* PROLOG

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

OTHER CLASSIFICATIONS

* MARKUP

* SORT OF A LANGUAGE TYPE HOWEVER THESE LACK ‘EXECUTION
SEMANTICS’

* ASSEMBLERS

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

EXERCISE

10-15 MINS, IN TEAMS OF 2-3 STUDENTS

RESEARCH (ONLINE) TWO LANGUAGES FROM DIFFERENT
CLASSIFICATIONS

NOTE THE DIFFERENCES

JOT SOME IDEAS DOWN ABOUT HOW THE CLASS OF LANGUAGE
HELPS ITS EFFECTIVENESS FOR SPECIFIC PROBLEM DOMAINS

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

LANGUAGE TRANSLATION

* CPU UNDERSTANDS SIMPLE OPERATIONS

* NUMERIC ‘OP CODES’
* REGISTER/MEMORY ADDRESS ‘ARGUMENTS’

* MUST CONVERT HIGH LEVEL LANGUAGES TO SIMPLE ACTIONS

e COMPILATION
* TRANSLATE ALL THE CODE TO MACHINE CODE
* COMPILER NOT PRESENT DURING

Source program

PROGRAM RUN |
« INTERPRETATION (__ compier
* READ HIGH LEVEL LANGUAGE PROGRAM | e
nput —l o ugu pmgmm) ‘//‘—> Output

* PERFORM EQUIVALENT ACTIONS

* INTERPRETER IS PRESENT DURING PROGRAM RUN AND THE ‘LOCUS’ OF
CONTROL DOUTrCe Prograrm —_ —

lnput —

|||Iq-1'[m-t.l1 .4»()””.“1

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]

LANGUAGE TRANSLATION

* HYBRID COMPILER/INTERPRETER

* CONVERT HLL CODE TO A ‘SIMPLE’ EQUIVALENT FOR A NON-EXISTENT
‘VIRTUAL CPU

* USE A ‘VIRTUAL MACHINE INTERPRETER’ TO EXECUTE
* EXAMPLE: JAVA BYTE CODES

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]

LANGUAGE TRANSLATION

* LANGUAGE CHARACTERISTICS — COMPILED VS INTERPRETED LANGUAGES
* COMPILED
* MORE STATIC TYPING AND SCOPING
* MORE EFFICIENT CODE
* LESS FLEXIBLE
* INTERPRETED
* MORE DYNAMIC TYPING AND SCOPING
* LATER ‘BINDING’
* MORE FLEXIBLE
* LESS EFFICIENT

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

COMPILATION V3. INTERPRETATION

* COMMON CASE
* COMPILATION
* SIMPLE PREPROCESSING FOLLOWED BY INTERPRETATION

* MANY MODERN LANGUAGE IMPLEMENTATIONS MIX COMPILATION
AND INTERPRETATION

Source program

l

Translator

’/’-_

Y
Intermediate program__ .

L A N
: Virtual machine | —> Output
P\ A

[nput—"

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]

COMPILATION VS. INTERPRETATION

* COMPILATION DOES NOT HAVE TO PRODUCE MACHINE LANGUAGE
FOR SOME CPU

* COMPILATION CAN TRANSLATE ONE LANGUAGE TO ANTHER

e CARRIES FULL SEMANTIC ANALYSIS (MEANING) OF INPUT
* COMPILATION IMPLIES FULL SEMANTIC UNDERSTANDING
« PREPROCESSING DOES NOT

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]

COMPILATION VS. INTERPRETATION

« COMPILED LANGUAGES MAY HAVE INTERPRETED PIECES [E.G.
FORMATS IN FORTRAN AND C]

e MOST COMPILED LANGUAGES USE ‘VIRTUAL INSTRUCTIONS’
* SET OPERATIONS IN PASCAL
* STRING MANIPULATION IN BASIC

« SOME LANGUAGES PRODUCE ONLY VIRTUAL INSTRUCTIONS
* JAVA - JAVA BYTE CODE
« PASCAL — P-CODE
« MICROSOFT COM+ (.NET)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

COMPILATION VS. INTERPRETATION

* IMPLEMENTATION STRATEGIES

* PREPROCESSOR
* REMOVES COMMENTS AND WHITESPACE

« GROUPS CHARACTERS INTO TOKENS (KEYWORDS, IDENTIFIERS, NUMBERS,
SYMBOLS)

* EXPANDS ABBREVIATIONS (I.E. MACROS)
* |IDENTIFIES HIGH LEVEL LANGUAGE STRUCTURES (LOOPS, SUBROUTINES)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

COMPILATION V3. INTERPRETATION

* IMPLEMENTATION STRATEGIES

* THE C PREPROCESSOR
* REMOVES COMMENTS
* EXPANDS MACROS

Assembly language

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]

COMPILATION V3. INTERPRETATION

* IMPLEMENTATION STRATEGIES

* LIBRARY OF ROUTINES AND LINKING

* COMPILER USES LINKER PROGRAM TO MERGE APPROPRIATE LIBRARY OF
SUBROUTINES INTO FINAL PROGRAM:

Fortran program

l

Compiler

Incomplete machine language Library routines

b

L~ :
(Linker \,l
N

Y
Machine language program

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]

COMPILATION V3. INTERPRETATION

* IMPLEMENTATION STRATEGIES

* POST-COMPILATION ASSEMBLY
* FACILITATES DEBUGGING (ASSEMBLY EASIER TO READ)

* ISOLATES COMPILER FROM CHANGES IN THE FORMAT OF MACHINE
LANGUAGE FILES

Source program

l

< Compiler >

Assembly language

l

(Assembler >

Machine language

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]

COMPILATION V3. INTERPRETATION

Source program

l

* IMPLEMENTATION STRATEGIES (m— >
* SOURCE TO SOURCE TRANSLATION
« C++ IMPLEMENTATIONS BASED ON Mot Rl progra
THE EARLY AT&T COMPILER GENERATED (on inwuu D
INTERMEDIATE CODE IN C INSTEAD OF I
ASSEMBLER LANGUAGE. C code

(C compiler)

Assembly language

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]

COMPILATION V3. INTERPRETATION

* IMPLEMENTATION STRATEGIES

* BOOTSTRAPPING: MANY COMPILERS WRITTEN IN THE LANGUAGE THEY
COMPILE

* Q: HOW DO WE COMPILE THE COMPILER?

* A: START WITH SIMPLE IMPLEMENTATION (INTERPRETER?), THEN
PROGRESSIVELY BUILD MORE SOPHISTICATED VERSIONS

Pascal to machine
language compiler, ——s

in Pascal \\

L

S
\

|//
%

Pascal to machine
[— >]) T
/~ language compiler, |
: in P-code

Pascal to P-code
compiler, in P-code

Pascal to machine
language compiler,
in machine language

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]

COMPILATION VS. INTERPRETATION

* IMPLEMENTATION STRATEGIES

e COMPILATION OF INTERPRETED LANGUAGES
* COMPILER GENERATES CODE THAT MAKES ASSUMPTIONS
* DECISIONS WON'T BE FINALIZED TILL RUNTIME
* |F ASSUMPTIONS VALID, CODE RUNS VERY FAST
* |F NOT, DYNAMIC CHECK REVERTS TO INTERPRETER

* PERMITS SIGNIFICANT LATE BINDING

* USED WITH LANGUAGES THAT ARE TYPICALLY INTERPRETED
* PROLOG, LISP, SMALLTALK, JAVA, C#

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

COMPILATION VS. INTERPRETATION

* IMPLEMENTATION STRATEGIES
* DYNAMIC AND JUST-IN-TIME (JIT) COMPILATION

IN SOME CASES, A PROGRAMMING SYSTEM MAY DELIBERATELY DELAY COMPILATIONS
UNTIL THE LAST POSSIBLE MOMENT.

LISP OR PROLOG INVOKE THE COMPILER ON THE FLY TO TRANSLATE NEWLY CREATED
SOURCE INTO MACHINE LANGUAGE OR TO OPTIMIZE CODE FOR A PARTICULAR INPUT
SET.

JAVA LANGUAGE DEFINES A MACHINE INDEPENDENT INTERMEDIATE FORM KNOWN AS
BYTECODE (STANDARD FORMAT FOR DISTRIBUTING JAVA PROGRAMS)

* ALLOWS EASY TRANSPORT OF PROGRAMS OVER THE INTERNET

C# IS COMPILED INTO .NET COMMON INTERMEDIATE LANGUAGE (CIL) WHICH IS
TRANSLATED INTO MACHINE CODE IMMEDIATELY PRIOR TO EXECUTION.

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

COMPILATION VS. INTERPRETATION

* IMPLEMENTATION STRATEGIES
* MICROCODE:

* ASSEMBLY LEVEL INSTRUCTIONS NOT IMPLEMENTED IN HARDWARE. RUNS
ON AN INTERPRETER

* [INTERPRETER IS WRITTEN IN LOW-LEVEL INSTRUCTIONS WHICH ARE STORED
IN ROM AND EXECUTED BY HARDWARE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

COMPILATION VS. INTERPRETATION

* IMPLEMENTATION STRATEGIES

« COMPILERS ARE WRITTEN FOR SOME INTERPRETED LANGUAGES (BUT THEY
ARE NOT PURE)

e SELECTIVE COMPILATION OF COMPILABLE PIECES AND EXTRA-SOPHISTICATED
PREPROCESSING OF REMAINING SOURCE

* INTERPRETATION STILL NECESSARY

* UNCONVENTIONAL COMPILERS
* TEXT FORMATTERS => TEX

* SILICON COMPILERS: LASER PRINTERS THEMSELVES INCORPORATE
INTERPRETERS FOR THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

* QUERY LANGUAGE PROCESSORS FOR DATABASES ARE ALSO COMPILERS.

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

S’

AN OVERVIEW OF COMPILATION

Character stream

\ Scanner (lexical analysis))
Token stream \
. Front
Parser (syntax analysis)
- end
Parse tree
\ Semantic analysis and
. . . L
intermediate code generation —=
Abstract syntax tree or e N =]
other intermediate form . =)
Machine-independent) P
(i code improvement (optional =
Modified / i (o) =
intermediate form 5
5 . . Back
arget code generation 5
5 5 end
Target language «—
(e.g., assembler) . =
ov \ Machine-specific
Modified code improvement (optional)
target language
CS307 : Principles of Programming Languages - DriPaul Fo%r and Elsevier [Copyright 2017] St

"). - \

AN OVERVIEW OF COMPILATION

* SCANNING:
* DIVIDES TEXT INTO ‘TOKENS’
* TOKENS ARE THE SMALLEST MEANINGFUL UNIT OF INFO
* SAVES TIME FOR PARSER
* PARSER CAN BE DESIGNED TO TAKE CHARACTER STREAM BUT THIS IS ‘MESSY’

* SCANNING USES A FORM OF REGULAR LANGUAGE EXPRESSIONS
KNOWN AS DFAS (DETERMINISTIC FINITE AUTOMATA)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION

* PARSING:
* RECOGNITION OF A ‘CONTEXT-FREE’ LANGUAGE
* PDA — PUSH DOWN AUTOMATA
* PARSING DISCOVERS THE ‘CONTEXT-FREE’ STRUCTURE OF A PROGRAM

* CREATES A STRUCTURE THAT CAN BE DESCRIBED WITH SYNTAX
DIAGRAMS

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION

* SEMANTIC ANALYSIS:
* DISCOVERY OF THE ‘MEANING’ OF A PROGRAM
* COMPILER PERFORMS ‘STATIC’ SEMANTIC ANALYSIS
* THE ‘MEANING’ THAT CAN BE DERIVED AT COMPILE TIME

* OTHER SEMANTICS MUST WAIT TILL RUNTIME
* ‘DYNAMIC’ SEMANTICS
* CAN’'T BE FIGURED OUT AT COMPILE TIME
* EXAMPLE: ARRAY SUBSCRIPT OUT OF BOUNDS ERRORS

CS307 : Principles of Programming Languages Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION

* INTERMEDIATE CODE GENERATION
* GENERATED AFTER SEMANTIC CHECKS PASS
* INTERMEDIATE FORM — CREATED FOR:
* ‘MACHINE INDEPENDENCFE’
* EASE OF OPTIMIZATION
* COMPACTNESS

* TYPICALLY, IF (INTERMEDIATE FORM) RESEMBLES MACHINE CODE FOR AN IDEALIZED
MACHINE

* STACK MACHINE
* MACHINE WITH ARBITRARILY LARGE NUMBER OF REGISTERS

* COMPILERS MAY PROGRESS CODE THROUGH SEVERAL DIFFERENT INTERMEDIATE
FORMS

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION

* OPTIMIZATION

* TAKES INTERMEDIATE CODE AND TRANSFORMS IT
* TO A NEW SEQUENCE THAT IS FASTER AND/OR SMALLER
* ALSO, NEW SEQUENCE WILL PRODUCE THE SAME RESULT

* CANNOT CREATE ‘OPTIMAL CODE. JUST IMPROVES CODE
* THIS PHASE IS OPTIONAL

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION

* CODE GENERATION

* TAKES INTERMEDIATE CODE AND PRODUCES:
* TARGET MACHINE ASSEMBLY LANGUAGE

« OR TARGET MACHINE RELOCATABLE OBJECT CODE (BINARY) [INPUT TO A
LINKER]

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION

* MACHINE SPECIFIC OPTIMIZATION

* PERFORMED DURING OR AFTER CODE GENERATION:
* TARGET MACHINE ASSEMBLY LANGUAGE

* SYMBOL TABLE MANAGER

* PRESENT FOR ALL PHASES OF COMPILATION

* TRACKS ALL IDENTIFIERS IN PROGRAM. KEEPS INFORMATION LIKE:
* NAME
* DATA TYPE
* CURRENT LOCATION (REGISTER/MEMORY) — DURING CODE GENERATION
& SCOPE
SRRETC.

* SYMBOL INFORMATION MAY BE PRESERVED FOR USE BY DEBUGGER

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* LEXICAL ANALYSIS AND PARSING
* GCD PROGRAM

int main() {
int i = getint(), | = getint();
while (i 1= j) {
if(i>){i=i—j;
elsej=j—1i;
}
putint(i);

}

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* LEXICAL ANALYSIS AND PARSING

* GCD PROGRAM TOKENS
* SCANNING GROUPS CHARACTERS INTO SMALLEST MEANINGFUL UNITS

int main () {

int i = getint () , | = getint () ;
while i I= i)

if (i > i) i =i - [
else | = i = i

}

putint (i) ;

}

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* CONTEXT FREE GRAMMAR AND PARSING
* PARSING ORGANIZES TOKENS INTO A PARSE TREE

* PARSE TREE REPRESENTS HIGHER LEVEL CONSTRUCTS IN TERMS OF
CONSTITUENT COMPONENTS

* PARSER ANALYZES A CONTEXT FREE GRAMMAR
* POTENTIALLY RECURSIVE RULES
* RULES DEFINE THE WAYS IN WHICH THE CONSTITUENTS (TOKENS) COMBINE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* CONTEXT-FREE GRAMMAR AND PARSING
e EXAMPLE OF WHILE LOOP (C)

iteration-statement — while (expression) statement
statement, in turn, is often a list enclosed in braces:
statement — compound-statement
compound-statement — { block-item-list opt }
where
block-item-list opt — block-item-list
or
block-item-list opt — €
and
block-item-list — block-item
block-item-list — block-item-list block-item
block-item — declaration
block-item — statement

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* CONTEXT-FREE GRAMMAR AND PARSING
* GCD PROGRAM PARSE TREE

translation-unit
11

function-definition

declarator declaration-list_opt compound-statement
pointer_opt direct-declarator € { Dblock-item-list_opt %}

AR |

: direct-declarator (identifier-list_opt) block-item-list

| |

declaration-specifiers ident (main) € block-item-list block-item
type-specifier declaration-specifiers_opt block-item-list block-item B
int € declaration A

el

next slidei
CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* CONTEXT-FREE GRAMMAR AND PARSING (CONT)

declaration
declaration-specifiers init-declarator-list_opt

type-specifier declaration-specifiers_opt init-declarator-list

|

int € init-declarator-list , init-declarator
/
init-declarator declarator = initializer
declarator = initializer pointer_opt direct-declarator assigrment-expression
| | | 13
pointer_opt direct-declarator assignment-expression € ident (j) postfix-expression
| 13
€ ident (i) postfix-expression postfix-expression)
11
postfix-expression) ident (getint) argument-expression-list_opt
i
i1
|
ident (getint) argument-expression-list_opt €

€

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* CONTEXT-FREE GRAMMAR AND PARSING (CONT)

A B
-

staternent statemenit

remron

aemeni expression-srarement

while (expresscon

elational-expresst { block-item-list_opt ()
i i3
1 i d
' ' \
ident(j) s ident (putint) arguencit-expr t_opt
B — g : |
if [expression) statement alue stalernent ident (i)

8 | |

> shiflt-expression
'

17 3] Hl 1

' ') ' . i
ident(i) idant (j) USSIgIImIEnE-eX P reson CAPNTSSIon

wnary-expression 1CHT-OPCrator ASSIgNMNCHT-EXPress

' '

12

12 : 10
ident (1) o .

- mealtiplicative-exp!
1
1dent (2 ident{]) identl]) ident(1)

additive-expressicn = mudtiplicative-expre.
'

> HE |
!

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

AN OVERVIEW OF COMPILATION:
EXAMPLE

* SYNTAX TREE — ‘ESSENTIAL CONTENT FROM PARSING ACTIVITY’
e GCD PROGRAM SYNTAX TREE

program

call
-f/\\
SN
7N
@ B
. " VA
Index Symbol Type ’ // \‘ /N ,e’/ n\\
] / ! N / i
L void type B ® B’ - & -
2 int type A f\
3 getint func: (1) — (2) // \\ /N
4 putint func: (2) — (1) ®)) |'E;,:'| f\5|
5 i (2) o o
) i (2]

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

o QUESTIONS

