
LECTURE 1: INTRODUCTION TO PROGRAMMING 

LANGUAGES

CS307:

Principles of Programming 

Languages



LECTURE OUTLINE

• INTRODUCTION

• EVOLUTION OF LANGUAGES

• WHY STUDY PROGRAMMING LANGUAGES?

• PROGRAMMING LANGUAGE CLASSIFICATION

• LANGUAGE TRANSLATION

• COMPILATION VS INTERPRETATION

• OVERVIEW OF COMPILATION

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



INTRODUCTION

• WHAT MAKES A LANGUAGE SUCCESSFUL?

• EASY TO LEARN (PYTHON, BASIC, PASCAL, LOGO)

• EASE OF EXPRESSION/POWERFUL (C, JAVA, COMMON LISP, APL, 

ALGOL-68, PERL)

• EASY TO IMPLEMENT (JAVASCRIPT, BASIC, FORTH)

• EFFICIENT [COMPILES TO EFFICIENT CODE] (FORTRAN, C)

• BACKING OF POWERFUL SPONSOR (JAVA, VISUAL BASIC, COBOL, 

PL/1, ADA)

• WIDESPREAD DISSEMINATION AT MINIMAL COST (JAVA, PASCAL, 

TURING, ERLANG)

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



INTRODUCTION

• WHY DO WE HAVE PROGRAMMING LANGUAGES? WHAT IS A 

LANGUAGE FOR?

• WAY OF THINKING – WAY TO EXPRESS ALGORITHMS

• LANGUAGES FROM THE USER’S POINT OF VIEW

• ABSTRACTION OF VIRTUAL MACHINE – WAY TO SPECIFY WHAT YOU 

WANT HARDWARE TO DO WITHOUT GETTING INTO THE BITS

• LANGUAGES FROM THE IMPLEMENTOR’S POINT OF VIEW

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



EVOLUTION OF LANGUAGES

• EARLY COMPUTERS PROGRAMMED DIRECTLY WITH MACHINE CODE

• PROGRAMMER HAND WROTE BINARY CODES

• PROGRAM ENTRY DONE WITH TOGGLE SWITCHES

• SLOW.  VERY ERROR-PRONE

• WATCH HOW TO PROGRAM A PDP-8!

• HTTPS://WWW.YOUTUBE.COM/WATCH?V=DPIOENTAHUY

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

https://www.youtube.com/watch?v=DPioENtAHuY


EVOLUTION OF LANGUAGES

• ASSEMBLY LANGUAGE ADDED MNEMONICS

• ONE-TO-ONE CORRESPONDENCE WITH MACHINE INSTRUCTIONS

• DATA REPRESENTED WITH SYMBOLS (NAMES)

• ‘ASSEMBLER’ PROGRAM TRANSLATED SYMBOLIC CODE TO MACHINE 

CODE

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



EVOLUTION OF LANGUAGES

• EXAMPLE INTEL X86 ASSEMBLER:

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]

pushl %ebp

movl %esp, %ebp

pushl %ebx

subl $4, %esp

andl $-16, %esp

call      getint

movl %eax, %ebx

call      getint

cmpl %eax, %ebx

je         C

A:  cmpl %eax, %ebx

…



EVOLUTION OF LANGUAGES

• ‘MACROS’ ADDED TO ASSEMBLERS

• PARAMETERIZED TEXT EXPANSION

• PROGRAMMERS PUT COMMON INSTRUCTION SEQUENCES INTO MACRO 

DEFINITIONS

• EASIER. STILL ERROR-PRONE

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



EVOLUTION OF LANGUAGES

• HIGH-LEVEL LANGUAGES

• SYNTAX FOR SELECTION (IF/THEN) AND ITERATION (LOOPS)

• ONE-TO-ONE CORRESPONDENCE IS GONE

• EARLIEST ‘HIGH-LEVEL’ LANGUAGES – 1958/60

• FORTRAN I

• ALGOL-58,  ALGOL-60

• TRANSLATORS ARE NOW ‘COMPILERS’

• MORE COMPLEX THAN ASSEMBLERS

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



WHY STUDY PROGRAMMING 
LANGUAGES?

• HELPS CHOOSE A LANGUAGE:

• C VS. C++ FOR SYSTEMS PROGRAMMING

• MATLAB VS. PYTHON VS. R FOR NUMERICAL COMPUTATIONS

• JAVA VS. JAVASCRIPT FOR WEB APPLICATIONS

• PYTHON VS. RUBY VS. COMMON LISP VS. SCHEME VS. ML FOR 

SYMBOLIC DATA MANIPULATION

• JAVA RPC (JAX-RPC) VS. C/CORBA FOR NETWORKED PC PROGRAMS

CS307 : Principles of Programming Languages – Dr Paul Fodor[Copyright 2017]



WHY STUDY PROGRAMMING 
LANGUAGES?

• MAKE IT EASIER TO LEARN NEW LANGUAGES

• SOME LANGUAGES SIMILAR – RELATED ON A ‘FAMILY TREE’ OF 

LANGUAGES

• CONCEPTS HAVE MORE SIMILARITY

• THINKING IN TERMS OF SELECTION, ITERATION, RECURSION

• UNDERSTANDING ABSTRACTION HELPS EASE ASSIMILATION OF SYNTAX AND 

SEMANTICS

• ANALOGY TO HUMAN LANGUAGES: GOOD GRASP OF GRAMMAR 

[SOMETIMES] MAKES IT EASIER TO PICK UP NEW LANGUAGES

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



WHY STUDY PROGRAMMING 
LANGUAGES?

• HELPS MAKE BETTER USE OF A PARTICULAR LANGUAGE [EXAMPLES]

• IN C: HELP UNDERSTAND UNIONS, ARRAYS AND POINTERS, SEPARATE 

COMPILATION

• IN COMMON LISP: HELP UNDERSTAND FIRST-CLASS 

FUNCTIONS/CLOSURES, STREAMS, ETC

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



WHY STUDY PROGRAMMING 
LANGUAGES?

• HELPS MAKE BETTER USE OF WHATEVER LANGUAGE IS BEING USED:

• UNDERSTAND TRADE-OFFS/IMPLEMENTATION COSTS BASED ON 

UNDERSTANDING OF LANGUAGE INTERNALS

• EXAMPLES:

• USE X*X RATHER THAN X**2

• USE C POINTERS OR PASCAL ‘WITH’ STATEMENT TO FACTOR ADDRESS 

CALCULATIONS

• AVOID CALL-BY-VALUE WITH LARGE ARGUMENTS IN PASCAL

• AVOID THE USE OF CALL-BY-NAME IN ALGOL-60

• CHOOSE BETWEEN COMPUTATION AND TABLE LOOKUP

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



WHY STUDY PROGRAMMING 
LANGUAGES?

• LEARN HOW TO DO THINGS NOT SUPPORTED BY LANGUAGE

• LACK OF SUITABLE CONTROL STRUCTURES IN FORTRAN

• USE COMMENTS AND PROGRAMMER DISCIPLINE FOR CONTROL STRUCTURES

• LACK OF RECURSION IN FORTRAN

• WRITE A RECURSIVE ALGORITHM USING MECHANICAL RECURSION ELIMINATION

• LACK OF NAMED CONSTANTS AND ENUMERATIONS IN FORTRAN

• USE VARIABLES THAT ARE INITIALIZED ONCE AND NEVER CHANGED

• LACK OF MODULES IN C AND PASCAL

• USE COMMENTS AND PROGRAMMER DISCIPLINE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



PROGRAMMING LANGUAGE 
CLASSIFICATION

• IMPERATIVE – FOCUS: HOW THE COMPUTER SHOULD DO A TASK

• DECLARATIVE – FOCUS: WHAT THE COMPUTER SHOULD DO

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



IMPERATIVE PROGRAMMING 
LANGUAGES

• VON NEUMANN – BASED ON MODIFICATION OF VARIABLES/STATE VIA SIDE-EFFECTS

• C

• FORTRAN

• ADA

• PASCAL

• ETC.

• OBJECT-ORIENTED – BASED ON SEPARATION OF DATA AND CODE INTO SEMI-INDEPENDENT 

‘OBJECTS’

• SMALLTALK

• C++

• JAVA

• ETC.

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



DECLARATIVE PROGRAMMING 
LANGUAGES

• FUNCTIONAL – BASED ON (POSSIBLY RECURSIVE) FUNCTIONS

• LISP

• ML

• HASKELL

• DATAFLOW – BASED ON A ‘FLOW’ OF TOKENS TO PROCESSING ‘NODES’

• ID

• VAL

• LOGIC/CONSTRAINT-BASED – BASED ON FINDING VALUES THAT FIT A CRITERIA 

(GOAL-DIRECTED SEARCH) PRINCIPLES INCLUDE PREDICATE LOGIC. 

• PROLOG

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



OTHER CLASSIFICATIONS

• MARKUP

• SORT OF A LANGUAGE TYPE HOWEVER THESE LACK ‘EXECUTION 

SEMANTICS’

• ASSEMBLERS

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



EXERCISE

• 10-15 MINS, IN TEAMS OF 2-3 STUDENTS

• RESEARCH (ONLINE) TWO LANGUAGES FROM DIFFERENT 

CLASSIFICATIONS

• NOTE THE DIFFERENCES

• JOT SOME IDEAS DOWN ABOUT HOW THE CLASS OF LANGUAGE 

HELPS ITS EFFECTIVENESS FOR SPECIFIC PROBLEM DOMAINS

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



LANGUAGE TRANSLATION
• CPU UNDERSTANDS SIMPLE OPERATIONS

• NUMERIC ‘OP CODES’

• REGISTER/MEMORY ADDRESS ‘ARGUMENTS’

• MUST CONVERT HIGH LEVEL LANGUAGES TO SIMPLE ACTIONS

• COMPILATION

• TRANSLATE ALL THE CODE TO MACHINE CODE

• COMPILER NOT PRESENT DURING 

PROGRAM RUN

• INTERPRETATION

• READ HIGH LEVEL LANGUAGE PROGRAM

• PERFORM EQUIVALENT ACTIONS

• INTERPRETER IS PRESENT DURING PROGRAM RUN AND THE ‘LOCUS’ OF 

CONTROL

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]



LANGUAGE TRANSLATION

• HYBRID COMPILER/INTERPRETER

• CONVERT HLL CODE TO A ‘SIMPLE’ EQUIVALENT FOR A NON-EXISTENT 

‘VIRTUAL’ CPU

• USE A ‘VIRTUAL MACHINE INTERPRETER’ TO EXECUTE

• EXAMPLE: JAVA BYTE CODES

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]



LANGUAGE TRANSLATION

• LANGUAGE CHARACTERISTICS – COMPILED VS INTERPRETED LANGUAGES

• COMPILED

• MORE STATIC TYPING AND SCOPING

• MORE EFFICIENT CODE

• LESS FLEXIBLE

• INTERPRETED

• MORE DYNAMIC TYPING AND SCOPING

• LATER ‘BINDING’

• MORE FLEXIBLE

• LESS EFFICIENT

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]



COMPILATION VS. INTERPRETATION

• COMMON CASE

• COMPILATION

• SIMPLE PREPROCESSING FOLLOWED BY INTERPRETATION

• MANY MODERN LANGUAGE IMPLEMENTATIONS MIX COMPILATION 

AND INTERPRETATION

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]



COMPILATION VS. INTERPRETATION

• COMPILATION DOES NOT HAVE TO PRODUCE MACHINE LANGUAGE 

FOR SOME CPU

• COMPILATION CAN TRANSLATE ONE LANGUAGE TO ANTHER

• CARRIES FULL SEMANTIC ANALYSIS (MEANING) OF INPUT

• COMPILATION IMPLIES FULL SEMANTIC UNDERSTANDING

• PREPROCESSING DOES NOT

CS307 : Principles of Programming Languages - Tony Mione, Dr Paul Fodor, and Elsevier [Copyright 2017]



COMPILATION VS. INTERPRETATION

• COMPILED LANGUAGES MAY HAVE INTERPRETED PIECES [E.G. 

FORMATS IN FORTRAN AND C]

• MOST COMPILED LANGUAGES USE ‘VIRTUAL INSTRUCTIONS’

• SET OPERATIONS IN PASCAL

• STRING MANIPULATION IN BASIC

• SOME LANGUAGES PRODUCE ONLY VIRTUAL INSTRUCTIONS

• JAVA – JAVA BYTE CODE

• PASCAL – P-CODE

• MICROSOFT COM+ (.NET)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• PREPROCESSOR

• REMOVES COMMENTS AND WHITESPACE

• GROUPS CHARACTERS INTO TOKENS (KEYWORDS, IDENTIFIERS, NUMBERS, 

SYMBOLS)

• EXPANDS ABBREVIATIONS (I.E. MACROS)

• IDENTIFIES HIGH LEVEL LANGUAGE STRUCTURES (LOOPS, SUBROUTINES)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• THE C PREPROCESSOR

• REMOVES COMMENTS

• EXPANDS MACROS

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• LIBRARY OF ROUTINES AND LINKING

• COMPILER USES LINKER PROGRAM TO MERGE APPROPRIATE LIBRARY OF 

SUBROUTINES INTO FINAL PROGRAM:

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• POST-COMPILATION ASSEMBLY

• FACILITATES DEBUGGING (ASSEMBLY EASIER TO READ)

• ISOLATES COMPILER FROM CHANGES IN THE FORMAT OF MACHINE 

LANGUAGE FILES

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• SOURCE TO SOURCE TRANSLATION

• C++ IMPLEMENTATIONS BASED ON

THE EARLY AT&T COMPILER GENERATED

INTERMEDIATE CODE IN C INSTEAD OF

ASSEMBLER LANGUAGE.

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• BOOTSTRAPPING: MANY COMPILERS WRITTEN IN THE LANGUAGE THEY 

COMPILE

• Q: HOW DO WE COMPILE THE COMPILER?

• A: START WITH SIMPLE IMPLEMENTATION (INTERPRETER?), THEN 

PROGRESSIVELY BUILD MORE SOPHISTICATED VERSIONS

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• COMPILATION OF INTERPRETED LANGUAGES

• COMPILER GENERATES CODE THAT MAKES ASSUMPTIONS

• DECISIONS WON’T BE FINALIZED TILL RUNTIME

• IF ASSUMPTIONS VALID, CODE RUNS VERY FAST

• IF NOT, DYNAMIC CHECK REVERTS TO INTERPRETER

• PERMITS SIGNIFICANT LATE BINDING

• USED WITH LANGUAGES THAT ARE TYPICALLY INTERPRETED

• PROLOG, LISP, SMALLTALK, JAVA, C#

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• DYNAMIC AND JUST-IN-TIME (JIT) COMPILATION

• IN SOME CASES, A PROGRAMMING SYSTEM MAY DELIBERATELY DELAY COMPILATIONS 

UNTIL THE LAST POSSIBLE MOMENT.

• LISP OR PROLOG INVOKE THE COMPILER ON THE FLY TO TRANSLATE NEWLY CREATED 

SOURCE INTO MACHINE LANGUAGE OR TO OPTIMIZE CODE FOR A PARTICULAR INPUT

SET.

• JAVA LANGUAGE DEFINES A MACHINE INDEPENDENT INTERMEDIATE FORM KNOWN AS 

BYTECODE (STANDARD FORMAT FOR DISTRIBUTING JAVA PROGRAMS)

• ALLOWS EASY TRANSPORT OF PROGRAMS OVER THE INTERNET

• C# IS COMPILED INTO .NET COMMON INTERMEDIATE LANGUAGE (CIL) WHICH IS 

TRANSLATED INTO MACHINE CODE IMMEDIATELY PRIOR TO EXECUTION.

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• MICROCODE:

• ASSEMBLY LEVEL INSTRUCTIONS NOT IMPLEMENTED IN HARDWARE. RUNS 

ON AN INTERPRETER

• INTERPRETER IS WRITTEN IN LOW-LEVEL INSTRUCTIONS WHICH ARE STORED 

IN ROM AND EXECUTED BY HARDWARE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



COMPILATION VS. INTERPRETATION

• IMPLEMENTATION STRATEGIES

• COMPILERS ARE WRITTEN FOR SOME INTERPRETED LANGUAGES (BUT THEY 

ARE NOT PURE)

• SELECTIVE COMPILATION OF COMPILABLE PIECES AND EXTRA-SOPHISTICATED 

PREPROCESSING OF REMAINING SOURCE

• INTERPRETATION STILL NECESSARY

• UNCONVENTIONAL COMPILERS

• TEXT FORMATTERS => TEX

• SILICON COMPILERS: LASER PRINTERS THEMSELVES INCORPORATE 

INTERPRETERS FOR THE POSTSCRIPT PAGE DESCRIPTION LANGUAGE

• QUERY LANGUAGE PROCESSORS FOR DATABASES ARE ALSO  COMPILERS.

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION

CS307 : Principles of Programming Languages - Dr Paul Fodor and Elsevier [Copyright 2017]



AN OVERVIEW OF COMPILATION

• SCANNING:

• DIVIDES TEXT INTO ‘TOKENS’

• TOKENS ARE THE SMALLEST MEANINGFUL UNIT OF INFO

• SAVES TIME FOR PARSER

• PARSER CAN BE DESIGNED TO TAKE CHARACTER STREAM BUT THIS IS ‘MESSY’

• SCANNING USES A FORM OF REGULAR LANGUAGE EXPRESSIONS 

KNOWN AS DFAS (DETERMINISTIC FINITE AUTOMATA)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION

• PARSING:

• RECOGNITION OF A ‘CONTEXT-FREE’ LANGUAGE

• PDA – PUSH DOWN AUTOMATA

• PARSING DISCOVERS THE ‘CONTEXT-FREE’ STRUCTURE OF A PROGRAM

• CREATES A STRUCTURE THAT CAN BE DESCRIBED WITH SYNTAX 

DIAGRAMS

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION

• SEMANTIC ANALYSIS:

• DISCOVERY OF THE ‘MEANING’ OF A PROGRAM

• COMPILER PERFORMS ‘STATIC’ SEMANTIC ANALYSIS

• THE ‘MEANING’ THAT CAN BE DERIVED AT COMPILE TIME

• OTHER SEMANTICS MUST WAIT TILL RUNTIME

• ‘DYNAMIC’ SEMANTICS

• CAN’T BE FIGURED OUT AT COMPILE TIME

• EXAMPLE: ARRAY SUBSCRIPT OUT OF BOUNDS ERRORS

CS307 : Principles of Programming Languages Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION

• INTERMEDIATE CODE GENERATION

• GENERATED AFTER SEMANTIC CHECKS PASS

• INTERMEDIATE FORM – CREATED FOR:

• ‘MACHINE INDEPENDENCE’

• EASE OF OPTIMIZATION

• COMPACTNESS

• TYPICALLY, IF (INTERMEDIATE FORM) RESEMBLES MACHINE CODE FOR AN IDEALIZED 

MACHINE

• STACK MACHINE

• MACHINE WITH ARBITRARILY LARGE NUMBER OF REGISTERS

• COMPILERS MAY PROGRESS CODE THROUGH SEVERAL DIFFERENT INTERMEDIATE 

FORMS

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION

• OPTIMIZATION

• TAKES INTERMEDIATE CODE AND TRANSFORMS IT

• TO A NEW SEQUENCE THAT IS FASTER AND/OR SMALLER

• ALSO, NEW SEQUENCE WILL PRODUCE THE SAME RESULT

• CANNOT CREATE ‘OPTIMAL’ CODE. JUST IMPROVES CODE

• THIS PHASE IS OPTIONAL 

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION

• CODE GENERATION

• TAKES INTERMEDIATE CODE AND PRODUCES:

• TARGET MACHINE ASSEMBLY LANGUAGE

• OR TARGET MACHINE RELOCATABLE OBJECT CODE (BINARY) [INPUT TO A 

LINKER]

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION

• MACHINE SPECIFIC OPTIMIZATION

• PERFORMED DURING OR AFTER CODE GENERATION:

• TARGET MACHINE ASSEMBLY LANGUAGE

• SYMBOL TABLE MANAGER

• PRESENT FOR ALL PHASES OF COMPILATION

• TRACKS ALL IDENTIFIERS IN PROGRAM. KEEPS INFORMATION LIKE:

• NAME

• DATA TYPE

• CURRENT LOCATION (REGISTER/MEMORY) – DURING CODE GENERATION

• SCOPE

• ETC.

• SYMBOL INFORMATION MAY BE PRESERVED FOR USE BY DEBUGGER

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• LEXICAL ANALYSIS AND PARSING

• GCD PROGRAM

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

int main() {

int i = getint(), j = getint();

while (i != j) {

if (i > j) { i = i – j;

else j = j – i;

}

putint(i);

}



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• LEXICAL ANALYSIS AND PARSING

• GCD PROGRAM TOKENS

• SCANNING GROUPS CHARACTERS INTO SMALLEST MEANINGFUL UNITS

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

int main     (       )        {

int i =      getint (    )    ,    j     =    getint (     )   ;

while   (          i !=       j    )    { 

if         (          i >         j    )    i =    i - j     ;

else     j          =      j          =    i

}

putint (        i )           ;

}



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• CONTEXT FREE GRAMMAR AND PARSING

• PARSING ORGANIZES TOKENS INTO A PARSE TREE

• PARSE TREE REPRESENTS HIGHER LEVEL CONSTRUCTS IN TERMS OF 

CONSTITUENT COMPONENTS

• PARSER ANALYZES A CONTEXT FREE GRAMMAR

• POTENTIALLY RECURSIVE RULES 

• RULES DEFINE THE WAYS IN WHICH THE CONSTITUENTS (TOKENS) COMBINE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• CONTEXT-FREE GRAMMAR AND PARSING

• EXAMPLE OF WHILE LOOP (C)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

iteration-statement → while ( expression ) statement 

statement, in turn, is often a list enclosed in braces: 

statement → compound-statement 

compound-statement → { block-item-list opt } 

where 

block-item-list opt → block-item-list 

or 

block-item-list opt → ϵ
and 

block-item-list → block-item 

block-item-list → block-item-list block-item 

block-item → declaration 

block-item → statement



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• CONTEXT-FREE GRAMMAR AND PARSING

• GCD PROGRAM PARSE TREE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]

next slide



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• CONTEXT-FREE GRAMMAR AND PARSING (CONT)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• CONTEXT-FREE GRAMMAR AND PARSING (CONT)

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



AN OVERVIEW OF COMPILATION: 
EXAMPLE

• SYNTAX TREE – ‘ESSENTIAL CONTENT FROM PARSING ACTIVITY’

• GCD PROGRAM SYNTAX TREE

CS307 : Principles of Programming Languages - Dr Paul Fodor [Copyright 2017]



QUESTIONS

CS307 : Principles of Programming Languages - Tony Mione [Copyright 2017]


