
CSE 304
Compiler Design
Code Generation
TONY MIONE

Overview
Goals of a Code Generator

Issues in Design

The Target Language

Addresses in Target Code

Basic Blocks and Flow Graphs

Optimizing Basic Blocks

A Simple Code Generator

Peephole Optimizations

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 2

Goals of a Code Generator
Code generators must generate correct code

Code generators should generate reasonably efficient code

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 3

Issues in Design
•Intermediate Form

◦ Quadruples, Triples, Indirect Triples
◦ Syntax Trees, DAGS
◦ Postfix notation

•Target Architecture
◦ CISC – Complex Instruction Set
◦ RISC – Reduced Instruction Set
◦ Stack-based Architectures (JVM, etc)

•Instruction Selection
◦ Complexity affected by

◦ Level of the IR
◦ Nature of the Instruction Set Architecture
◦ Desired quality of code

•Register Allocation
◦ Register Allocation
◦ Register Assignment

•Evaluation Order

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 4

The Target Language
Example machine from Aho:

◦ Instructions
◦ Load Operations
◦ Store Operations
◦ OP dst, src1, src2
◦ Unconditional Jumps
◦ Conditional Jumps

◦ Addressing Modes
◦ Variable name/memory address
◦ Indexted [a(r)]
◦ Offset - 100(R2) è contents(100 + contents(R2))
◦ Indirect - *100(R2) è contents(contents(100 + contents(R2)))
◦ Immediate - #100

◦ Simple Instruction cost model

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 5

Addresses in Target Code
•Most executables are comprised of 4 different regions
• Code – Executable code lives here. Size can be determined at compile time
• Static – An area for global constants and data generated by compiler. Size

can be determined at compile time
• Heap – Dynamically managed area holding data objects allocated and freed

during run. Size cannot be determined at compile time.
• Stack – Dynamically managed region holding activation records. Size cannot

be determined at compile time.

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 6

Stack Allocation
•Access via offset from Stack Pointer (sp) or base/frame pointer (bp)
• SP moved by size of procedure’s activation record at start of procedure code
• Return address stored at bottom location in activation record
• SP returned to original value at end of procedure before return
• Local variables addressed by offset from SP

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 7

Example: Calling a procedure
ADD SP, SP #caller.recordSize // Adjust stack pointer
ST 0(SP), #here+16 // store return address
BR callee.codeArea // jump to procedure code

Example: Return from procedure
BR *0(SP) // Returns to caller

[in caller:
SUB SP, SP, #caller.recordSize // Restore SP to value before call

Run time Address for Names
•Code generated uses offsets from start of a region (like static)
• Initially, intermediate code may express an offset from the start of a region

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 8

Example: x is at 12 bytes after the start of static

May express this as static[12]

static[12] = 0

until the address of the static region is known late in code generation. For
example, if static starts at 1000, then x is at 1012.

LD 1012, #0

Basic Blocks and Flow Graphs
•Basic Blocks – Sequence of code that has no transfers into it and no
transfers out

•Marking basic blocks help give context to analysis of the IR
• Can easily mark uses
• Can easily track which variables/values are ‘live’

•Basic Blocks can be linked in a Flow Graph
• The flow graph indicates which blocks flow into other blocks
• This helps with doing more global optimization

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 9

Basic Blocks and Flow Graphs
•Construction of Basic Blocks:

•Algorithm: Partition three address instructions into basic blocks

•INPUT: A sequence of three-address instructions

•OUTPUT: A list of basic blocks for the sequence where each instruction is
assigned to exactly 1 basic block

•METHOD: First, determine which instructions are leaders, the first instruction in
some basic block

1. First instruction in the sequence is a leader
2. Any instruction that is the target of a conditional or unconditional jump is a leader
3. Any instruction that follows a conditional or unconditional jump is a leader

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 10

Example: Basic Block
Construction

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 11

Leader (1)
Jumps

ç

ç

ç

Leader (2)

Leader (3)

Example: Basic Block
Construction

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 12

Entry

Exit

Example: Flow Graph
Construction

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 13

Entry

Exit

B1

B2

B3

B4

B5

B6

Convert line numbers in jumps to Basic
Block numbers
- Transfers are always to start of BB
- Saves complexity when optimization

swaps or removes lines

Determining Next-Use and
Liveness
•To generate correct code, we need:
• Information on a variable’s next use in the code
• Information on a variable’s ‘liveness’
• Information on the current location(s) of a variable

•Can generate the information using a reverse scan of a basic block

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 14

Determining Next-Use and
Liveness

Algorithm: Determining the liveness and next-use information for each
statement in a basic block.

INPUT: A basic block of three-address statements. Assume the symbol
table shows all non temporary variables as being live on exit from the BB

OUTPUT: At each statement i : x=y OP z in BB, we attach to i the liveness
and next-use information of x, y, and z.

METHOD: Start at last statement of BB and scan backwards to the
beginning of BB. At each statement, do:

1. Attach to i the information currently found in the symbol table
regarding next-use and liveness of x, y, and z.

2. In the symbol table, set x to ‘not live’ and ‘no next use’.
3. In the symbol table, set y and z to ‘live’ and ‘next-use’ to i.

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 15

Optimizing Basic Blocks
•Represent Basic Blocks as DAGs
• Create a node (N) in the DAG for each initial value of the variables in the BB
• Create a node (N) for each statement (s) within the BB.
• Children of N are nodes corresponding to statements that are the last definitions (prior to s) of

the operands used by s

• Node (N) is labeled by the operator applied in the statement. Also, attached
is a list of variables for which this is the last definition in the BB

• Certain nodes are output nodes.
• These are nodes whose variables are live on exit from the BB [values may be used later in other

successor blocks of the flow graph[
• Calculation of these variables is based on global data flow analysis

•Four immediate benefits
• Can eliminate local common subexpressions
• Can eliminate dead code (instructions computing a value that is never used)
• Can reorder statements that do not depend on each other
• Can apply algebraic laws to reorder operands è simplify a computation

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 16

Optimizing Basic Blocks :
Common Subexpressions
Using Value-Number method but being careful to get the latest
definition of a variable:

will create the following DAG:

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 17

This node with ‘+’ uses the newer
definition of b in the ‘-’ node.
Not the original ‘b’

Optimizing Basic Blocks :
Common Subexpressions
Note that the basic construction on the previous slide will not recognize
that a and e are the same value in:

This is because b + c == (b - d) + (c + d)

Using algebraic identities on the DAG may reveal this equivalence.

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 18

Optimizing Basic Blocks:
Dead Code Elimination
•Dead Code Elimination

◦ Procedure:
◦ Delete any root node from the DAG whose variables are not live at the end of the BB
◦ Repeat with any new root nodes.

Example: a and b are live, c and e are not live

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 19

Remove root
node e

Node c is now a root node and not
live.
Remove root node c

Optimizing Basic Blocks:
Algebraic Optimizations
•Algebraic Identities

◦ Ex:
◦ x+0 = 0+x = x, x * 1 = 1 * x = x,
◦ x – 0 = x, x / 1 = x

•Reduction in Strength

•Constant Folding
◦ Ex: 2 * 3.14 can be replaced at compile time with: 6.28

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 20

Expensive Cheaper

x2 = x * x

2 * x = x + x

x / 2 = x * 0.5

Optimizing Basic Blocks:
Array References
•Operators :
• =[] (assignment from an array element)
• []= (assignment to an array element) [3 operands]

•Assigning to an array element ‘kills’ nodes constructed from the same array
• ‘Kill’ means the nodes can have no additional variables attached so cannot be a

‘common subexpression’
• Reason: indices may be the same and so refer to the same element.

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 21

Optimizing Basic Blocks:
Pointer Assignments
•Operators :
• =* (assignment from a pointer derefernce)
• *= (assignment to a dereferenced pointer)

•*= kills all nodes currently constructed in the DAG!

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 22

Optimizing Basic Blocks:
Reassembling from DAGs
Basic idea: For each node that has 1 or more attached variables

◦ construct a three-address statement that computes the value of one of the
variables
◦ Prefer a variable that is live at end of BB
◦ In absence of global data-flow info: assume all variables are live

◦ For additional variables on a node, generate copy instructions

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 23

Optimizing Basic Blocks:
Reassembling from DAGs
Additionally:

◦ Order of instructions must respect order in the DAG (cannot compute Node’s
value till all its children Nodes are computed)

◦ Assignment to array must follow all previous assignments/evaluations
to/from same array according to order in original BB

◦ Evaluations of array elements must follow any previous assignments to same
array according to order in original BB

◦ Any variable use must follow all previous procedure calls or indirect
assignment through pointers according to order in original BB

◦ Any procedure call or indirect assignment through a pointer must follow all
previous evaluations of any variable according to order in original BB.

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 24

A Simple Code Generator
•Issues:
• Efficient Register Usage
• Operands for most instructions include registers
• Registers are useful to hold temporary values
• Registers may be needed to hold global values for use in another basic block
• Registers are needed for runtime storage management (SP, FP, etc)

• Machine Instructions
• Load values into registers
• Perform computations
• Store values into memory
• For our discussion:
• LD reg, mem # Loads memory into a register
• ST mem, reg # Stores a value in a register back into memory
• OP reg, reg, reg # Performs an operation with values in registers

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 25

A Simple Code Generator
•Need a data structure to track where values currently live during code
generation
• Register Descriptors
• One per register
• Indicates which variable(s) are currently in the register
• Initially, all registers are empty

• Address Descriptors
• Indicates where a variable’s value is currently
• Memory
• Register
• Stack location

• Can hold multiple locations
• Can be maintained in symbol table entry

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 26

A Simple Code Generator :
The Algorithm
•Use a function getReg() to select registers for each variable in three
address instruction è details later

•Traverse 1 BB at a time.

•Consider:
• Operation type instructions
• Copy instructions
• End of BB actions

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 27

A Simple Code Generator :
The Algorithm
•Operation Instructions

1. Use getReg(x=y+z) to select registers for x, y, and z [Rx, Ry, Rz]
2. Check Ry register descriptor.
• If y is not in Ry, issue LD Ry , y’
• Pick y’ from one of the locations of y in its address descriptor

3. Follow the same procedure for Rz

4. Issue ADD Rx, Ry, Rz

•Copy Instructions
1. Assume getReg() will return same register for x and y
2. Check register descriptor for Ry. If y is not in that register, issue: LD Ry, y
3. Adjust register descriptor for Ry by adding x

•End of BB code
• For any non-temporary variable that is live at the end of BB
• If the variable’s address descriptor does NOT list its memory location, then issue ST x, R

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 28

A Simple Code Generator :
The Algorithm
•Managing Register and Address descriptors…use the following actions

1. For instructions like LD R, x
a) Change R’s register descriptor to hold ony x
b) Change address descriptor for x by adding register R

2. For instructions like ST x, R
a) Change address descriptor for x to include its own memory location

3. For operations like ADD Rx, Ry, Rz
4. Copy statements, after managing descriptors for all loads (1)

a) Add x to the register descriptor for Ry

b) Change address descriptor for x so its ONLY location is Ry

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 29

Example Code Generation

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 30

Example Code Generation

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 31

Example Code Generation

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 32

getReg()
•getReg(I) analyzes instruction i. It returns 2 or 3 registers based on
instruction type

•For y and z (illustrating process with y)
1. If y is currently in a register (R), pick that register. No instruction generation
2. If y is not in a register but a register is ‘empty’, pick the empty register
3. If y is not in a register and no registers are free (hard case) need to select a

register and make it ‘safe’ to use. Examine register descriptors to see which
variable(s) (v) are held there. Cases:

a) If address descriptor for v says that v is somewhere else besides R, then use of R is okay
b) If v is x (variable being computed by the instruction) and x is not also the other operand (z),

then use of R is okay [We know the value of x in R is never needed again]
c) If v is not used later and is live on exit from block, then it must be computed elsewhere in the

block so use of R is okay
d) If not okay by one of the first 3 cases, need to generate ST v, R to place v back in its memory

location.
Must repeat d) for each variable held by the register. Count ST instructions generated and that is
R’s score. Pick the register with the lowest score and use that.

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 33

getReg()
•Finally, consider x, the value being computed. Almost the same issues as
for y and z. But here are the differences
• Since x is being computed, a Register holding only x is fine. This applies even

when x is also y or z.
• If y is not used after the instruction I (see 3c), and Ry holds ONLY y, then use

Ry as Rx also.

•Special case for copy instructions
• Pick Ry as described above
• Use Ry as Rx also

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 34

Peephole Optimizations
•Peephole optimization scans a small window of instructions at 1 time.

•Good for the following improvements:
• Eliminate redundant loads and stores
• Eliminate unreachable code
• Flow-of-control optimizations
• Algebraic simplification and strength reduction

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 35

Peephole Optimizations
•Eliminate redundant loads and stores (Example)

LD R0, a
ST a, R0

Can eliminate ST instruction (since R0 was loaded from a immediately before)
èBUT, not if ST instruction has a label (instructions must be in same BB)

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 36

Peephole Optimizations
•Eliminating unreachable code (Example)

if debug == 1 goto L1
goto L2

L1: //print debug information
L2:

[eliminate jump over jump…this can be:]
if debug != 1 goto L2

L1: //print debug information
L2:

[If debug is set to 0 at start of program, using constant propagation, we
can get:

if 0 != 1 goto L2
Which really is…

goto L2 # Allows us to drop all print debug code

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 37

Peephole Optimizations
•Flow-of-control optimizations (Example)
• Sometimes we generate various jumps to jumps (conditional or unconditional)
goto L1
…
L1: goto L2

Becomes
goto L2
…
L1: goto L2
And also…
If a < b goto L1
.
L1: goto L2

Becomes

If a < b goto L2
.
L1: goto L2

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 38

Peephole Optimizations
•Algebraic Simplification and Strength Reduction (Example)
• Identities:

x = x + 0

x = x * 1

Can simply be removed

x = y * z where z is a power of 2 (2n)
• Can replace multiplication by a shift instruction by n bits

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 39

Questions?

(C) CSE304/504 TONY MIONE - SUNY KOREA, 2019 40

