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Goals of a Code Generator
Code generators must generate correct code

Code generators should generate reasonably efficient code
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Issues in Design
•Intermediate Form 

◦ Quadruples, Triples, Indirect Triples
◦ Syntax Trees, DAGS
◦ Postfix notation

•Target Architecture
◦ CISC – Complex Instruction Set
◦ RISC – Reduced Instruction Set
◦ Stack-based Architectures (JVM, etc)

•Instruction Selection
◦ Complexity affected by

◦ Level of the IR
◦ Nature of the Instruction Set Architecture
◦ Desired quality of code

•Register Allocation
◦ Register Allocation
◦ Register Assignment

•Evaluation Order
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The Target Language
Example machine from Aho:

◦ Instructions
◦ Load Operations
◦ Store Operations
◦ OP dst, src1, src2
◦ Unconditional Jumps
◦ Conditional Jumps

◦ Addressing Modes
◦ Variable name/memory address
◦ Indexted [a(r)]
◦ Offset  - 100(R2) è contents(100 + contents(R2))
◦ Indirect - *100(R2) è contents(contents(100 + contents(R2)))
◦ Immediate - #100

◦ Simple Instruction cost model
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Addresses in Target Code
•Most executables are comprised of 4 different regions
• Code – Executable code lives here. Size can be determined at compile time
• Static – An area for global constants and data generated by compiler. Size 

can be determined at compile time
• Heap – Dynamically managed area holding data objects allocated and freed 

during run. Size cannot be determined at compile time.
• Stack – Dynamically managed region holding activation records. Size cannot 

be determined at compile time.
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Stack Allocation
•Access via offset from Stack Pointer (sp) or base/frame pointer (bp)
• SP moved by size of procedure’s activation record at start of procedure code
• Return address stored at bottom location in activation record
• SP returned to original value at end of procedure before return
• Local variables addressed by offset from SP
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Example: Calling a procedure
ADD SP, SP #caller.recordSize // Adjust stack pointer
ST     0(SP), #here+16               // store return address
BR    callee.codeArea // jump to procedure code

Example: Return from procedure
BR *0(SP) // Returns to caller

[in caller:
SUB SP, SP, #caller.recordSize // Restore SP to value before call



Run time Address for Names
•Code generated uses offsets from start of a region (like static)
• Initially, intermediate code may express an offset from the start of a region
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Example: x is at 12 bytes after the start of static

May express this as static[12] 

static[12] = 0

until the address of the static region is known late in code generation. For 
example, if static starts at 1000, then x is at 1012.

LD 1012, #0



Basic Blocks and Flow Graphs
•Basic Blocks – Sequence of code that has no transfers into it and no 
transfers out

•Marking basic blocks help give context to analysis of the IR
• Can easily mark uses
• Can easily track which variables/values are ‘live’

•Basic Blocks can be linked in a Flow Graph
• The flow graph indicates which blocks flow into other blocks
• This helps with doing more global optimization
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Basic Blocks and Flow Graphs
•Construction of Basic Blocks:

•Algorithm: Partition three address instructions into basic blocks

•INPUT: A sequence of three-address instructions

•OUTPUT: A list of basic blocks for the sequence where each instruction is 
assigned to exactly 1 basic block

•METHOD: First, determine which instructions are leaders, the first instruction in 
some basic block

1. First instruction in the sequence is a leader
2. Any instruction that is the target of a conditional or unconditional jump is a leader
3. Any instruction that follows a conditional or unconditional jump is a leader
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Example: Basic Block 
Construction
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Example: Basic Block 
Construction
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Entry

Exit



Example: Flow Graph 
Construction
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Entry

Exit

B1

B2

B3

B4

B5

B6

Convert line numbers in jumps to Basic 
Block numbers
- Transfers are always to start of BB
- Saves complexity when optimization 

swaps or removes lines



Determining Next-Use and 
Liveness
•To generate correct code, we need:
• Information on a variable’s next use in the code
• Information on a variable’s ‘liveness’
• Information on the current location(s) of a variable

•Can generate the information using a reverse scan of a basic block
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Determining Next-Use and 
Liveness

Algorithm: Determining the liveness and next-use information for each
statement in a basic block.

INPUT: A basic block of three-address statements. Assume the symbol 
table shows all non temporary variables as being live on exit from the BB

OUTPUT: At each statement i : x=y OP z in BB, we attach to i the liveness 
and next-use information of x, y, and z.

METHOD: Start at last statement of BB and scan backwards to the 
beginning of BB. At each statement, do:

1. Attach to i the information currently found in the symbol table 
regarding next-use and liveness of x, y, and z.

2. In the symbol table, set x to ‘not live’ and ‘no next use’.
3. In the symbol table, set y and z to ‘live’ and ‘next-use’ to i.
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Optimizing Basic Blocks
•Represent Basic Blocks as DAGs
• Create a node (N) in the DAG for each initial value of the variables in the BB
• Create a node (N)  for each statement (s) within the BB.
• Children of N are nodes corresponding to statements that are the last definitions (prior to s) of 

the operands used by s

• Node (N) is labeled by the operator applied in the statement. Also, attached 
is a list of variables for which this is the last definition in the BB

• Certain nodes are output nodes. 
• These are nodes whose variables are live on exit from the BB [values may be used later in other 

successor blocks of the flow graph[
• Calculation of these variables is based on global data flow analysis

•Four immediate benefits
• Can eliminate local common subexpressions
• Can eliminate dead code (instructions computing a value that is never used)
• Can reorder statements that do not depend on each other
• Can apply algebraic laws to reorder operands è simplify a computation
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Optimizing Basic Blocks : 
Common Subexpressions
Using Value-Number method but being careful to get the latest 
definition of a variable:

will create the following DAG:
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This node with ‘+’ uses the newer 
definition of b in the ‘-’ node.
Not the original ‘b’



Optimizing Basic Blocks : 
Common Subexpressions
Note that the basic construction on the previous slide will not recognize 
that a and e are the same value in:

This is because  b + c == (b - d) + (c + d)

Using algebraic identities on the DAG may reveal this equivalence.
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Optimizing Basic Blocks: 
Dead Code Elimination
•Dead Code Elimination

◦ Procedure:
◦ Delete any root node from the DAG whose variables are not live at the end of the BB
◦ Repeat with any new root nodes.

Example: a and b are live, c and e are not live
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Remove root
node e

Node c is now a root node and not 
live.
Remove root node c



Optimizing Basic Blocks:
Algebraic Optimizations
•Algebraic Identities

◦ Ex: 
◦ x+0 = 0+x = x, x * 1 = 1 * x = x,  
◦ x – 0 = x,  x / 1 = x

•Reduction in Strength

•Constant Folding
◦ Ex: 2 * 3.14   can be replaced at compile time with:  6.28
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Expensive                                                Cheaper

x2 =                  x * x

2 * x                                        =                  x + x

x / 2                                         =                 x * 0.5



Optimizing Basic Blocks:
Array References
•Operators : 
• =[] (assignment from an array element)
• []= (assignment to an array element) [3 operands]

•Assigning to an array element ‘kills’ nodes constructed from the same array
• ‘Kill’ means the nodes can have no additional variables attached so cannot be a 

‘common subexpression’
• Reason: indices may be the same and so refer to the same element.
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Optimizing Basic Blocks:
Pointer Assignments
•Operators : 
• =* (assignment from a pointer derefernce)
• *= (assignment to a dereferenced pointer)

•*= kills all nodes currently constructed in the DAG!
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Optimizing Basic Blocks:
Reassembling from DAGs
Basic idea: For each node that has 1 or more attached variables

◦ construct a three-address statement that computes the value of one of the 
variables
◦ Prefer a variable that is live at end of BB
◦ In absence of global data-flow info: assume all variables are live

◦ For additional variables on a node, generate copy instructions
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Optimizing Basic Blocks:
Reassembling from DAGs
Additionally:

◦ Order of instructions must respect order in the DAG (cannot compute Node’s 
value till all its children Nodes are computed)

◦ Assignment to array must follow all previous assignments/evaluations 
to/from same array according to order in original BB

◦ Evaluations of array elements must follow any previous assignments to same 
array according to order in original BB

◦ Any variable use must follow all previous procedure calls or indirect 
assignment through pointers according to order in original BB

◦ Any procedure call or indirect assignment through a pointer must follow all 
previous evaluations of any variable according to order in original BB.
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A Simple Code Generator
•Issues:
• Efficient Register Usage
• Operands for most instructions include registers
• Registers are useful to hold temporary values
• Registers may be needed to hold global values for use in another basic block
• Registers are needed for runtime storage management (SP, FP, etc)

• Machine Instructions
• Load values into registers
• Perform computations
• Store values into memory
• For our discussion:
• LD reg, mem     # Loads memory into a register
• ST mem, reg      # Stores a value in a register back into memory
• OP reg, reg, reg   # Performs an operation with values in registers
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A Simple Code Generator
•Need a data structure to track where values currently live during code 
generation
• Register Descriptors
• One per register
• Indicates which variable(s) are currently in the register
• Initially, all registers are empty

• Address Descriptors
• Indicates where a variable’s value is currently
• Memory
• Register
• Stack location

• Can hold multiple locations
• Can be maintained in symbol table entry
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A Simple Code Generator : 
The Algorithm
•Use a function getReg() to select registers for each variable in three 
address instruction è details later

•Traverse 1 BB at a time.

•Consider:
• Operation type instructions
• Copy instructions
• End of BB actions
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A Simple Code Generator : 
The Algorithm
•Operation Instructions

1. Use getReg(x=y+z) to select registers for x, y, and z [Rx, Ry, Rz]
2. Check Ry register descriptor.
• If y is not in Ry, issue LD Ry , y’
• Pick y’ from one of the locations of y in its address descriptor

3. Follow the same procedure for Rz

4. Issue  ADD Rx, Ry, Rz

•Copy Instructions
1. Assume getReg() will return same register for x and y
2. Check register descriptor for Ry. If y is not in that register, issue: LD Ry, y
3. Adjust register descriptor for Ry by adding x

•End of BB code
• For any non-temporary variable that is live at the end of BB
• If the variable’s address descriptor does NOT list its memory location, then issue ST x, R
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A Simple Code Generator : 
The Algorithm
•Managing Register and Address descriptors…use the following actions

1. For instructions like LD R, x
a) Change R’s register descriptor to hold ony x
b) Change address descriptor for x by adding register R

2. For instructions like ST x, R
a) Change address descriptor for x to include its own memory location

3. For operations like ADD Rx, Ry, Rz
4. Copy statements, after managing descriptors for all loads (1)

a) Add x to the register descriptor for Ry

b) Change address descriptor for x so its ONLY location is Ry
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Example Code Generation
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Example Code Generation
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Example Code Generation
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getReg()
•getReg(I) analyzes instruction i. It returns 2 or 3 registers based on 
instruction type

•For y and z (illustrating process with y)
1. If y is currently in a register (R), pick that register. No instruction generation
2. If y is not in a register but a register is ‘empty’, pick the empty register
3. If y is not in a register and no registers are free (hard case) need to select a 

register and make it ‘safe’ to use. Examine register descriptors to see which 
variable(s) (v) are held there. Cases:

a) If address descriptor for v says that v is somewhere else besides R, then use of R is okay
b) If v is x (variable being computed by the instruction) and x is not also the other operand (z), 

then use of R is okay [We know the value of x in R is never needed again]
c) If v is not used later and is live on exit from block, then it must be computed elsewhere in the 

block so use of R is okay
d) If not okay by one of the first 3 cases, need to generate ST v, R to place v back in its memory 

location.
Must repeat d) for each variable held by the register. Count ST instructions generated and that is 
R’s score. Pick the register with the lowest score and use that.
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getReg()
•Finally, consider x, the value being computed. Almost the same issues as 
for y and z. But here are the differences
• Since x is being computed, a Register holding only x is fine. This applies even 

when x is also y or z.
• If y is not used after the instruction I (see 3c), and Ry holds ONLY y, then use 

Ry as Rx also.

•Special case for copy instructions
• Pick Ry as described above
• Use Ry as Rx also
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Peephole Optimizations
•Peephole optimization scans a small window of instructions at 1 time.

•Good for the following improvements:
• Eliminate redundant loads and stores
• Eliminate unreachable code
• Flow-of-control optimizations
• Algebraic simplification and strength reduction
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Peephole Optimizations
•Eliminate redundant loads and stores (Example)

LD  R0, a
ST a, R0

Can eliminate ST instruction (since R0 was loaded from a immediately before)
èBUT, not if ST instruction has a label (instructions must be in same BB)
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Peephole Optimizations
•Eliminating unreachable code (Example)

if debug == 1 goto L1
goto L2

L1:    //print debug information
L2:    

[eliminate jump over jump…this can be:]
if debug != 1 goto L2

L1:    //print debug information
L2:    

[If debug is set to 0 at start of program, using constant propagation, we 
can get:

if 0 != 1 goto L2
Which really is…

goto L2 # Allows us to drop all print debug code
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Peephole Optimizations
•Flow-of-control optimizations (Example)
• Sometimes we generate various jumps to jumps (conditional or unconditional)
goto L1
…
L1: goto L2

Becomes
goto L2
…
L1: goto L2
And also…
If a < b goto L1
.
L1: goto L2

Becomes

If a < b goto L2
.
L1: goto L2
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Peephole Optimizations
•Algebraic Simplification and Strength Reduction (Example)
• Identities:

x = x + 0

x = x * 1

Can simply be removed

x = y * z where z is a power of 2 (2n)
• Can replace multiplication by a shift instruction by n bits
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Questions?
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