
CSE 304
Compiler Design
Intermediate Code 
Generation II
TONY MIONE



Topics
•Intermediate Code
• Translating Expressions
• Translating Array Elements and Array References
• Control Flow
• Boolean Expressions and Short circuiting
• Avoiding Redundant gotos
• Backpatching

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2



Translating Expressions
•Expression evaluation can be coded by adding 2 attributes to non-
terminals comprising expression:

◦ .addr – Address of result
◦ .code – Code to generate result

•Add primitive operations to help create intermediate code:
• gen() – This generates an instruction (which is added to .code)
• newTemp() – This creates a new temporary register for results
• Concatenation operator - || - This is used to append .code attributes and 

other text for code generation

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3



Translating Expressions

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

E -> E1 + E2
1. Generate a new Temporary
2. Append code for E1

(generated for some 
subexpression)

3. Append code for E2
4. Generate an add instruction

a. result field is E.addr
b. operands are E1.addr 

(the temp created for 
E1) and E2.addr (temp 
created for E2)



Incremental Translation
•The .code attributes in the previous translation scheme can get very 
long
• It is possible to generate the code ‘on the fly’
• Instead of having gen() write the instruction into a code attribute, write it…
• directly to memory that is holding generated code or…
• to a file

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

No code attributes needed since the instructions to compute the values in 
E1.addr and E2.addr have already been generated.



Translating Array References
•Array elements are stored consecutively in
• Row-major order
• Elements across a row are stored in order, then the order moves to the next row
• Rightmost subscript changes quickest (like a car odometer)

• Column-major order
• Consecutive elements move down a column then continue at the top of the next column
• Left most subscript changes the quickest

•Elements in most languages are numbered 0->n-1 where n is dimension 
size

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6



Translating Array References
•To generate the location (l-value) of an element in a 1 dimensional 
array:
• If base is the location of element 0
• w is the width of an element in bytes
• i is the element index
• Eff addr = base + i * w

•Example: A is an array of integers (4 bytes each) and starts at memory 
location 0x800000. The location of element with index 5 is:

•0x800000 + 5 * 4 = 0x800014

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7



Translating Array References
(2 or more dimensions)
•Given:
• If base is the location of element 0
• wr is the width of a row in bytes
• we is the width of an element in bytes
• i, j are the indices for row/element
• Eff addr of A[i][j] = base + i * wr + j * we

•Example: A is a 3x5 array of integers at memory location 0x800000:
• A[1][2] is at 0x800000 + 1 * 20 + 2 * 4 = 0x80001C

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8



Translating Array References
(2 or more dimensions)
•General formula for k-dimensional array:
• Eff addr of A[i1][i2]...[ik] = base + il x wl + i2 * w2 + . . . + ik * wk

•Also, for k dimensions, can use element counts per row/column rather 
than width.
• ni is the number of elements in the row or plane
• w is the width of the base element
• base is the base address of the array

•Eff addr of A[i1][i2]...[ik] = base + ((...(i1 * n2 + i2) * n3 + i3)...)*nk + ik) * w

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9



Semantic Actions for Array 
References

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10



Semantic Actions for Array 
References

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

1. Get symbol info into L1.array
2. Get type into L1.type.elem
3. L.addr is a new temporary
4. Compute address into L.addr

(note: L.type.width is size of 
whole row, plane, etc)



Semantic Actions for Array 
References

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

1. Copy L1.array to L.array
2. Get type of subarray (from 

L1.type.elem)
3. Generate a new temp (t)
4. Generate a new temp (L.addr)
5. Create code to calculate t and 

add it to L.addr (the offset 
from the base)



Control Flow
•Boolean expressions can be used
• To compute a logical value (true/false)
• To alter control flow

•Here we are concerned with the latter

•Consider the following grammar:

B-> B||B  |  B&&B   |  !B   |  ( B )   | E rel E  |  true  |  false

• rel is one of the relational operators (<, <=, ==, !=, >, >=)

•|| is logical OR, && is logical AND, ! Is NOT

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13



Control Flow
•Depending on language semantics, Boolean expressions may NOT need 
to be completely evaluated

•Most languages allow ‘short circuit’ evaluation (quit once you know the 
result
• B1 || B2 – If B1 is true, we know the whole expression is true so skip B2 eval
• B1 && B2 – If B1 is false, we know expression is false so skip B2 eval

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14



Flow of Control Statements

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

Here is a small grammar of Flow of Control Statements

Need to create semantic actions that generate the following patterns of code:

B represents a Boolean expression
S represents statements in the language



Flow of Control Statements

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

In this and following slides:
• B.true, B.false, S.next, S1.next, etc

are labels for branch transfers
• B.true – Branch here when B is 

true
• B.false – Branch here when B is 

false
• S.next, S1.next – This is the target 

of the next statement after S, S1, 
etc



Flow of Control Statements

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17



Boolean Expressions

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

B || B
1. Target true result of B1 to overall result 

(short circuit)
2. False result needs a label
3. B2.true goes to overall true result target
4. B2.false goes to false target of B
5. Code is B1 eval code, the label B1.false, 

and the B2 eval code

B && B

Similar to B || B but reverse false and true 
evaluation targets



Boolean Expressions

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

!B

Just reverse true and false labels from 
B1!



Avoiding Redundant Gotos
•Can reduce gotos by clever reorganization of tests and control transfers

•Consider: S -> if (B) then S1 => Actions are:
B.true = newlabel()
B.false = S1.next = S.next
B.code II label(B.true) II  Sl.code

Now, use a new operator fall meaning do not generate a goto

S-> if (B) then S1 => actions are now:
B.true = fall
B.false = S1.next = S.next
B.code II S1.code

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20



Avoiding Redundant Gotos
•Can reduce gotos by clever reorganization of tests and control transfers

•Consider: S -> if (B) then S1 else S2 => actions are:
B.true = newlabel()
B.false = newlabel()
S1.next = S2.next = S.next
S.code = B.code II label(B. true) II S1.code II gen('goto‘ S.next) II label(B.false) II 
S2.code

Now, use a new operator fall meaning do not generate a goto

S-> if (B) then S1 else S2 => actions are now:
B.true = fall
B.false = newlabel()
S.next = newlabel()
S.code = B.code II S1.code II gen('goto‘ S.next) II label(B.false) II S2.code

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21



Backpatching
•Generating jump instructions on the fly may require a second pass to 
determine the address of labels generated.

•Backpatching allows 1 pass translation by keeping lists of jump targets 
created as synthesized attributes

•Need 3 lists:
• B.truelist – instructions that need a target when B is true
• B.falselist – instructions that need a target when B is false
• S.nextlist – instructions that need to jump to the instruction after the code in S.

•3 functions are used:
• makelist(i) – Creates a new list containing only i, an index into the instruction list
• merge(p1,p2) – merges two lists and returns the merged lists
• backpatch(p, i) – Patches (fixes) the targets of all conditional and unconditional 

jumps in the locations found in list p to point at instruction i.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 22



Backpatching –
Boolean Expressions

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 23

Marker non terminal picks up 
location of next instruction 
generated (see production 8)

Backpatching done during 
compound expression evaluation

Lists are either reversed or 
copied in productions 3 and 4

makelist() is needed for 
productions 5, 6, and 7



Backpatching –
Boolean Expressions
Consider 

If B1 is true, control can jump past the test in B2

However, if it is false, it must jump to the test in B2 in order to test the 
complete conditional.

◦ So the backpatch() operation causes all jumps on the false list to point at M 
(M.instr) which will be the start of the code in B2

◦ Meanwhile, the truelist is set to the combination of truelists for B1 and B2 since 
both of those mean the overall expression is true.

◦ Finally, B’s synthesized falselist should be wherever the falselist for B2 points.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 24



Backpatching Example

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 25

Parse tree for: x < 100 I I x > 200 && x ! = Y Generates:
100: if x < 100 goto –
101: goto –
102: if x > 200 goto –
103: goto –
104: if x != y goto –
105: goto –



Backpatching Flow of Control

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 26



Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 27


