
CSE 304
Compiler Design
Intermediate Code
Generation I
TONY MIONE

Topics
•Intermediate Code

•Intermediate representations
• Trees
• Syntax Trees
• Directed Acyclic Graphs (DAGs)
• Building DAGs

• 3-address code
• Quadruples
• Triples
• Indirect triples

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Intermediate Code Generation
•Intermediate code is a ‘bridge’ between the analysis and synthesis
phases of a compiler.
• Well below the high level language structure
• Still too abstract compared to target code
• Can use it for machine independent optimization

•Good common intermediate code design can make development
efficient:
• Ex: To develop m different language compilers for n different architectures

1. Must develop m * n separate compilers
2. Or…

◦ m language compiler front ends that produce common intermediate language
• n target code generators

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Intermediate Language

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

• Front ends generate same form
of intermediate code

• Effectively, this is 12 compilers:
• C -> x86-64
• C -> MIPS
• C -> ARM
• C++ -> x86-64
• C++ -> MIPS
• C++ -> ARM
• Ada -> x86-64
• Ada -> MIPS
• Ada -> ARM
• Fortran -> x86-64
• Fortran -> MIPS
• Fortran -> ARM

Structure of Compiler Front
End

•Above structure shows sequential operation of Parser->Static Checker ->
Intermediate Code Generator
• Can be merged into a single pass
• Syntax Directed Definition / Translation Scheme can roll all these steps into

the parser

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Intermediate Code
•Intermediate code can be designed at different ‘levels’ of representation

•Higher level intermediate code (like syntax trees)
• show hierarchical structure of source code
• Well suited for static type checking

•Lower level intermediate code (like quadruples)
• Close to target architecture
• Well suited for register allocation and instruction selection

•Compilers can use multiple intermediate forms

Source Program è High Level IR è… è Low level IR è Target Code

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Trees
•Parse trees
• Shows structure of code related to grammar
• Not often (read: never) generated by a compiler
• Too much grammar detail that does not help with code generation (includes

terminals, non-terminals and even punctuation)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Trees
•Syntax Trees are much more terse and contain essential information

•Here is a tree equivalent to the parse tree on the last slide

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

Trees – Directed Acyclic Graphs
•Similar to Syntax Trees

•A node may have more than 1 parent
• This identifies repeated uses of identifiers, values, and subexpressions
• Helps generate more efficient code

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Directed Acyclic Graph Example

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Building DAGs
•The Value-Number method of for constructing DAGs
• Typically, nodes of a syntax tree are kept in arrays of records
• Each record holds:
• opcode
• Left and right children

• Exception: Leaves have 1 additional node
• A lexical value (number)
• A pointer to a symbol table entry

•These records are in an array so each has an associated index.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Building DAGs –
Value-Number Method

INPUT: Label op, node l , and node r .

OUTPUT: The value number of a node in the array with signature (op, l, r) .

METHOD:
1. Search the array for a node M with label op, left child l, and right child r.

a. If there is such a node , return the value number (index) of M.
b. If not , create in the array a new node N with label op, left child l, and right child r, and return its

value number (index).

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Example: Building a DAG

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

a = (b + c) * (b + c) - 1

1 id a

2 id b

3 id c

4 + 2 3

5 * 4 4

6 num 1

7 - 5 6

8 = 1 7

9

3 Address Code
•Instructions usually contain 3 operands:
• 2 source operands
• 1 result operand

•There are a number of forms of 3-Address code
• quadruples
• triples
• indirect triples

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

3 Address Code
•Types of operations available in a good intermediate form of 3 address
code:
• Assignment instructions (x = y op z)
• Assignments with unary operators (x = op y)
• Copy instructions (x = y)
• Unconditional jumps (goto L)
• Conditional Jumps (if x goto L, ifFalse x goto L)
• Conditional Jumps with relationals (x relop y goto L)
• relop is <, >, <=, >=, ==, !=

• Procedure calls (param x, call p,n)
• Indexed copy instructions (x = y[i], x[i] = y)
• Address and pointer assignments (x=&y, x=*y, *x=y)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

3 Address Code
•Choice of operations

1. Operations in intermediate form must be rich enough to implement
constructs of the source language

2. Operations can be close to machine instructions instead
a. Front end must generate long sequences of instructions for certain source constructs
b. Makes work for optimizer and code generator more difficult to rediscover structure

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Quadruples
•Have 4 fields:
• Opcode (op)
• 2 source operands (arg1, arg2)
• 1 result (result)

•Some instructions do not use all 4 fields
• Instructions with unary operators (x = minus y, x = y) do not use arg2
• Operators like param do not use arg2 or result
• Conditional and unconditional jumps place the target label in result

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

Example: Quadruples
•Code for a = b * -c + b * -c;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

Triples
•Triples have 3 fields:
• opcode – an operation (op)
• Two arguments – arg1, arg2

•Since the result field in quadruples is usually a temporary, triples just
use the location of another triple as a source argument rather than
writing to a temporary

•Triples produce problems for optimizers
• Optimizers sometimes reorder instructions.
• This is easy with quads since there is an explicit temporary variable.
• With triples, results are based on the position in the instruction list meaning all references

would have to be updated.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

Triples

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

•Code for a = b * -c + b * -c;

Indirect Triples
•These are like triples but add an extra array

•Instruction array holds a list of references to instructions in the triples
array.

•An optimizer can reorder instructions by reordering the values in the
instruction array and not touching the instructions in the triples
structure.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

Example: Indirect Triples
Code for a = b * -c + b * -c;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 22

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 23

