CSE 304
 Compiler Design Type Checking

YOUNGMIN KWON / TONY MIONE

Type Expressions

Type Expressions

- Basic type or constructed type by applying type constructors to type expressions.

Basic type:

- boolean, integer, real, type_error, void,...

Type name is a type expression
Type constructor

- Arrays: if T is a type expression, then array (I, T) is a type expression (I is the size of the array)

```
- array[10] of integer: array(10, integer)
```

- Products: if T1 and T2 are type expressions, then T1 * T2 is a type expression (Cartesian product)

```
- integer * integer
```


Type Expressions

- Records: similar to products, but the fields have names

```
- record( (row * integer) * (column * integer) )
```

- Pointers: if T is a type, then pointer (T) is a type

```
- pointer(integer)
```

- Functions: if D and R are types, D-> R is a type

```
* integer * integer -> integer
```

Type expressions may contain variables whose values are type expressions.
Tree and dag representation of

Type Systems

Type system

- A collection of rules for assigning type expressions to the various parts of a program
- A type checker implements a type system

Type checking

- Static type checking: checking is done by a compiler
- Dynamic type checking: checking is done when the target program runs
- Sound type system: if a type system assigns a type to a program part, type error shouldn't occur for the program part.
- A language is strongly typed: static type checking guarantees that type errors cannot occur during the runtime.
- Difficult to achieve

```
int a[100];
a[ a_very_complex_function() ] = 1;
```


A Simple Type Checker

A Simple Language

$$
\begin{aligned}
& \text { P -> D ; E } \\
& \text { D }->\mathrm{D} \text {; D | id : T } \\
& \text { T -> char | integer } \\
& \text { | array [mum] of } T \\
& \text { E -> literal | mum | id } \\
& \text { | E mod E } \\
& \text { | E [E] } \\
& \text { | E ^ }
\end{aligned}
$$

Type of an Id

A Part of Translation Scheme

```
P -> D ; E
D \(->\) D ; D
D -> id : T \{ addtype(id.entry, T.type) \}
T \(->\) char \(\{\) T.type \(:=\) char \}
T -> integer \{ T.type := integer \}
T -> ^ T1 \{ T.type := pointer (T1.type) \}
\(T\)-> array [ num ] of T1 \{
    T.type := array(num.val, T1.type) \}
```


Type Checking of Expressions

```
E -> literal { E.type := char }
E -> num { E.type := integer }
E -> id { E.type := lookup(id.entry) }
E -> E1 mod E2 { E.Type :=
    if E1.type = integer and E2.type = integer
    then integer
    else type_error }
E -> E1 [ E2 ] { E.type :=
    if E2.type = integer and E1.type = array(s,t)
    then t
    else type_error }
E -> E1^ { E.type :=
    if E1.type = pointer(t)
    then t
    else type_error }
```


Type Checking of Statements

```
S -> id := E { S.type :=
    if id.type = E.type
    then void else type_error }
S -> if E then S1 { S.type :=
    if E.type = boolean
    then S1.type else type_error }
S -> while E do S1 { S.type :=
    if E.type = boolean
    then Sl.type else type_error }
S -> S1 ; S2 { S.type :=
    if S1.type = void and S2.type = void
    then void else type_error }
```


Type Checking of Functions

Type expression for functions

```
T -> T1 '->' T2
    T.type := T1.type -> T2.type }
```

Rules for checking a function application

```
E -> E1 ( E2 ) { E.type :=
    if E2.type = s and E1.type = s->t
    then t else type_error }
```


For more than one arguments

- T1, ... , Tn can be views as a single argument type T1*... *Tn

Equivalence of Type Expressions

"Two type expressions are equal" what does that mean?
Structural Equivalence

- Two expressions are either the same basic type,
- They are formed by applying the same constructor to structurally equivalent types.

Structural Equivalence

```
function sequiv(s, t): boolean
begin
    if s and t are the same basic type then
        return true
    else if s = array(s1,s2) and t = array(t1,t2) then
        return s1 = t1 and sequiv(s2,t2)
    else if s = s1*s2 and t = t1*t2 then
        return sequiv(s1,t1) and sequiv(s2,t2)
    else if s = pointer(s1) and t = pointer(t1) then
        return sequiv(s1,t1)
    else if s = s1->s2 and t = t1->t2 then
        return sequiv(s1,t1) and sequiv(s2,t2)
    else
        return false
end
```


Names for Type Expressions

In some languages types can have names

$$
\begin{aligned}
& \text { type link }=\text { ^cell; } \\
& \text { var next }: \text { link; } \\
& \text { last }: \text { link; } \\
& p \text { ^cell; } \\
& \text { q, r }: \text { ^cell; }
\end{aligned}
$$

- Allow type expressions to be named, and allow the names to appear in type expressions
- p: pointer(cell) type, next: link type

Name Equivalence

- Views each type name as a distinct type.
- last and P are not the same type

Structural Equivalence

- Names are replaced by the type expressions they define.
- next, last, p, q, and r are the same type

Type Conversions

Coercions: Implicit conversion from one type to another by the compiler

```
E -> num { E.type := integer }
E -> num . num { E.type := real }
E -> id { E.type = lookup(id.entry) }
E -> E1 op E2 { E.type :=
    if E1.type = integer and E2.type = integer then
        integer
    else if E1.type = real and E2.type = integer then
        real
    else if E1.type = integer and E2.type = real then
        real
    else if E1.type = real and E2.type = real then
        real
    else
        type_error }
```


Overloading

An overloaded symbol has different meanings depending on its context

- E.g. +: integer addition, real addition, complex addition, string concatenation, ...
- Overloading is said to be resolved if a unique meaning is determined.

Set of Possible Types

It is not always possible to resolve overloading immediately.

- E.g.)

```
function "*" (i, j: integer) return integer;
function "*" (i, j: integer) return complex;
function "*" (i, j: complex) return complex;
```

- 3*5 : either integer or complex
- $2 *(3 * 5): 3^{*} 5$ must be integer because * takes same arg. types
- $z^{*}\left(3^{*} 5\right): 3^{*} 5$ must be complex if z is a complex type.

```
E -> E1 { E.types := E1.types }
E -> id { E.types := lookup(id.entry) }
E -> E1(E2) { E.types :=
    {t | s->t \in E1.types and s \in E2.types }}
```


Narrowing the Set of Possible Types

Two depth-first traversals

- Synthesize types during the first path
- Update type during the second path

```
E -> E1
E -> id
E -> E1(E2)
```

```
E.types := E1.types
E.type := if E1.types = {t}
    then t else type_error
E.types := lookup(id.entry)
E.types :=
    {r|s in E2.types and s->r in E1.types}
t := E.type
S := {s|s in E2.types and s->t in E1.types}
E2.type := if S={s}
    then s else type_error
E1.type := if S={s}
    then s->t else type_error
```


Polymorphic Functions

Polymorphic functions

- The statements in the body can be executed with arguments of different types.

Type Variables

- Variables representing type expressions.
- Allow us to talk about unknown types.
- Checking consistent usage of identifiers that don't need to be declared.

Polymorphic Functions

Type Inference

- Problem of determining the type of a language construct from the way it is used.
- E.g. function deref(p) begin
return p^{\wedge} end;
- From deref (p), assume that the type of p is β
- From p^{\wedge}, infer that the type of p is $\beta=\operatorname{pointer}(\alpha)$
- The type of deref is pointer $(\alpha)->\alpha$

Language with Polymorphic Functions

Grammar for language with polymorphic functions

```
P -> D ; E
D -> D ; D | id : Q
Q -> \forall type_var . Q | T
T -> T '->' T
    | T * T
    | unary ( T )
    | basic_type
    | type_var
    | ( T )
    E -> E ( E ) | E, E | id
```


Language with Polymorphic Functions

Example Program

```
deref: \forall\alpha.pointer(\alpha) -> \alpha;
q : pointer(pointer(integer));
deref(deref(q))
```


Type-Checking Polymorphic Functions

Distinct occurrences of a polymorphic function may have different types

- deref. and deref ${ }_{\mathrm{i}}$ have different types

Equivalence of type need to be updated

- Unification: make s and t structurally equivalent by replacing the type variables in s and t by type expressions

Record the effect of unifying two expressions

- If after unification a type variable α represents a type t then it should keep represent t through out type-checking.

Substitution

Substitution:

- $S(\alpha)$: mapping from type variables to type expressions
- $S(t)$: consistent replacement of type variables with their mapped type expressions(= subst(t))

```
function subst(t:type_expr): type_expr
begin
    if t is a basic type then return t
    if t is a variable then return S(t)
    if t is t1->t2 then
    return subst(t1)->subst(t2)
end
```


Instance

- S is the substitution function, $S(t)$ is an instance of t.
- We write s < t to indicate that s is an instance of t
- pointer(integer) < pointer(α)
- integer -> integer < α-> α
- pointer $(\alpha)<\beta$
- $\alpha<\beta$
- integer ? real
- integer -> real ? α-> α
- integer -> α ? α-> α (all occurrences of α must be replaced)

Unification

Two type expressions $t 1$ and $t 2$ unify if there is a substitution S such that
$S(t 1)=S(t 2)$
A substitution is the most general unifier if

- $S(t 1)=S(t 2)$
- for any other unifier S^{\prime}, S^{\prime} is an instance of S (for any $t, S^{\prime}(t)<$ S(t))

Checking Polymorphic Functions

```
E -> E1 ( E2 ) {
    p := mkleaf(newtypevar)
    unify(E1.type, mknode(->, E2.type, p))
    E.type := p
}
E -> E1, E2 {
    E.type := mknode(*, E1.type, E2.type)
}
E -> id {
    E.type := fresh(id.type)
```

Type Checking rule for E -> E1 (E2)

- If E1.type $=\alpha$ and E2.type $=\beta$,
- then E.type $=\beta->\gamma$

Unification Algorithm

```
boolean unify(Node m,Node n) {
    s= find(m); t= find(n);
    if (s=t) return true;
    else if ( nodes s and t represent the same basic type ) return true;
    else if (s is an op-node with children }\mp@subsup{s}{1}{}\mathrm{ and s}\mp@subsup{s}{2}{}\mathrm{ and
            t is an op-node with children tr and t2) {
        union(s,t);
        return unify (s, , t ) and unify (s2, t2);
    }
    else if s or t represents a variable {
        union(s,t);
        return true;
    }
    else return false;
}
```

find(n) returns the representative of n union prefers to make non-variable node a representative node

Checking Polymorphic Functions

E.g.

```
deref: }\forall\alpha.pointer(\alpha) -> \alpha
q : pointer(pointer(integer));
deref(deref(q))
```


Unification

Exercise

- Draw a dag for the following type expressions
- Unify the following two type expressions

```
\circ ((\alpha1->\alpha2)*list(\alpha3))->list(\alpha2)
- ((\alpha3->\alpha4)*list(\alpha3))->\alpha5
```

- Check the structural equivalence of the following two type expressions
- e: real->e
- f: real->(real->f)

Questions?

