
CSE 304
Compiler Design
Syntax-Directed Translation
YOUNGMIN KWON / TONY MIONE

Overview
Associate information with programming language construct

◦ Attaching attributes to the grammar symbols
◦ Semantic rules for the production computes the attributes

S-Attributed Definitions

L-Attributed Definitions

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Syntax-Directed Definition
(SDD)
Generalization of Context Free Grammar

◦ Each grammar symbol has a set of attributes

Attributes
◦ Their values are computed by semantic rules (annotating, decorating)
◦ Synthesized Attributes of a node: values are computed from the attributes

of children node
◦ Inherited Attributes of a node: values are computed from the sibling and

parent nodes

Dependencies between attributes
◦ Represented by dependency graph
◦ Derive evaluation order from the dependency graph

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Syntax-Directed Definition
(SDD)

Example

Terminals have synthesized attributes only

Start symbol does not have inherited attribute

Exercise: draw the parse tree for 3 * 5 + 4 n

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Evaluating SDDs
When inherited and synthesized attributes are mixed, there are no
guarantee that these attributes can be evaluated.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Bottom-up Evaluation
S-attributed definition

◦ Syntax-directed definition that uses synthesized
attributes exclusively.

◦ Bottom-up evaluation can annotate all attributes

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Top-down Evaluation

Inherited attributes can give context to language construct
◦ E.g. Whether an Id appears on the LHS or the RHS of =
◦ Example below parses 1 * 2, 1 * 2 * 3, …

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Dependency Graph
It can depict the interdependencies among the inherited and synthesized
attributes at the node.

Determining the evaluation order of the attributes.

for each node n in the parse tree do
for each attribute a of the grammar symbol at n do

construct a node in the dependency graph for a

for each node n in the parse tree do
for each semantic rule b := f(c1, c2, …, ck)

associated with the production at n do
for i := 1 to k do

construct an edge
from the node for ci to the node for b

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

Dependency Graph
Example 1.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Example 2

Exercise: Draw a dependency
graph for 2 * 3 * 4

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Dependency Graph

Evaluation Order
Topological sort of a directed acyclic graph

◦ Any ordering m1, m2, …, mk of the nodes of the graph such that if there is an
edge mi -> mj, then mi appears before mj in the ordering.

Any topological sort of a dependency graph gives a valid order to
evaluate attributes.

Evaluation of semantic rules in this order yields the translation.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

L-Attributed Definitions
An SDD is L-attributed, if each inherited attribute of Xj in A -> X1 X2 … Xn
depends only on

◦ The attributes of the symbols X1, X2, … Xj-1
◦ The inherited attributes of A

Every S-attributed definition is L-attributed, because it doesn’t have inherited
attributes.

L-attributed definitions can be evaluated in depth-first order.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

L-Attributed Definitions
Example

Exercise: Is this an L-attributed definition?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

Application:
Constructing a Syntax Tree

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Application: Type Expression

Top-Down Translation
L-attributed definitions will be implemented during predictive parsing.

Eliminating Left Recursion from Translation Scheme
◦ Evaluate inherited attributes (R.i) before a use of R
◦ Evaluate synthesized attributes (A.a, R.s) at the end of the production

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

Eliminating Left Recursion from Translation Scheme

Exercise: Eliminate Left Recursion from
A -> A1 Y { A.a = g(A1.a, Y.y) }
A -> A1 Z { A.a = h(A1.a, Z.z) }
A -> X { A.a = f(X.x) }

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

Exercise
A -> A1 Y { A.a = g(A1.a, Y.y) }

A -> A1 Z { A.a = h(A1.a, Z.z) }

A -> X { A.a = f(X.x) }

A -> X R

R -> Y R1

R -> Z R1

A -> X {R.i = f(X.x) } R {A.a = R.s}

R -> Y { R1.i = g(R.i, Y.y)} R1 {R.s = R1.s}

R -> Z { R1.i = h(R.i, Z.z) } R1 {R.s = R1.s}

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

Predictive Translator
For each nonterminal A, construct a function A with

◦ Formal parameters for the inherited attributes of A
◦ Returns a collection of the synthesized attributes of A

Decide what production to use based on the lookahead

Code for the production
◦ For a token X, save the value of X at X.x and match the token
◦ For a nonterminal B, do the assignment c := B(b1, … bk), where b1, …, bk are the

variables for the inherited attributes of B, and c is a variable for the synthesized
attribute of B

◦ For an action, copy the code into the parser, replace reference to attributes by their
corresponding variables.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

Example:
Predictive Translation

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

Bottom-Up Translation
L-Attributed definitions will be implemented during LR-Parsing

LR parsers use a stack to hold information about parsed subtrees
◦ Add extra fields val in the stack to hold the values of the synthesized attributes.
◦ If the ith state symbol is A, then val[i] holds the attributes associated with A.
◦ E.g.

If A -> X Y Z is a production and
A.a = f(X.x, Y.y, Z.z) is a semantic rule

Z.z = val[top], Y.y = val[top-1], X.x =
val[top-2]
A.a = f(val[top-2], val[top-1], val[top])

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 23

Inherited Attributes in Yacc
declaration

: class type idlist;

class

: GLOBAL {$$ = 1;}

| LOCAL {$$ = 2;}

;

type

: REAL {$$ = 1;}

| INTEGER {$$=2;}

;

idlist

: ID {mksymbol($0,$-1, $1)}

| idlist ID {mksymbol($0,$-1, $2)}

;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 24

Example:
Evaluation by Parser Stack

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 25

Marker Nonterminals
Nonterminals with the epsilon production.

Move embedded actions to the right ends of their productions.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 26

Marker Nonterminals
Simulating the Evaluation of Inherited Attributes

◦ E.g. when reducing C->c,

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 27

Marker Nonterminals
When inherited attributes are not updated by copy, its value is not in the val
stack.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 28

Parser Stack for Inherited
Attributes

Assume that every nonterminal A has one inherited attribute A.i and every
grammar symbol X has a synthesized attribute X.s

For every production A -> X1 … Xn, replace it with A -> M1 X1 … Mn
Xn where M1 … Mn are new markers.

◦ Synthesized attributes Xj.s will be in val stack associated with Xj
◦ Inherited attributes Xj.i appears in val stack but associated with Mj

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 29

Marker Nonterminals
Adding marker nonterminals doesn’t introduce conflicts to LL(1)
grammars

For LR(1) grammars, marker nonterminals can introduce parsing
conflicts.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 30

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 31

