CSE304
Compiler Design

Syntax Analysis (LR, LALR Parsers)

YOUNGMIN KWON / TONY MIONE

A Non-SLR(1) Grammar

S = iLi=R | B L: §'—-§

O S+-L=R

T S =R
L—-xR
Bostegdl
R— -L

I, has a shift/reduce conflict:

> §S->L.=R : action[2,=] shift 6

> R->L.: action[2,=] reduce “R->L" £ }g{__),jz,zR
> (=is in FOLLOW(R): S => L=R => *R=R)

I]_: S' = S

. . . .[3: S —= R-
° |, is for a viable prefix L only and
should not reduce R->L. I L—x*R
R— -L
L— - xR

L — id

L — id-
S—-L=-R
R— -L
L—-xR
L — -id

L = xR-
R — L-

S—-L=R-

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LR Parsing Table

Add more information to the states

Split states to indicate which input symbol can follow the handle.

LR(1) item

o [A->a.f3, a], where A->af3 is a production and a (lookahead of the item) is a
terminal or S.

° Lookahead has no effect on the item [A->a.[3, a] unless B is €.
° For [A->a., a], call for the reduction only if the next input symbol is a.

LR(1) item [A->a.[3, a] is valid for a viable prefix y if there is a derivation
S =>" 6Aw => Safw, where

o y=0a

o Either a is the first symbol of w or wis e and a is S.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LR Parsing Table

Changes to CLOSURE
o LR(0) items: add [B->.n] to | if [A->a.BB] isin I.

o LR(1) items: add [B->.n, b] to | if [A->a.BB, a] isin | and b is a terminal in
FIRST(Ba).

> Why b is a terminal in FIRST(Ba)
o Suppose that S =>* §Aax => daBpax

o For the same viable prefix (6a), S =>* daBby => danby
° b can be FIRST(B) or a if B =>* €. Hence, b can be FIRST(Ba)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LR(1) items

SetOfltems CLOSURE([]) {
repeat
for (each item [A — a-Bf,a] in I)
for (each production B — v in G')
for (each terminal b in FIRST(Sa))
add [B — -v,b] to set I;

until no more items are added to [;
return /;

}

SetOfltems GOTO(I,X) {
initialize J to be the empty set;
for (each item [A = a-X3,a] in I)
add item [A = aX-8,a] to set J;
return CLOSURE(.J);

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LR(1) Items

void items(G') {
initialize C' to CLOSURE({[S’ — -S, $]});
repeat
for (each set of items I in C')
for (each grammar symbol X)
if (GOTO(Z, X) is not empty and not in C')
add goTo(I, X) to C;
until no new sets of items are added to C;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LR(1) Items Example

T S I
§ 5.5 5.8 S = S
S—-CC,$
g—)ZC’,/céd . 5 - g : & CC’ v
LA S—=C-C,$ "1 s-cc.$ (&
G g’
C—-d,$ T c 7
TT— C=c-C8 | " |C—=eC-,$
C—-cC,$
C:-Z,s; D ILy: S—-5,% Ib: C—d,c/d
d S—=-CC,$ N]
d ! C = <C, ¢/d el e
Oshd;§ C-d,c/d L: C=¢C, 83
. C—-C, $
¢ I c.| & bt & &—sod $
C—e-Cye/d C—cC-,c/d -
C—)'CC,C/d f) I2 § S — C'C, $ I7 . C - d’, $
C—-d,c/d C—-C,$
yd C—)'d,$ Ig : C"}CC', C/d
d Is
= Is;: C—cC, c/d
C—d,c/d 3 ’ Iy: C—-cC- $
= C = <C, ¢/d . Ei
C —-d, c/d

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Constructing LR Parsing Table

1. Construct C' = {Iy, I1,--- ,I,}, the collection of sets of LR(1) items for
G'. '

2. State 7 of the parser is constructed from I;. The parsing action for state
i is determined as follows.

(a) If [A = a-af3,b] is in I; and GOTO(I;,a) = I;, then set ACTION[i, a]
to “shift j.” Here a must be a terminal.

(b) If [A - a-,a] isin I;, A # S', then set ACTION[i, a] to “reduce
A—-a”

(c) If [S" = S-, §] is in [;, then set ACTION[i, §] to “accept.”

If any conflicting actions result from the above rules, we say the grammar
is not LR(1). The algorithm fails to produce a parser in this case.

3. The goto transitions for state ¢ are constructed for all nonterminals A
using the rule: If GOTO(I;, A) = I;, then GOTO[i, A] = j.

4. All entries not defined by rules (2) and (3) are made “error.”

5. The initial state of the parser is the one constructed from the set of items
containing [S' — -S, §].

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Constructing LR Parsing Table

!/
- g - S = S
S'—-5,8 LAY X o = 0
S—-CC,$ C = c¢C | d
Gagd | [el B] ACTION | GOTO
G STATE
C—+-d,$ = c A C d § S €
_c — > C—¢-C,$ o i C—cC-$ O s3 s4 ' 1 2
C—=-cC,$ D
C—-d,$ 1 : acc
) Ivd 2 s6 s7 5
- C-+d-,7$ 3 s3 s4 8
4 o 23
c I3 CV Is 5 rl
C—ec-C,c/d c C—cC-,c/d
C—-¢C,c/d 5 6 s6 s7 9
C—-d,c/d 7
Ty r3
. C-—)dh /d g r2 r2
— . r2

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LALR Parsing Table

Merge LR(1) items with the same core (first component).

No shift/reduce conflicts are introduced by the merge:
o Suppose there is a conflict in a merged state.
° There are [A->a.,a] and [B->B.ay, b] in the item.

o Because the cores are the same, before the merge there is an item with [A-
>a.,a] and [B->B.ay, c].

> Hence, the original item before the merge has a shift/reduce conflict.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LALR Parsing Table

A reduce/reduce conflict can be introduced by the merge.

Exercise:
° Find LR(1) items for the grammar below
> Check how the reduce/reduce conflict is introduced by the merge.

S = S
S =+ aAd | bBd | aBe | bAe
A - ¢
B - ¢

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LALR Parsing Table
Construction

1. Construct C = {lyp, I1,...,I,}, the collection of sets of LR(1) items.

2. For each core present among the set of LR(1) items, find all sets having
that core, and replace these sets by their union.

3. Let C" = {Jo,J1,...,Jm} be the resulting sets of LR(1) items. The
parsing actions for state ¢ are constructed from J; in the same manner as

in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails
to produce a parser, and the grammar is said not to be LALR(1).

4. The GOTO table is constructed as follows. If J is the union of one or
more sets of LR(1) items, that is, J = I; N Is N --- N I, then the
cores of GOTO(I;,X), GOTO(I2,X),...,GOTO(I}, X) are the same, since
Iy, Ir,..., I} all have the same core. Let K be the union of all sets of
items having the same core as GOTO(I;, X). Then GoTo(J, X) = K.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LALR Parsing Table Example

To s 1 S = S
S’—)'S,$ S'—')S"s
$—-CC,$ s =+ CC
C—<C,cld 7 . E C = c¢cC | d
C—»-d,c/dc S5C-C,8 ~1s=cc.8
' C—-cC,$
C—-d,$
Is C_ I
L___C____. C—-)C‘C,$ i i C—cC-$
C—-cC,$ D
C—-d,8$ ACTION GOTO
la STATE
i e c d $ 5 ©
“lc—d.$
B 0 s36 s47 1 2
) A p 7 1 acc
T M 0se Ced [| CoeCe/d 2 s36 s47 9
C—-cC,c/d f)
L 36 s36 s47 89
la 47 IS ¥ R
d I4
C—d,c/d 5 T
89 r2: 2 a2

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

LR Parser and LALR Parser

LR parser and LALR parser mimic each other for the correct input.

For erroneous input,
o LR parser detects error immediately.
o LALR parser reduces several more steps and detects an error before shifting any

symbols.
STATE ACTION GOTO Sy ACTION GOTO
_ c d $|S C g a4 8 |8 @
Exercise: 0 s3 s4 112 0 s36 s47 1 2
1. Compare the steps for 1 | acc 1 acc
ded 2 s6 s7) 2 s36 s47 5
cacd. 3 s3 s4 8 36 | s36 s47 89
2. Compare the steps for ‘51 3 13 1 47 |r3 3 13
r 5) rl
ccd. 6 6 s7 9 80 [r2 r2 12
T r3
8 2 i)
9 r2

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

