
CSE 304
Compiler Design
Syntax Analysis (SLR
Parser)
YOUNGMIN KWON / TONY MIONE

Bottom-Up Parsing
Attempts to construct a parse tree beginning at the leaves and working up
towards the root.

Bottom-up parse for id * id

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Reductions
Bottom-up parsing

◦ Reducing a string w to the start symbol
◦ At each reduction step, a particular substring matching the RHS of a production is

replaced by the LHS.
◦ Rightmost derivation is traced out in reverse.

E.g.
S -> aABe
A -> Abc | b
B -> d

abbcde can be reduced to S

abbcde
aAbcde
aAde
aABe
S

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Handle Pruning
Handle:

◦ A handle of a right-sentential form γ is a production A->β and a position of γ where
the β may be found and replaced by A to produce the previous step of rightmost
derivation.
◦ If S =>* α A w => α β w, then A -> β in the position following α is a handle of α β w.

◦ E.g. In the previous example
◦ aAbcde => abbcde, handle is A->b at position 2.
◦ aAde => aAbcde, handle is A->Abc at position 2.

• Handle pruning:
– A->β in α β w is a handle.
– Reducing β to A can be thought as pruning the

handle (removing the children of A from the
parse tree).

• A Rightmost derivation in reverse can be
obtained by handle pruning

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Shift-Reduce Parsing
Shift-Reduce parsing

◦ A bottom-up parsing where a stack holds grammar symbols and an input
buffer holds the rest of the string to be parsed.

◦ While scanning the input from left to right, the parser shifts 0+ input symbols
onto the stack

◦ If it is ready to reduce the RHS of a production, pop the RHS from the stack
and push the LHS to the stack.

◦ Handles always appear at the top of the stack

4 Actions if Shift-Reduce Parsing
◦ Shift: push the next input symbol to the stack
◦ Reduce: pop the RHS of a production and push the LHS.
◦ Accept: announce the success
◦ Error: found an error

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Shift-Reduce Parsing

Why the handle is always on top of the stack?

Two possible cases of two successive steps of rightmost derivation
(1) S =>* α A z => α β B y z => α β γ y z

◦ A is replaced by β B y (has a nonterminal B), then B is replaced.

(2) S =>* α B x A z => α B x y z => α γ x y z
◦ A is replaced by y (terminals only), then B is replaced.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Shift-Reduce Parsing

•Case 1: S =>* α A z => α β B y z => α β γ y z
◦ ($ α β γ | y z $): the parser reached this configuration. γ is the handle and it is

reduced to B.
◦ ($ α β B | y z $): since B is the rightmost nonterminal in

α β B y z, the handle cannot be inside the stack.
◦ ($ α β B y | z $): the parser shifted y. β B y is the handle and it gets reduced to A.

•Case 2: S =>* α B x A z => α B x y z => α γ x y z
◦ ($ α γ | x y z $): the parser reached this configuration. γ is the handle and it is

reduced to B
◦ ($ α B x y | z $): after shifting x y, get the next handle y on top of the stack and

reduce it to A
◦ ($ α B x A | z $): configuration after the reduction.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Shift-Reduce Parsing
Viable Prefixes

◦ The set of prefixes of right-sentential forms that can appear on the stack of
shift-reduce parser.

◦ A prefix of a right-sentential form that does not continue past the right end
of the rightmost handle.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

LR Parsers
LR(k) Parsing:

◦ L: left-to-right scanning of the input.
◦ R: constructing the rightmost derivation in reverse.
◦ k: number of input symbols of lookahead.

SLR (Simple LR): easiest to implement, least powerful.

Canonical LR: most powerful, most expensive.

LALR (look-ahead LR): intermediate in power and cost. Work with most
programming language grammars.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

LR Parsing Algorithm

4 Actions of LR parser
◦ Shift and go to state s

◦ (… s1 | a1 a2…) -> (… s1 a1 s | a2 …)
◦ Reduce X -> X1 … Xn

◦ (… s0 X1 s1 … Xn sn | a1 …) -> (… s0 X s | a1 …),
where s is the goto target of s0 for symbol X.

◦ Accept: finish with success
◦ Error: found an error

• Configuration
– (s1, X1, s2, X2 … sn | a1, a2, …), where si is a state, Xi is a

symbol, ai is a token.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

LR Parsing Example
Parse id * id + id

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

LR Parsing Example

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Constructing SLR Parsing Table
States of an SLR parser represent sets of items.

LR(0) items of a grammar G is a production of G with a dot at some positions
of the RHS.

◦ E.g. A -> XYZ: A->.XYZ, A->X.YZ,
A->XY.Z, A->XYZ.

A -> ϵ: A->.

◦ An item represents how much of a production we have seen
◦ X->X.YZ means, we’ve just seen a string derivable from X and expect to see a string derivable from YZ.

Augmented grammar
◦ Add a new start symbol S’ and add a production S’ -> S
◦ To indicate when to stop.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

Constructing SLR Parsing Table

The central idea of SLR parsing is to construct a DFA recognizing the viable
prefixes.

◦ Imagine an NFA:
◦ States are the items
◦ Add a transition from A -> α.Xβ to A -> αX.β labeled X.
◦ Add a transition from A -> α.Bβ to B->.γ labeled ϵ

◦ Construct a DFA using the subset construction algorithm.

Canonical LR(0) items
◦ Give basis for the DFA states
◦ CLOSURE and GOTO functions can find the canonical LR(0) items.

Valid items
◦ Item A -> β1 . β2 is valid for a viable prefix α β1 if there is a derivation S’ =>* α A w =>

α β1 β2 w

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

CLOSURE and GOTO functions

CLOSURE(I)
◦ If I is a set of items, CLOSURE(I) is a set of items built by the two rules

◦ Add every item in I to CLOSURE(I)
◦ If A -> α.Bβγ is in CLOSURE(I) and B->γ is a production, add B->.γ to CLOSURE(I). Apply this rule until no

more new items are added to CLOSURE(I).

◦ A -> α.Bβ in CLOSURE(I) means, we might next see a substring derivable from Bβ.
Hence we add B->.γ to CLOSURE(I).

GOTO(I,X)
◦ GOTO(I,X) is the closure of the set of all items A -> αX.β such that A -> α.Xβ is in I.
◦ The closures of items are the states of DFA and GOTO(I,X) specifies the transition

from the state I under input X.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

CLOSURE and GOTO functions
Given the augmented grammar

E’ -> E
E -> E + T | T
T -> T * F | F
F -> (E) | id

CLOSURE({ E’->.E }) is
{ E’->.E, E->.E+T, E->.T, T->.T*F, T-
>.F,
F->.(E), F->.id }

GOTO({ E’->E., E->E.+T }, +) is
{ E->E+.T, T->.T*F, T->.F, F->.(E),
F->.id }

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Canonical LR(0) items

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

DFA for viable prefixes

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

Constructing SLR Parsing Tables

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

FIRST(E’): (, id
FIRST(E) : (, id
FIRST(T) : (, id
FIRST(F) : (, id
FOLLOW(E’): $
FOLLOW(E) : +,), $
FOLLOW(T) : +, *,), $
FOLLOW(F) : +, *,), $

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

Constructing SLR Parsing
Tables

Example: build an SLR Parsing Table for the grammar below.
E -> E + id
E -> id

Items
I0: E’->.E, E->.E+id, E->.id
I1: E’->E., E->E.+id
I2: E->id.
I3: E->E+.id
I4: E->E+id.

FIRST/FOLLOW
FIRST(E’) = FIRST(E) = {id}
FOLLOW(E’) = {$}
FOLLOW(E)= {+,$}

+ id $ E

0 s2 1

1 s3 acc

2 r2

3 s4

4 r1 r1

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

