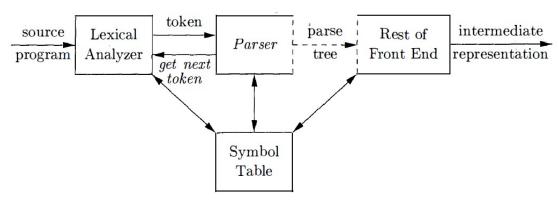
CSE 304/504 Compiler Design Syntax Analysis (Top-Down Parsing)

YOUNGMIN KWON / TONY MIONE

The Role of the Parser



Obtains strings of tokens from the lexical analyzer and verifies that the string can be generated by the grammar.

Efficient parsing methods

- Top-down Parsers:
 - Build parse trees from the root to the leaves
 - Handmade parsers (e.g. LL grammars)
- Bottom-up Parsers
 - Build parse trees from the leaves to the top
 - Generated by automated tools (e.g. LR grammars)

Context-Free Grammars

Terminals (tokens)

Basic symbols from which strings are formed

Nonterminals

Syntactic variables that denote sets of strings

Start symbol

A nonterminal that denotes the language defined by the grammar

Productions

 The manner in which the terminals and nonterminals can be combined to from strings.

Notational Conventions

- a, b, c (small earlier part of the alphabet): a single terminal symbol.
- A, B, C (large earlier part of the alphabet): a single nonterminal symbol.
- x, y, z (small later part of the alphabet): a string of terminals.
- X, Y, Z (large later part of the alphabet): a single grammar symbol (a terminal or a nonterminal symbol).
- α , β , γ (small Greek letters): a string of grammar symbols.
- S: the start symbol.

Derivations

A production is treated as a rewriting rule

 The nonterminal on the LHS is replaced by the string on the RHS of the production.

```
Example E -> E + E | E * E | (E) | - E | ID,
E => - E : "E derives - E"
E => - E => - (E) => -(ID) : derivation of -(ID) from E
E =>* -(ID)
=> : derives in one step,
=>* : derives in zero or more steps,
=>+ : derives in one or more steps.
α => * α
α => * β and β => γ, then α => * γ
```

Derivations

Let S be the start symbol of G, then a string of terminals w is in L(G) iff $S = >^+ w$.

The string w is called a sentence of G

A language generated by a grammar is called a context-free language

Two grammars are called equivalent if they generate the same language.

If $S = >^+ \alpha$, where α may contain nonterminals, then α is a **sentential form**.

- A sentence is a sentential form with no nonterminals.
- Leftmost derivation: derivations in which only the leftmost nonterminal in any sentential form is replaced.
- Rightmost derivation: derivations in which only the rightmost nonterminal in any sentential form is replaced.

Elimination of Left Recursion

A grammar is **left recursive** if there is a derivation $A = >^+ A\alpha$ for a nonterminal A and some string α .

Top-down parsing mechanism cannot handle left-recursive grammars.

In section 2.4, A -> A
$$\alpha$$
 | β is converted to A -> β R R-> α R | ϵ .

It does not eliminate left recursions involving two or more steps of derivations.

$$S \rightarrow A a \mid b$$

 $A \rightarrow A c \mid S d \mid \epsilon$

 Solution: give orders to nonterminals and if there is a production whose first RHS nonterminal is higher than the LHS, replace the RHS nonterminal with its productions.

Eliminating Left Recursion

```
for ( each i from 1 to n ) {
	for ( each j from 1 to i-1 ) {
	replace each production of the form A_i \to A_j \gamma by the
	productions A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, where
	A_j \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k are all current A_j-productions
}
eliminate the immediate left recursion among the A_i-productions
}
```

Example

- S -> A a | b,A -> A c | S d | ∈.
- Order nonterminals as S, A
- When i = 2, A -> S d is converted to
 A -> A c | A ad | bd | ∈

Left Factoring

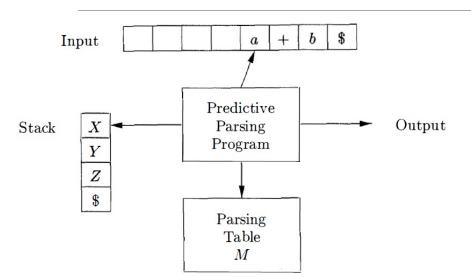
In predictive parsing, when we cannot select the production rule immediately, modify the grammar to defer the decision.

```
• stmt -> IF expr THEN stmt ELSE stmt  | \quad \text{IF expr THEN stmt}  If A -> \alpha \beta_1 | \alpha \beta_2, then modify the grammar as A -> \alpha A' A' -> \beta_1 | \beta_2 • stmt -> IF expr THEN stmt stmt' stmt' -> ELSE stmt | \epsilon
```

Top-Down Parsing

In many cases, left-recursion removal and left factoring results in a grammar that can be parsed by a recursive-decent parser without backtracking (i.e. a predictive parser).

Nonrecursive Predictive Parsing



Input: string of terminals followed by \$

Stack: sequence of grammar symbols

with \$ on the bottom.

Parsing table: M[A,a], where A is a nonterminal, a is a terminal or a.

- Let X be the symbol on top of the stack, and a be the current input
- If X = a = \$, announce the success.
- If X = a ≠ \$, pops X and advance the input pointer
- If X is nonterminal
 - If M[X,a] = {X->UVW}, replace X on top of the stack with WVU (with U on top)
 - If M[X,a] = error, declare an error

Nonrecursive Predictive Parsing

```
set ip to point to the first symbol of w;

set X to the top stack symbol;

while (X \neq \$) { /* stack is not empty */

if (X \text{ is } a) pop the stack and advance ip;

else if (X \text{ is a terminal}) error();

else if (M[X,a] \text{ is an error entry}) error();

else if (M[X,a] = X \rightarrow Y_1Y_2 \cdots Y_k) {

output the production X \rightarrow Y_1Y_2 \cdots Y_k;

pop the stack;

push Y_k, Y_{k-1}, \ldots, Y_1 onto the stack, with Y_1 on top;

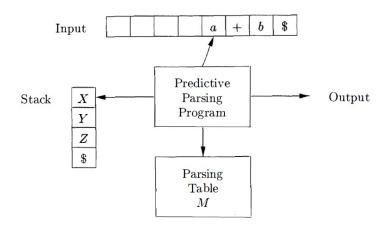
}

set X to the top stack symbol;

}
```

Example

id + id * id



Quiz: id + (id)

NON -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
\overline{E}	$E \to TE'$			$E \to TE'$			
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' o \epsilon$	
T	$T \to FT'$			$T \to FT'$			
T'		$T' o \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$	
F	$F o \mathbf{id}$			$F \to (E)$			

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id\$	
	TE'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id} \$$	output $E \to TE'$
	FT'E'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id} \$$	output $T \to FT'$
	id $T'E'$ \$	$\mathbf{id} + \mathbf{id} * \mathbf{id} \$$	output $F \to \mathbf{id}$
\mathbf{id}	T'E'\$	+ id * id\$	$\mathrm{match}\ \mathbf{id}$
id	E'\$	$+\operatorname{id}*\operatorname{id}\$$	output $T' \to \epsilon$
id	+ TE'\$	+ id * id\$	output $E' \to + TE'$
id +	TE'\$	id * id\$	match +
$\mathbf{id} \; + \;$	FT'E'\$	$\mathbf{id} * \mathbf{id} \$$	output $T \to FT'$
id +	id $T'E'$ \$	$\mathbf{id} * \mathbf{id} \$$	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	T'E'\$	* id $$$	$\mathrm{match}\ \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	*FT'E'\$	*id\$	output $T' \to *FT'$
$\mathbf{id} + \mathbf{id} \ *$	FT'E'\$	$\mathbf{id}\$$	match *
$\mathbf{id} + \mathbf{id} \ *$	id $T'E'$ \$	$\mathbf{id}\$$	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id} * \mathbf{id}$	T'E'\$	\$	match id
id + id * id	E'\$	\$	output $T' \to \epsilon$
id + id * id	\$	\$	output $E' \to \epsilon$

13

FIRST and FOLLOW

$FIRST(\alpha)$

- The set of terminals that begin the strings derived from α
- If $\alpha = >^* a \beta$ then a is in FIRST(α)
- If $\alpha = >^* \epsilon$, then ϵ is in FIRST(α)

FOLLOW(A)

- The set of terminals a that can appear immediately to the right of A in some sentential form.
- If $S = * \alpha A a \beta$, then a is in FOLLOW(A)

Compute FIRST(X)

- If X is terminal, then FIRST(X) is {X}.
- If $X \rightarrow \epsilon$ is a production, then add ϵ to FIRST(X).
- If X is nonterminal and X -> Y₁ Y₂ ... Y_k is a production,
 - Add a to FIRST(X) if $a \in FIRST(Y_i)$ and $\epsilon \in FIRST(Y_i)$ for $1 \le j \le i$.
 - Add ϵ to FIRST(X) if $\epsilon \in FIRST(Y_i)$ for $1 \le j \le k$.

FIRST and FOLLOW

Compute FIRST($X_1 ... X_n$)

- Add a to $FIRST(X_1 ... X_n)$ if $a \in FIRST(X_i)$ and $\epsilon \in FIRST(X_i)$ for $1 \le j \le i$.
- Add \in to FIRST(X₁ ... X_n) if $\in \in$ FIRST(X_i) for 1 <= j < n.

Compute FOLLOW(A)

- Add \$ to FOLLOW(S) if S is the start symbol.
- If there is a production A -> α B β , then add FIRST(β)-{ ϵ } to FOLLOW(B).
- If there is a production A -> α B or a production A -> α B β where $\epsilon \in FIRST(\beta)$, then add FOLLOW(A) to FOLLOW(B).

FIRST and FOLLOW

Example

```
E -> T E'
E' -> + T E' | ∈
T -> F T'
T' -> * F T' | ∈
F -> ( E ) | ID
```

```
FIRST(E) = FIRST(T) = FIRST(F) = { (, ID}

FIRST(E') = { +, \in }

FIRST(T') = { *, \in }

FOLLOW(E) = FOLLOW(E') = { ), $ }

FOLLOW(T) = FOLLOW(T') = { +, }, $ }

FOLLOW(F) = { +, *, }, $ }
```

Building a Predictive Parsing Table

For each production A -> α do

- For each terminal a in FIRST(α), add A -> α to M[A,a].
- If $\epsilon \in FIRST(\alpha)$, add A -> α to M[A,b] for each $b \in FOLLOW(A)$. (b is a terminal or \$)
- Make each undefined entry of M be error.

Building a Predictive Parsing Table

Example

```
F -> T F'
E' \rightarrow + T E' \in FIRST(T') = \{ *, \in \}
T -> F T'
F -> ( E ) | ID
```

```
FIRST(E) = FIRST(T) = FIRST(F) = \{ (, ID \}
                        \mathsf{FIRST}(\mathsf{E'}) = \{+, \in \}
                        FOLLOW(E) = FOLLOW(E') = \{ \}, $
T' \rightarrow * F T' \mid \in FOLLOW(T) = FOLLOW(T') = \{+, \}, \}
```

NON -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
\overline{E}	$E \rightarrow TE'$			$E \to TE'$			
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' o \epsilon$	
T	$T \to FT'$			$T \to FT'$			
T'		$T' o \epsilon$	$T' \to *FT'$		$T' o \epsilon$	$T' o \epsilon$	
F	$F o \mathbf{id}$			$F \to (E)$			

LL(1) Grammars

LL(1): a grammar whose predictive parsing table has no multiplydefined entries.

- First L: scanning input from left to right
- Second L: producing a leftmost derivation.
- 1: using 1 input symbol of lookahead

Grammar G is LL(1) iff whenever A -> $\alpha \mid \beta$ are two distinct productions of G, then the following holds

- For no terminal a do both α and β derive strings beginning with a.
- At most one of α and β can derive the empty string
- If $\beta = > * \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A).

Questions?