
CSE 304/504
Compiler Design
Syntax Analysis
(Top-Down Parsing)
YOUNGMIN KWON / TONY MIONE

The Role of the Parser

Obtains strings of tokens from the lexical analyzer and verifies that the string
can be generated by the grammar.

Efficient parsing methods
◦ Top-down Parsers:

◦ Build parse trees from the root to the leaves
◦ Handmade parsers (e.g. LL grammars)

◦ Bottom-up Parsers
◦ Build parse trees from the leaves to the top
◦ Generated by automated tools (e.g. LR grammars)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Context-Free Grammars
Terminals (tokens)

◦ Basic symbols from which strings are formed

Nonterminals
◦ Syntactic variables that denote sets of strings

Start symbol
◦ A nonterminal that denotes the language defined by the grammar

Productions
◦ The manner in which the terminals and nonterminals can be combined to

from strings.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Notational Conventions
a, b, c (small earlier part of the alphabet): a single terminal symbol.

A, B, C (large earlier part of the alphabet): a single nonterminal symbol.

x, y, z (small later part of the alphabet): a string of terminals.

X, Y, Z (large later part of the alphabet): a single grammar symbol (a
terminal or a nonterminal symbol).

α, β, γ (small Greek letters): a string of grammar symbols.

S: the start symbol.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Derivations
A production is treated as a rewriting rule

◦ The nonterminal on the LHS is replaced by the string on the RHS of the
production.

◦ Example E -> E + E | E * E | (E) | - E | ID,
E => - E : “E derives - E”
E => - E => - (E) => -(ID) : derivation of -(ID) from E
E =>* -(ID)

◦ => : derives in one step,
=>* : derives in zero or more steps,
=>+ : derives in one or more steps.

◦ α =>* α
α =>* β and β => γ, then α =>* γ

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Derivations

Let S be the start symbol of G, then a string of terminals w is in L(G) iff S =>+ w.
◦ The string w is called a sentence of G

A language generated by a grammar is called a context-free language

Two grammars are called equivalent if they generate the same language.

If S =>+ α, where α may contain nonterminals, then α is a sentential form.
◦ A sentence is a sentential form with no nonterminals.
◦ Leftmost derivation: derivations in which only the leftmost nonterminal in any

sentential form is replaced.
◦ Rightmost derivation: derivations in which only the rightmost nonterminal in any

sentential form is replaced.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

Elimination of Left Recursion

A grammar is left recursive if there is a derivation A =>+ Aα for a nonterminal A
and some string α.

◦ Top-down parsing mechanism cannot handle left-recursive grammars.

In section 2.4, A -> A α | β is converted to
A -> β R
R-> α R | ϵ.

◦ It does not eliminate left recursions involving two or more steps of derivations.
S -> A a | b
A -> A c | S d | ϵ

◦ Solution: give orders to nonterminals and if there is a production whose first RHS
nonterminal is higher than the LHS, replace the RHS nonterminal with its
productions.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Eliminating Left Recursion

Example
◦ S -> A a | b,

A -> A c | S d | ϵ.
◦ Order nonterminals as S, A
◦ When i = 2, A -> S d is converted to

A -> A c | A ad | bd | ϵ
S -> A a | b
A -> bd A’ | A’
A’ -> c A’ | ad A’ | ϵ

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 8

Left Factoring
In predictive parsing, when we cannot select the production rule
immediately, modify the grammar to defer the decision.

◦ stmt -> IF expr THEN stmt ELSE stmt
| IF expr THEN stmt

If A -> α β1 | α β2, then modify the grammar as
A -> α A’
A’ -> β1 | β2

◦ stmt -> IF expr THEN stmt stmt’
stmt’ -> ELSE stmt | ϵ

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Top-Down Parsing
In many cases, left-recursion removal and left factoring results in a
grammar that can be parsed by a recursive-decent parser without
backtracking (i.e. a predictive parser).

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Nonrecursive Predictive Parsing

Input: string of terminals followed by $
Stack: sequence of grammar symbols
with $ on the bottom.

Parsing table: M[A,a], where A is a
nonterminal, a is a terminal or $.

• Let X be the symbol on top of the stack, and a be the current input
• If X = a = $, announce the success.
• If X = a ≠ $, pops X and advance the input pointer
• If X is nonterminal

– If M[X,a] = {X->UVW}, replace X on top of the stack with WVU (with U on
top)

– If M[X,a] = error, declare an error

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Nonrecursive Predictive
Parsing

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

Example
id + id * id

• Quiz: id + (id)
(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

FIRST and FOLLOW

FIRST(α)
◦ The set of terminals that begin the strings derived from α
◦ If α =>* a β then a is in FIRST(α)
◦ If α =>* ϵ, then ϵ is in FIRST(α)

FOLLOW(A)
◦ The set of terminals a that can appear immediately to the right of A in some

sentential form.
◦ If S =>* α A a β, then a is in FOLLOW(A)

Compute FIRST(X)
◦ If X is terminal, then FIRST(X) is {X}.
◦ If X -> ϵ is a production, then add ϵ to FIRST(X).
◦ If X is nonterminal and X -> Y1 Y2 … Yk is a production,

◦ Add a to FIRST(X) if a Î FIRST(Yi) and ϵÎ FIRST(Yj) for 1 <= j < i.
◦ Add ϵ to FIRST(X) if ϵÎ FIRST(Yj) for 1 <= j <= k.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

FIRST and FOLLOW

Compute FIRST(X1 … Xn)
◦ Add a to FIRST(X1 … Xn) if a ÎFIRST(Xi) and ϵÎFIRST(Xj) for 1 <= j < i.
◦ Add ϵ to FIRST(X1 … Xn) if ϵÎFIRST(Xj) for 1 <= j < n.

Compute FOLLOW(A)
◦ Add $ to FOLLOW(S) if S is the start symbol.
◦ If there is a production A -> α B β, then add FIRST(β)-{ϵ} to FOLLOW(B).
◦ If there is a production A -> α B or a production A -> α B β where ϵ ÎFIRST(β), then

add FOLLOW(A) to FOLLOW(B).

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 15

FIRST and FOLLOW
Example

E -> T E’
E’ -> + T E’ | ϵ
T -> F T’
T’ -> * F T’ | ϵ
F -> (E) | ID

FIRST(E) = FIRST(T) = FIRST(F) = { (, ID }
FIRST(E’) = { +, ϵ }
FIRST(T’) = { *, ϵ }
FOLLOW(E) = FOLLOW(E’) = {), $ }
FOLLOW(T) = FOLLOW(T’) = { +,), $ }
FOLLOW(F) = { +, *,), $ }

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

Building a Predictive Parsing
Table

For each production A -> α do
◦ For each terminal a in FIRST(α), add A -> α to M[A,a].
◦ If ϵ Î FIRST(α), add A -> α to M[A,b] for each b Î FOLLOW(A). (b is a terminal or $)
◦ Make each undefined entry of M be error.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

Building a Predictive Parsing Table

Example

E -> T E’
E’ -> + T E’ | ϵ
T -> F T’
T’ -> * F T’ | ϵ
F -> (E) | ID

FIRST(E) = FIRST(T) = FIRST(F) = { (, ID }
FIRST(E’) = { +, ϵ }
FIRST(T’) = { *, ϵ }
FOLLOW(E) = FOLLOW(E’) = {), $ }
FOLLOW(T) = FOLLOW(T’) = { +,), $ }
FOLLOW(F) = { +, *,), $ }

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

LL(1) Grammars
LL(1): a grammar whose predictive parsing table has no multiply-
defined entries.

◦ First L: scanning input from left to right
◦ Second L: producing a leftmost derivation.
◦ 1: using 1 input symbol of lookahead

Grammar G is LL(1) iff whenever A -> α | β are two distinct productions
of G, then the following holds

◦ For no terminal a do both α and β derive strings beginning with a.
◦ At most one of α and β can derive the empty string
◦ If β =>* ϵ, then α does not derive any string beginning with a terminal in

FOLLOW(A).

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

