
CSE304
Compiler Design
Runtime Storage
Management
TONY MIONE

Lecture Outline
Scope

CSE304 - TONY MIONE, 2020

Run-time Storage
Management
•Static Allocation

•Stack Allocation

•Heap Allocation
◦ Programmer-driven allocation/deallocation
◦ Garbage Collection

CSE304 - TONY MIONE, 2020

Static Allocation
•Typically exist from start to end of execution (but may have smaller
scope)

Allocated in a block of memory specifically for data
◦ Read Only data segment
◦ Read/write data segment

•Include:
◦ Global variables
◦ Program’s machine code [read only]
◦ Local function variables that retain value from one call to the next
◦ Literals and constants

CSE304 - TONY MIONE, 2020

Dynamic Allocation
•Typically allocated on a ‘stack’

◦ Stack grows downward from higher addresses
◦ Each function call creates an area called a frame or activation record
◦ Variables do not have same address from one call to next
◦ Referenced with a constant offset to the stack frame’s base

•Include:
◦ Function parameters
◦ Function’s local variables

CSE304 - TONY MIONE, 2020

Dynamic Allocation

CSE304 - TONY MIONE, 2020

void a(int invalue)
{

int c,d;
…

}
void b(int val1, int val2)
{

float res1 = (float) val1 / (float) val2;
a(res1);

}
…
int main(int argc, char **argv)
{

int v1 = 1;
int v2 = 2;
b(v1, v2);
….

}

Bottom of Stack

Current frame pointer

b’s stack frame

a’s stack frame

Top of stack

Unused stack space

Current program counter

Heap Allocation
•Allocation occurs as a result of specific programmer actions

◦ Explicit allocation (i.e. malloc() call from C run time library)
◦ May occur on object creation (i.e. new operator in C++)

CSE304 - TONY MIONE, 2020

Managing the Heap
•Language may require allocated space to be freed by developer

◦ free() in C
◦ delete in C++

•Some languages provide automatic space reclamation (when object is
not referenced by any variable)

•Either must have facilities to track heap usage

CSE304 - TONY MIONE, 2020

Managing the Heap
•Heap starts as a single block

•Free space usually managed by one or more linked lists

•Allocation and de-allocation of different size memory blocks tend to
leave ‘holes’. This is called Fragmentation.

CSE304 - TONY MIONE, 2020

Fragmentation
•Fragmentation:

◦ Non-contiguous blocks of memory
◦ Results from alloc/dealloc of memory over time

•Types:
◦ Internal – Wasted space within allocated memory blocks

◦ object uses less space than what was allocated
◦ è Alignment requirements force the use of padding that is not needed by the object

◦ External – Wasted space outside allocated blocks
◦ small unusable chunks of free memory (not large enough for any request)
◦ Severity of fragmentation varies based on

◦ Memory allocation strategy [first fit, best fit, worst fit, etc]
◦ Specific program behavior

CSE304 - TONY MIONE, 2020

Fragmentation

CSE304 - TONY MIONE, 2020

Heap at start of program

Freelist

Fragmentation

CSE304 - TONY MIONE, 2020

Heap at start of program

Freelist

malloc(10000);

Fragmentation

CSE304 - TONY MIONE, 2020

Heap after 1st allocation request

Freelist

malloc(2000);

malloc(2000);

Fragmentation

CSE304 - TONY MIONE, 2020

Heap after 3 allocation requests

Freelist

Fragmentation

CSE304 - TONY MIONE, 2020

Heap after 3 allocation requests

Freelist

free(addr);

Fragmentation

CSE304 - TONY MIONE, 2020

Heap after allocation requests and a free() call

Freelist

Fragmentation

CSE304 - TONY MIONE, 2020

Heap after numerous allocations and de-allocations

Freelist

malloc(10000);

???
FAIL!

This is an outcome of External Fragmentation

Fragmentation

CSE304 - TONY MIONE, 2020

Freelist

These are part of allocated blocks that the allocating
program is not using.

Fragmentation

CSE304 - TONY MIONE, 2020

Freelist

These are part of allocated blocks that the allocating
program is not using.

This wasted space is due to Internal Fragmentation

Garbage Collection
•Languages may provide a garbage collector as part of their runtime system

•Process usually triggered
• When free memory drops below some threshold
• On the first failed memory allocation request

•Purpose:
◦ Find variable space no longer referenced
◦ Automatically de-allocate and reclaim space

•Does not usually include Compaction
◦ More difficult than just freeing blocks since pointers must be corrected

CSE304 - TONY MIONE, 2020

Garbage Collection
•Advantages:

◦ Less error prone than relying on developer to properly allocate/deallocate
space

◦ Helps assure sufficient space will be available for dynamic object creation

•Disadvantages:
◦ Algorithms add complexity to language system
◦ Costly and it slows run-time performance

CSE304 - TONY MIONE, 2020

Garbage Collection
•Language tracks heap usage

◦ Understands language constructs (pointers, structures, objects, etc.)

•Tracking methods
◦ reference counts to allocated blocks
◦ tracing a collection of objects

CSE304 - TONY MIONE, 2020

Garbage Collection Algorithms
•Mark-and-sweep

•Pointer reversal

•Stop-and-copy

•Generational collection

•Conservative collection

CSE304 - TONY MIONE, 2020

Mark-and-sweep
1. Mark all blocks useless

2. For each pointer outside the heap (local or global program variables):
◦ Follow pointers to heap memory
◦ Mark block ‘useful’
◦ Recursively follow pointers from that structure/object to others

3. Walk through heap sequentially, moving ‘useless’ blocks to the free list

4. Disadvantage: Costs stack space due to recursion

CSE304 - TONY MIONE, 2020

Mark and Sweep

CSE304 - TONY MIONE, 2020

Global Storage

Stack

Heap

Useless (unreferenced)

Useful (referenced)

Pointer reversal
•As blocks are explored (step 2)

◦ Save a pointer to explore
◦ Use field to point back to last explored block

•Advantage:
◦ Avoids excessive stack space usage (no recursion)

CSE304 - TONY MIONE, 2020

Stop and Copy
•Divide heap in two

•Use only one of the two parts

•At collection time:
◦ For each visited block

◦ Move to ‘other’ heap
◦ Mark first block ‘useful’ with a forwarding pointer
◦ If block was already marked useful, update non-heap pointer

◦ When done, switch the ‘current’ heap to the newly created one (all pointers
in code have been updated)

CSE304 - TONY MIONE, 2020

Stop and Copy

CSE304 - TONY MIONE, 2020

Heap
Active Backup

Global Storage

Stack
1 23

Active Backup

Stack
1 23

Stop and Copy

CSE304 - TONY MIONE, 2020

HeapGlobal Storage

1

Active Backup

Stack
1 23

Stop and Copy

CSE304 - TONY MIONE, 2020

HeapGlobal Storage

1 2

Active Backup

Stack
1 23

Stop and Copy

CSE304 - TONY MIONE, 2020

HeapGlobal Storage

1 2 3

ActiveBackup

Stack

Stop and Copy

CSE304 - TONY MIONE, 2020

HeapGlobal Storage

1 2 3

Stop and Copy
•Advantages:

◦ Eliminates external fragmentation (uses compaction)
◦ Run-time proportional to ‘useful’ blocks not all blocks

•Disadvantage:
◦ Can only use ½ of the heap at one time

CSE304 - TONY MIONE, 2020

Generational Collection
•Idea: most allocations are short-lived

•Heap is divided into several sections
◦ Usually 2 but can be more
◦ Current allocations are ‘youngest’
◦ Collector typically only runs in ‘youngest’ generation area of heap

•Each time a block survives collection, it moves to an ‘older’ generation
area (ala Stop-and-Copy)

CSE304 - TONY MIONE, 2020

Generational Collector
•Garbage collector must be prepared to collect in all heap generations

•Usually, cost is proportional to youngest heap region size

CSE304 - TONY MIONE, 2020

Conservative Collection
•Used when no detailed structure knowledge is available

•Similar to Mark-and-sweep

•Procedure:
◦ Scan stack and global space
◦ Identify pointers by checking bit pattern against heap address range
◦ Mark block ‘useful’ and scan block for other words that ‘look like’ pointers

Observation
◦ Note that we are marking blocks based on a bit pattern so it is only a ‘guess’

but is conservative so may miss opportunities to reclaim space

CSE304 - TONY MIONE, 2020

Questions

CSE304 - TONY MIONE, 2020

