
CSE 304/504
Compiler Design
Introduction to
Symbol Management

Lecture Outline
Binding

Lifetime

Scope

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019
2

Binding
An association between a name and an object (data)

Different from object creation/destruction

Binding Time – When the binding occurs
◦ Earliest: Language Design Time
◦ Latest: Run Time

Static vs Dynamic Binding

Deep vs Shallow Binding

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 3

Binding Time
Language Design Time

◦ When language is first designed
◦ Basic types, Control flow constructs, etc.

Language Implementation Time
◦ Implementation specific behavior allowed by language standard
◦ Ex: Size of long, short, char, and int type in C

Compile Time
◦ Mapping of some variables to memory
◦ Ex: C static variables

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 4

Binding Time
Link Time

◦ Linker resolves inter-module references
◦ Ex: C automatic variables (outside any function) from source module outside

current c file

Load Time
◦ Final runtime address selected by ‘loader’ (mostly in earlier OS)
◦ Less common today

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 5

Binding Time
Run Time

◦ During execution – VERY broad
◦ Program startup
◦ Module entry
◦ Elaboration
◦ Subroutine call
◦ Block Entry
◦ Statement execution

◦ Ex: C automatic variables inside function allocated on a stack frame

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 6

Static vs Dynamic Binding
Static Binding

◦ Typically, bindings decided prior to run time
◦ Bindings in compiled languages tend to be static
◦ More efficient at run-time

Dynamic Binding
◦ Typically, bindings decided at run time
◦ Bindings in interpreted languages tend to be dynamic
◦ Less efficient, more flexible

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 7

Deep vs Shallow Binding
With dynamic binding

◦ Referencing Environment – visible variables when a function is called
◦ Some languages allow function/procedure as argument
◦ Which variable set used when that function/procedure argument is called?

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 8

Deep vs Shallow Binding

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b); // Call a and ask it to call b

9

Deep vs Shallow Binding

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b); // Call a and ask it to call b

Q: When ‘b’ is called, will it or
will it not print Cool!

10

Deep vs Shallow Binding

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b); // Call a and ask it to call b

Q: When ‘b’ is called, will it or
will it not print Cool!

A: It Depends!

11

Deep vs Shallow Binding

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b); // Call a and ask it to call b

Q: When ‘b’ is called, will it or
will it not print Cool!

A: It Depends!

Deep binding occurs at the
call to a() so the ‘referencing’
environment is a snapshot at
this point in time.

12

Deep vs Shallow Binding

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b); // Call a and ask it to call b

Q: When ‘b’ is called, will it or
will it not print Cool!

A: It Depends!

Shallow binding occurs at the
actual use of the symbol inside
of a() so the ‘referencing’
environment is from the
immediately surrounding
procedure.

13

Related Concepts
Declaration versus Definition

Declaration Order and Recursive Types

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 14

Declaration versus Definition
Declaration – Tells the compiler the name of a variable

Definition – This describes variable sufficiently to create the object and
allocate memory

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 15

Exercise:
Declaration versus Definition

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

extern int anarray[10];
struct employee;

int a, b;
float c;
struct employee *eptr;
…

struct employee {
char name[40];
int type;

}

Which of the following are Declarations? Which are Definitions?

16

Exercise:
Declaration versus Definition

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

extern int anarray[10];
struct employee;

int a, b;
float c;
struct employee *eptr;
…

struct employee {
char name[40];
int type;

}

Declaration – insufficient
to create objects

17

Exercise:
Declaration versus Definition

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

extern int anarray[10];
struct employee;

int a, b;
float c;
struct employee *eptr;
…

struct employee {
char name[40];
int type;

}

Declaration – insufficient
to create objects

Definitions – Can allocate the objects
since int and float types have known
sizes for a particiular CPU. Also, all
pointers on a specific CPU
are the same size (i.e. 4 or 8 bytes)

Definition – With the field list
included, the compiler can determine
that this will need 40 bytes plus the
size of an int type.

18

For Thought:
Declaration versus Definition

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

struct employee {
char name[40];
int type;

}

int a, b;
float c;
struct employee *eptr;
…

Why not just move the
definition ahead of its use??

19

Declaration Order
The order in which variables are declared may be important. Questions:

◦ Does a variable binding exist for the whole block in which it is declared
(whole-block declaration) or only from it’s declaration point forward?

◦ If a variable in an outer block with the same name exists, which value is used
for assignment ahead of local definition?

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 20

Declaration Order Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

const int a = 10;
int main(int argc, char **argv) {

int b = a;
int a = 5;
printf ("b is %d, a is %d\n", b, a);

...Program tb2;
Var

a :Integer := 10;
Procedure tryit;
Var

b : Integer := a;
a : Integer := 5;

Begin
Writeln("b=", b, ", a=", a);

End;

C – b gets the value of
the ‘global’ symbol a

Pascal – This throws an error
since Pascal uses the concept of
‘whole-block’ declaration

21

Lifetime and Storage
Allocation
Storage Allocation Types

◦ Static
◦ Absolute address
◦ Does not change

◦ Stack
◦ Address assigned entering a scope like a function or block
◦ Last-in, First-out
◦ Variable may not exist at certain points

◦ Heap
◦ Storage allocated ad-hoc (usually by programmer)
◦ Complex storage management scheme needed

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 22

Lifetime
Underlying concepts

◦ Creation of Objects
◦ Creation of bindings
◦ Use of references
◦ Deactivation/reactivation of bindings
◦ Destruction of bindings
◦ Destruction of objects

Lifetime – The time between the creation of a binding and the
destruction of a binding

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 23

Lifetime

Lifetime
Ability to reference a variable may differ from lifetime

◦ References
◦ Parameters in subroutines
◦ Okay as long as variable storage still allocated

◦ Dangling References
◦ Storage deallocated while binding still active
◦ Ex: Reference to local variable returned to caller

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 24

Scope
The textual range where a name-to-object binding is ‘active’

Static vs. Dynamic Scoping

Elaboration

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 25

Static Scope
Static scope uses a name-to-object binding from the innermost lexical
scope

Can be determined at compile time

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 26

Static Scope - Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;

27

begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=",
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.

Static Scope - Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;

28

begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=",
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.

Static Scope - Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;

29

begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=",
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.

Static Scope - Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;

30

begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=",
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.

Dynamic Scope
Dynamic Scoping uses name-to-object binding from the inner most
scope in the run-time call sequence

Difficult or impossible to resolve at compile time

Run-time type-checking may reveal semantic errors due to call
sequence

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 31

Dynamic Scope - Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

$a = 10;

sub printVal()
{

print "In printVal: ";
print "a is: ", $a, "\n";

}

sub sub1()
{

local $a;
$a = 15;
printVal();

}

print "Calling printVal\n";
printVal();
print "Calling sub1\n";
sub1();
print "Calling printVal again from main code\n";
printVal();

32

Dynamic Scope - Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

$a = 10;

sub printVal()
{

print "In printVal: ";
print "a is: ", $a, "\n";

}

sub sub1()
{

local $a;
$a = 15;
printVal();

}

print "Calling printVal\n";
printVal();
print "Calling sub1\n";
sub1();
print "Calling printVal again from main code\n";
printVal();

33

Dynamic Scope - Example

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019

$a = 10;

sub printVal()
{

print "In printVal: ";
print "a is: ", $a, "\n";

}

sub sub1()
{

local $a;
$a = 15;
printVal();

}

print "Calling printVal\n";
printVal();
print "Calling sub1\n";
sub1();
print "Calling printVal again from main code\n";
printVal();

34

Elaboration
Occurs at run-time

Creation of a binding

Also, allocation of space for stack variable

Also, possibly, initialization

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 35

Questions

(C) CSE304/504 - TONY MIONE - SUNY KOREA, 2019 36

