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Binding
An association between a name and an object (data)

Different from object creation/destruction

Binding Time – When the binding occurs
◦ Earliest: Language Design Time
◦ Latest: Run Time

Static vs Dynamic Binding

Deep vs Shallow Binding
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Binding Time
Language Design Time

◦ When language is first designed
◦ Basic types, Control flow constructs, etc.

Language Implementation Time
◦ Implementation specific behavior allowed by language standard
◦ Ex: Size of long, short, char, and int type in C

Compile Time
◦ Mapping of some variables to memory
◦ Ex: C static variables
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Binding Time
Link Time

◦ Linker resolves inter-module references
◦ Ex: C automatic variables (outside any function) from source module outside 

current c file

Load Time
◦ Final runtime address selected by ‘loader’ (mostly in earlier OS)
◦ Less common today

(C) CSE304/504  - TONY MIONE - SUNY KOREA, 2019 5



Binding Time
Run Time

◦ During execution – VERY broad
◦ Program startup
◦ Module entry
◦ Elaboration
◦ Subroutine call
◦ Block Entry
◦ Statement execution

◦ Ex: C automatic variables inside function allocated on a stack frame
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Static vs Dynamic Binding
Static Binding

◦ Typically, bindings decided prior to run time
◦ Bindings in compiled languages tend to be static
◦ More efficient at run-time

Dynamic Binding
◦ Typically, bindings decided at run time
◦ Bindings in interpreted languages tend to be dynamic
◦ Less efficient, more flexible
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Deep vs Shallow Binding
With dynamic binding

◦ Referencing Environment – visible variables when a function is called
◦ Some languages allow function/procedure as argument
◦ Which variable set used when that function/procedure argument is called?
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Deep vs Shallow Binding
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int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b);          // Call a and ask it to call b
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Deep vs Shallow Binding
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int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b);          // Call a and ask it to call b

Q: When ‘b’ is called, will it or 
will it not print Cool!
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Deep vs Shallow Binding
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int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b);          // Call a and ask it to call b

Q: When ‘b’ is called, will it or 
will it not print Cool!

A: It Depends!
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Deep vs Shallow Binding
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int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b);          // Call a and ask it to call b

Q: When ‘b’ is called, will it or 
will it not print Cool!

A: It Depends!

Deep binding occurs at the 
call to a() so the ‘referencing’
environment is a snapshot at
this point in time.
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Deep vs Shallow Binding
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int key_var = 5;

procedure b() {
if (key_var > 2) {

print “Cool!” }

procedure a(callme:procedure) {
int key_var = -2;
callme(); }

a(b);          // Call a and ask it to call b

Q: When ‘b’ is called, will it or 
will it not print Cool!

A: It Depends!

Shallow binding occurs at the
actual use of the symbol inside
of a() so the ‘referencing’
environment is from the
immediately surrounding 
procedure.
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Related Concepts
Declaration versus Definition

Declaration Order and Recursive Types
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Declaration versus Definition
Declaration – Tells the compiler the name of a variable

Definition – This describes variable sufficiently to create the object and 
allocate memory
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Exercise:
Declaration versus Definition

(C) CSE304/504  - TONY MIONE - SUNY KOREA, 2019

extern int anarray[10];
struct employee;

int a, b;
float c;
struct employee *eptr;
…

struct employee {
char name[40];
int type;

}

Which of the following are Declarations? Which are Definitions?
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Exercise:
Declaration versus Definition
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extern int anarray[10];
struct employee;

int a, b;
float c;
struct employee *eptr;
…

struct employee {
char name[40];
int type;

}

Declaration – insufficient
to create objects
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Exercise:
Declaration versus Definition
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extern int anarray[10];
struct employee;

int a, b;
float c;
struct employee *eptr;
…

struct employee {
char name[40];
int type;

}

Declaration – insufficient
to create objects

Definitions – Can allocate the objects
since int and float types have known
sizes for a particiular CPU. Also, all
pointers on a specific CPU
are the same size (i.e. 4 or 8 bytes)

Definition – With the field list 
included, the compiler can determine
that this will need 40 bytes plus the
size of an int type.
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For Thought:
Declaration versus Definition
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struct employee {
char name[40];
int type;

}

int a, b;
float c;
struct employee *eptr;
…

Why not just move the 
definition ahead of its use??
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Declaration Order
The order in which variables are declared may be important. Questions:

◦ Does a variable binding exist for the whole block in which it is declared 
(whole-block declaration) or only from it’s declaration point forward?

◦ If a variable in an outer block with the same name exists, which value is used 
for assignment ahead of local definition?
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Declaration Order Example
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const int a = 10;
int main(int argc, char **argv) {

int b = a;
int a = 5;
printf ("b is %d, a is %d\n", b, a);

...Program tb2;
Var

a :Integer := 10;
Procedure tryit;
Var

b : Integer := a;
a : Integer := 5;

Begin
Writeln("b=", b, ", a=", a);

End;

C – b gets the value of 
the ‘global’ symbol a

Pascal – This throws an error 
since Pascal uses the concept of
‘whole-block’ declaration
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Lifetime and Storage 
Allocation
Storage Allocation Types

◦ Static
◦ Absolute address
◦ Does not change

◦ Stack
◦ Address assigned entering a scope like a function or block
◦ Last-in, First-out
◦ Variable may not exist at certain points

◦ Heap
◦ Storage allocated ad-hoc (usually by programmer)
◦ Complex storage management scheme needed
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Lifetime
Underlying concepts

◦ Creation of Objects
◦ Creation of bindings
◦ Use of references
◦ Deactivation/reactivation of bindings
◦ Destruction of bindings
◦ Destruction of objects

Lifetime – The time between the creation of a binding and the 
destruction of a binding
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Lifetime
Ability to reference a variable may differ from lifetime

◦ References
◦ Parameters in subroutines
◦ Okay as long as variable storage still allocated

◦ Dangling References
◦ Storage deallocated while binding still active
◦ Ex: Reference to local variable returned to caller
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Scope
The textual range where a name-to-object binding is ‘active’

Static vs. Dynamic Scoping

Elaboration
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Static Scope
Static scope uses a name-to-object binding from the innermost lexical 
scope

Can be determined at compile time
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Static Scope - Example
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Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;
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begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=", 
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.



Static Scope - Example
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Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;
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begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=", 
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.



Static Scope - Example
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Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;
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begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=", 
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.



Static Scope - Example
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Program testscope;
Var

a : Integer := 10;
b : Integer := 20;

Procedure tryit1;
Var

a : Integer := 30;
Procedure tryit2;
var

c : Integer := a;
d : Integer := b;

begin
Writeln("c=", c, ", d=", d);
a := 501;
b := 601;

end;
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begin
Writeln("b=", b, ", a=", a);
tryit2;
Writeln("b=", b, ", a=", a);

end; { testscope }
begin

Writeln("Before tryit1 : a=", a, ", b=", 
b);

tryit1;
Writeln("After tryit1 : a=", a, ", b=", b);

end.



Dynamic Scope
Dynamic Scoping uses name-to-object binding from the inner most 
scope in the run-time call sequence

Difficult or impossible to resolve at compile time

Run-time type-checking may reveal semantic errors due to call 
sequence
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Dynamic Scope - Example
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$a = 10;

sub printVal()
{

print "In printVal: ";
print "a is: ", $a, "\n";

}

sub sub1()
{

local $a;
$a = 15;
printVal();

}

print "Calling printVal\n";
printVal();
print "Calling sub1\n";
sub1();
print "Calling printVal again from main code\n";
printVal();
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Dynamic Scope - Example
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$a = 10;

sub printVal()
{

print "In printVal: ";
print "a is: ", $a, "\n";

}

sub sub1()
{

local $a;
$a = 15;
printVal();

}

print "Calling printVal\n";
printVal();
print "Calling sub1\n";
sub1();
print "Calling printVal again from main code\n";
printVal();
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Dynamic Scope - Example
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$a = 10;

sub printVal()
{

print "In printVal: ";
print "a is: ", $a, "\n";

}

sub sub1()
{

local $a;
$a = 15;
printVal();

}

print "Calling printVal\n";
printVal();
print "Calling sub1\n";
sub1();
print "Calling printVal again from main code\n";
printVal();
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Elaboration
Occurs at run-time

Creation of a binding

Also, allocation of space for stack variable

Also, possibly, initialization
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Questions
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