CSE 304 Compiler
Design
L ex & Yacc

NNNNNNNNNNNNNNNNNNNNN

Lex

A lexical scanner tool

Lex program is comprised of 3 sections separated by %%
o Definition Section:

o Any initial C program code, like header files, comes here.
° The C code needs to be surrounded by %{ and %} delimiters.

> Rules Section:

o Each rule is a pair of a pattern (a regular expression) and an action.

° When a pattern is recognized, the corresponding action is executed.

o The rules are evaluated from the first to the last and when there are multiple matches in a pattern the longest one is chosen.
o User subroutine section:

° Any legal C code can come here.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Regular Expressions in Lex

. matches any single character except for \n.

* matches zero or more copies of the preceding expression.
+ matches one or more copies of the preceding expression.
? matches zero or one occurrence of the preceding expression.

{}if 1 ~¥ 2 numbers or a name is contained
° how many time the previous pattern is allowed if it contains 1 ~ 2 numbers.
o A{1,3}: one to three occurrences of A.

o substitution of a name if it contains a name.

\ to escape meta-characters
o \n for the newline character, * for the literal asterisk character.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Regular Expressions in Lex

N matches the beginning of a line

S matches the end of a line

[] character class
> (one instance of) any characters inside the brackets.

o if the first character is *, match any characters except for the ones in the brackets.
° - can be used to indicate the range like a-z, 0-9.

o - or] at the first character position is interpreted literally.

| matches either the preceding expression or the following expression
o e.g.cow | pig | sheep

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Regular Expressions in Lex

o ”

... matches everything within the quotation marks literally except for the C escape sequence.

/ matches the preceding expression only if followed by the following expression.
o e.g. 0/ 1 matches 0 in the string “01” but not in the string “02”

() group a series of regular expressions together

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Regular Expressions (Examples)

[0-9] matches a digit

[0-9]+ matches a number
[a-zA-Z_][a-zA-Z_0-9]* matches an identifier
[\t\n\r] matches a whitespace

#.* matches the remainder of a line from the # character (a useful expression for comments)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

o\
—

/*lex1.1l: Lex example program*/
#include <stdio.h>

o© oo
o0 —~

[\t\n\r] ; /*semicolon means no action*/
“exit” { return 1; } /*returns 1 to the caller of yylex()*/
[a-zA-Z]+ { printf (“found a word: %$s\n”, yytext); } /*yytext contains the matching text*/
[0-9]+ { printf (“found a number: %$s\n”, yytext); 1}

{ printf (“found a special char: %s\n”, yytext); }
int yywrap() { return 1; } /*ignore this function for now*/

int main(int argc, char** argv)

{

yylex(); /*yylex tries to match the rule section*/

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Yacc

A parser generator tool

Like Lex, Yacc program is comprised of 3 sections separated by %%

Definition Section:
> Any initial C code, like header files, comes here. It needs to be surrounded by % { and %} delimiters.

o Tokens (terminals) are defined here after %token keyword (single character tokens don’t need definitions)
° e.g. stoken NUMBER IDENTIFIER

o Token associativity (¥ 1eft, %right, %nonassoc)and precedence (by their order of definitions from
low to high) are defined here

> Example precedence and associativity: UMINUS has the highest priority and ‘+’, *’ have the lowest priority

Sleft ‘+/ -/
Sleft ‘x7 /!
$nonassoc UMINUS (unary minus)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Yacc

Definition section (continued)
> Symbols (terminals and nonterminals) can have types defined in $union keyword.

Sunion {
double dbl;
char* str;

}
o With the types we can define

stoken<dbl> NUMBER
$token<str> IDENTIFIER
stype<dbl> expr term factor

° |t is customary to use all upper case names for terminals and all or
mostly lower case names for others.

User subroutine section (after the second %%)
° Any legal C code can come here.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Yacc (Rule Section)

A program area in between the first %% and the second %%

A list of productions (rules) are defined in the rule section
o Each rule defines a production

o Arrow (—>)is replaced by :’

o The end of a rule is marked by V7

o The Left Hand Side (LHS) of the first rule is the start symbol (the root of the parse tree) unless overridden by
$start declaration.

Actions, C codes wrapped in { and }, can be added to the rules.
° As soon as a rule matches, the corresponding action is executed.

o The values of Right Hand Side (RHS) symbols are $1, $2,
° The value of the LHS symbolis $$

Example

expr : expr ‘+’ term { S$S
| expr ‘-’ term { $S

Il
Ny
Y

I +
Wy
ww
——

.
14

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Working with Lex

yyparse() is the function that starts the parsing.

yyparse calls yylex() when it needs a token.

The tokens defined in a yacc program will be added to y.tab.h file and a lex program can include
this header file to use the symbols.

$union { _ #fdefine NUMBER 257
double dbl; will be converted to #define IDENTIFIER 258
char* str; typedef union {

} double dbl;

Stoken<dbl> NUMBER char* str;

Stoken<str> IDENTIFIER } YYSTYPE;

extern YYSTYPE yylval;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

o\°
—

/*file name: calc.y*/ calc : expr ‘\n’ { printf("ans = $1f\n", $1); }
#include <stdio.h> ’
#include <stdlib.h> expr : expr '+' term { $$ = $1 + $3; }

int yylex () ; | expr '-' term { 8¢ = S1 - $83; }
int yyerror (char*); | term { 88 = S1; }

%} ;

sunion { term : term '*' factor { $$ = S1 * $3; }
double dval; | term '/' factor { $$ = S$1 / $3; 1}

}i | factor { $8 = S51; }

$token <dval> NUMBER ;

stype <dval> expr term factor factor : '(' expr ')' { $$ = $2; }

% | NUMBER { $$ = $1; }

Rule section is on the right .
int main(int argc, char**argv)
{

yyparse () ;

}

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

o\°
—_

/*file name: calc.l*/
#include <string.h>
#include “calc.tab.h”

— O\O O\O
o0 —~

\t\r]+ ; /*ignore white spaces*/
[0-91+(\.[0-91+)2) | (\.[0-9]+) {
yvylval.dval = atof (yytext); /*set the value of the token*/
return NUMBER; /*return the token NUMBER*/
}
- I\n A
return yytext[0]; /*return the single character tokens*/
}
int yywrap() { return 1; } /*ignore this function for now*/

int yyerror (char*) { return 1; } /*ignore this function for now*/

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

How the parser works

The parser created by yacc is LALR(1) parser, an LR parser with 1 look ahead. We will learn LR parsers later.

LR parsers use a stack, an action table, and a goto table to parse the input.

The parsing algorithm can be described by actions on configuration

Configuration
o A stack of states and symbols (terminals and nonterminals), a delimiter |, and unhandled input tokens
° (S1, X1, S5, X5 ... S, | T1, Ty, ...), where S; is a state, X; is a symbol, T; is a token.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

How LR parsers work

INPUT a ...Ia,- o la | %

4 Actions of LR parser

- ST S, e——— g = OQUTPUT
o Shift and go to state S ACK S Parsing Program
o (S Ty Ty > (S, TS| T,) X

> Reduce X -> X, ... X, [Sor -1 § h
o (e SgX Sy XS | Ty o) > (. SgXS | Ty o), Xia |

where S is the goto target of S, for symbol X.

. : action R0I0
o Accept: finish with success 5o

o Error: found an error

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

How the parser works

To see how the parser works, let’s create a yacc program (phrase.y)

phrase: cart animal CART
| work animal PLOW

cart aﬁimal: HORSE
o | GOAT

work animalg HORSE
o | OX

Run /usr/bin/bison phrase.y —v will produce phrase.output and other files

Nﬁxt slide shows some of the states, actions (shift, reduce, accept), and goto tables of each state in
phrase.y.

The dots “ in the first lines of each state are where in the productions the state represents.

The last part shows how the configuration changes for the input HORSE CART.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

phrase.output file (add -v option to bison) state 2
4 cart animal: GOAT
0 Saccept: phrase $end (yacc added this rule) $default reduce using rule 4 (cart ...)
1 phrase: cart animal CART state 4
2 | work animal PLOW 0 Saccept: phrase . Send
3 cart animal: HORSE | $end shift, and go to state 7
4 | GOAT state 5
5 work animal: HORSE 1 phrase: cart animal . CART
S | OX CART shift, and go to state 8
state 7
States 0 Saccept: phrase $end
state 0 Sdefault accept
0 Saccept: . phrase S$end | state 8
HORSE shift, and go to state 1 1 phrase: cart animal CART
GOAT shift, and go to state 2 Sdefault reduce using rule 1 (phrase)
0OX shift, and go to state 3
phrase go to state 4 Configurations for the input “HORSE CART”
cart _animal go to state 5 (0O | HORSE CART Send)
work animal go to state 6 (0O HORSE 1 | CART S$Send)
state 1 I (0 cart _animal 5 | CART S$Send)
3 cart animal: HORSE (0 cart _animal 5 CART 8 | Send)
5 work animal: HORSE (0 phrase 4 | S$end)
PLOW reduce using rule 5 (work animal) (0 phrase 4 $end 7 |)
$default reduce using rule 3 (cart animal) accept

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

Shift/Reduce Conflict

A Shift/Reduce conflict occurs when both shift and reduce actions are possible for an input
string.

Example
e : X’
| e Y+ e

o X+ X ™ + X have two possible actions at the position T
o After reducing the stringtoe +e * + X
o Shift + and reduce X to e later

c Reducee+etoe

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

Reduce/Reduce Conflict

A Reduce/Reduce conflict occurs when two reduce actions are possible for an input string.

Example
e : el | e2 ;
el : X'
e2 : X' ;

° An input X can be reduced to both el and e2.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019

