
CSE 304 Compiler
Design
Lex & Yacc
YOUNGMIN KWON / TONY MIONE

Lex
A lexical scanner tool

Lex program is comprised of 3 sections separated by %%
◦ Definition Section:

◦ Any initial C program code, like header files, comes here.
◦ The C code needs to be surrounded by %{ and %} delimiters.

◦ Rules Section:
◦ Each rule is a pair of a pattern (a regular expression) and an action.
◦ When a pattern is recognized, the corresponding action is executed.
◦ The rules are evaluated from the first to the last and when there are multiple matches in a pattern the longest one is chosen.

◦ User subroutine section:
◦ Any legal C code can come here.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 2

Regular Expressions in Lex
. matches any single character except for \n.

* matches zero or more copies of the preceding expression.

+ matches one or more copies of the preceding expression.

? matches zero or one occurrence of the preceding expression.

{} if 1 ~ 2 numbers or a name is contained
◦ how many time the previous pattern is allowed if it contains 1 ~ 2 numbers.

◦ A{1,3}: one to three occurrences of A.

◦ substitution of a name if it contains a name.

\ to escape meta-characters
◦ \n for the newline character, * for the literal asterisk character.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 3

Regular Expressions in Lex
^ matches the beginning of a line

$ matches the end of a line

[] character class
◦ (one instance of) any characters inside the brackets.
◦ if the first character is ^, match any characters except for the ones in the brackets.
◦ - can be used to indicate the range like a-z, 0-9.
◦ - or] at the first character position is interpreted literally.

| matches either the preceding expression or the following expression
◦ e.g. cow | pig | sheep

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 4

Regular Expressions in Lex
“…” matches everything within the quotation marks literally except for the C escape sequence.

/ matches the preceding expression only if followed by the following expression.
◦ e.g. 0 / 1 matches 0 in the string “01” but not in the string “02”

() group a series of regular expressions together

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 5

Regular Expressions (Examples)
[0-9] matches a digit

[0-9]+ matches a number

[a-zA-Z_][a-zA-Z_0-9]* matches an identifier

[\t\n\r] matches a whitespace

#.* matches the remainder of a line from the # character (a useful expression for comments)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 6

%{
/*lex1.l: Lex example program*/
#include <stdio.h>

%}
%%
[\t\n\r] ; /*semicolon means no action*/
“exit” { return 1; } /*returns 1 to the caller of yylex()*/
[a-zA-Z]+ { printf(“found a word: %s\n”, yytext); } /*yytext contains the matching text*/
[0-9]+ { printf(“found a number: %s\n”, yytext); }
. { printf(“found a special char: %s\n”, yytext); }
%%
int yywrap() { return 1; } /*ignore this function for now*/
int main(int argc, char** argv)
{

yylex(); /*yylex tries to match the rule section*/
}

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 7

Yacc

A parser generator tool

Like Lex, Yacc program is comprised of 3 sections separated by %%

Definition Section:
◦ Any initial C code, like header files, comes here. It needs to be surrounded by %{ and %} delimiters.
◦ Tokens (terminals) are defined here after %token keyword (single character tokens don’t need definitions)

◦ e.g. %token NUMBER IDENTIFIER

◦ Token associativity (%left, %right, %nonassoc) and precedence (by their order of definitions from
low to high) are defined here
◦ Example precedence and associativity: UMINUS has the highest priority and ‘+’, ‘-’ have the lowest priority

%left ‘+’ ‘-’
%left ‘*’ ‘/’
%nonassoc UMINUS (unary minus)

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 9

Yacc
Definition section (continued)

◦ Symbols (terminals and nonterminals) can have types defined in %union keyword.
%union {

double dbl;
char* str;

}

◦ With the types we can define
%token<dbl> NUMBER
%token<str> IDENTIFIER
%type<dbl> expr term factor

◦ It is customary to use all upper case names for terminals and all or
mostly lower case names for others.

User subroutine section (after the second %%)
◦ Any legal C code can come here.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 10

Yacc (Rule Section)
A program area in between the first %% and the second %%
A list of productions (rules) are defined in the rule section

◦ Each rule defines a production
◦ Arrow (->) is replaced by ‘:’

◦ The end of a rule is marked by ‘;’
◦ The Left Hand Side (LHS) of the first rule is the start symbol (the root of the parse tree) unless overridden by
%start declaration.

Actions, C codes wrapped in { and }, can be added to the rules.
◦ As soon as a rule matches, the corresponding action is executed.
◦ The values of Right Hand Side (RHS) symbols are $1, $2, …
◦ The value of the LHS symbol is $$

Example
expr : expr ‘+’ term { $$ = $1 + $3; }

| expr ‘-’ term { $$ = $1 - $3; }
;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 11

Working with Lex
yyparse() is the function that starts the parsing.

yyparse calls yylex() when it needs a token.

The tokens defined in a yacc program will be added to y.tab.h file and a lex program can include
this header file to use the symbols.

will be converted to
%union {

double dbl;
char* str;

}
%token<dbl> NUMBER
%token<str> IDENTIFIER

#define NUMBER 257
#define IDENTIFIER 258
typedef union {

double dbl;
char* str;

} YYSTYPE;
extern YYSTYPE yylval;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 12

%{
/*file name: calc.y*/
#include <stdio.h>
#include <stdlib.h>
int yylex();
int yyerror(char*);

%}
%union {

double dval;
};
%token <dval> NUMBER
%type <dval> expr term factor
%%
Rule section is on the right
%%
int main(int argc, char**argv)
{

yyparse();
}

calc : expr ‘\n’ { printf("ans = %lf\n", $1); }
;

expr : expr '+' term { $$ = $1 + $3; }
| expr '-' term { $$ = $1 - $3; }
| term { $$ = $1; }
;

term : term '*' factor { $$ = $1 * $3; }
| term '/' factor { $$ = $1 / $3; }
| factor { $$ = $1; }
;

factor : '(' expr ')' { $$ = $2; }
| NUMBER { $$ = $1; }
;

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 13

%{
/*file name: calc.l*/
#include <string.h>
#include “calc.tab.h”

%}
%%
[\t\r]+ ; /*ignore white spaces*/
([0-9]+(\.[0-9]+)?)|(\.[0-9]+) {

yylval.dval = atof(yytext); /*set the value of the token*/
return NUMBER; /*return the token NUMBER*/

}
.|\n {

return yytext[0]; /*return the single character tokens*/
}

%%

int yywrap() { return 1; } /*ignore this function for now*/
int yyerror(char*) { return 1; } /*ignore this function for now*/

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 14

How the parser works
The parser created by yacc is LALR(1) parser, an LR parser with 1 look ahead. We will learn LR parsers later.

LR parsers use a stack, an action table, and a goto table to parse the input.

The parsing algorithm can be described by actions on configuration

Configuration
◦ A stack of states and symbols (terminals and nonterminals), a delimiter |, and unhandled input tokens
◦ (S1, X1, S2, X2 … Sn | T1, T2, …), where Si is a state, Xi is a symbol, Ti is a token.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 16

How LR parsers work

4 Actions of LR parser
◦ Shift and go to state S

◦ (… S1 | T1 T2…) -> (… S1 T1 S | T2 …)

◦ Reduce X -> X1 … Xn
◦ (… S0 X1 S1 … Xn Sn | T1 …) -> (… S0 X S | T1 …),

where S is the goto target of S0 for symbol X.

◦ Accept: finish with success
◦ Error: found an error

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 17

How the parser works
To see how the parser works, let’s create a yacc program (phrase.y)

phrase: cart_animal CART
| work_animal PLOW
;

cart_animal: HORSE
| GOAT
;

work_animal: HORSE
| OX
;

Run /usr/bin/bison phrase.y –v will produce phrase.output and other files
Next slide shows some of the states, actions (shift, reduce, accept), and goto tables of each state in
phrase.y.
The dots ‘.’ in the first lines of each state are where in the productions the state represents.
The last part shows how the configuration changes for the input HORSE CART.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 18

phrase.output file (add –v option to bison)

0 $accept: phrase $end (yacc added this rule)
1 phrase: cart_animal CART
2 | work_animal PLOW
3 cart_animal: HORSE
4 | GOAT
5 work_animal: HORSE
6 | OX

States
state 0

0 $accept: . phrase $end
HORSE shift, and go to state 1
GOAT shift, and go to state 2
OX shift, and go to state 3
phrase go to state 4
cart_animal go to state 5
work_animal go to state 6

state 1
3 cart_animal: HORSE .
5 work_animal: HORSE .
PLOW reduce using rule 5 (work_animal)
$default reduce using rule 3 (cart_animal)

state 2
4 cart_animal: GOAT .
$default reduce using rule 4 (cart_...)

state 4
0 $accept: phrase . $end
$end shift, and go to state 7

state 5
1 phrase: cart_animal . CART
CART shift, and go to state 8

state 7
0 $accept: phrase $end .
$default accept

state 8
1 phrase: cart_animal CART .
$default reduce using rule 1 (phrase)

Configurations for the input “HORSE CART”
(0 | HORSE CART $end)
(0 HORSE 1 | CART $end)
(0 cart_animal 5 | CART $end)
(0 cart_animal 5 CART 8 | $end)
(0 phrase 4 | $end)
(0 phrase 4 $end 7 |)
accept

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 19

Shift/Reduce Conflict
A Shift/Reduce conflict occurs when both shift and reduce actions are possible for an input
string.

Example
e : ‘X’
| e ‘+’ e
;

◦ X + X ↑ + X have two possible actions at the position ↑

◦ After reducing the string to e + e ↑ + X
◦ Shift + and reduce X to e later
◦ Reduce e + e to e

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 20

Reduce/Reduce Conflict
A Reduce/Reduce conflict occurs when two reduce actions are possible for an input string.

Example
e : e1 | e2 ;
e1 : ‘X’ ;
e2 : ‘X’ ;

◦ An input X can be reduced to both e1 and e2.

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 21

Questions?

(C) CSE304/504 YOUNGMIN KWON / TONY MIONE - SUNY KOREA, 2019 22

